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Atom reflection is studied in the presence of a non-Abelian vector potential proportional to a spin-1=2
operator. The potential is produced by a relatively simple laser configuration for atoms with a tripod level
scheme. We show that the atomic motion is described by two different dispersion branches with positive or
negative chirality. As a consequence, atom reflection shows unusual features, since an incident wave may
split into two reflected ones at a barrier, an ordinary specular reflection, and an additional nonspecular one.
Remarkably, the latter wave can exhibit negative reflection and may become evanescent if the angle of
incidence exceeds a critical value. These reflection properties are crucial for future designs in non-Abelian
atom optics.
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Introduction.—Atomic mirrors, created by optical [1] or
magnetic [2] potential barriers, play a crucial role in atom
optics, enabling us to manipulate matter waves. Wave re-
flection at a mirror is typically specular, where the reflec-
tion angle equals the incidence one. However, richer re-
flection scenarios are also possible. For optical waves a
double reflection appears in optically active media, such as
in chiral liquids characterized by different refractive indi-
ces for left and right polarized light [3]. This manifests
itself as a tiny splitting of the reflected wave into two parts
[4]. An additional striking example is Andreev reflection
[5,6] in which an electron incident at the interface between
a normal metal and a superconductor is reflected to a
positively charged hole propagating backwards, where
the missing charge of 2e enters the superconductor as a
Cooper pair.

Artificial electromagnetism for cold neutral atoms is
attracting growing attention. A proper manipulation of
atoms in optical lattices may allow for the observation of
Hofstadter butterfly energy spectra [7] and paradoxical
geometries [8], as well as for the generation of non-
Abelian gauge potentials [9]. Alternatively, Abelian and
non-Abelian gauge potentials may be induced by means of
laser fields acting on atoms in, respectively, lambda [10]
and tripod [11–13] schemes of electronic levels. Non-
Abelian gauge potentials lead to a number of distinctive
properties, e.g., modification of the metal-insulator transi-
tion [14] or non-Abelian Aharanov-Bohm interferometric
effects [9,15]. Recently, it was shown [16] that a tripod
scheme provides quasirelativistic physics for cold atoms,
similar to that for electrons in graphene [17].

In this Letter we analyze atom reflection in the presence
of a non-Abelian vector potential proportional to a
spin-1=2 operator produced by a relatively simple laser
arrangement for tripod-scheme atoms. We show that the
appearance of two different dispersion branches with posi-
tive or negative chirality leads to a double reflection at the

mirror, an ordinary specular reflection, and an additional
nonspecular one. Remarkably, the latter can exhibit a
negative reflection, resembling the Andreev reflection
[5,6]. The negatively reflected wave becomes evanescent
if the angle of incidence exceeds a critical value. These
reflection properties could become crucial for the design of
future non-Abelian atom optics devices, as, e.g., non-
Abelian atom interferometers [9,15].

Adiabatic motion of tripod atoms.—In the following we
consider an atom with a tripod electronic level scheme
fj0i; j1i; j2i; j3ig [see Fig. 1(a)] under the influence of three
stationary laser beams [11,16,18,19]. The jth laser induces
a resonant atomic transition (with a Rabi frequency �j)
between jji and j0i. These can be for instance the transition
23S1 $ 23P0 in 4He� or the transition 5S1=2�F � 1� $
5P3=2�F � 0� in 87Rb.

The electronic Hamiltonian of the tripod system reads in
the interaction representation [11]

 Ĥ 0 � �@j0i��1h1j ��2h2j ��3h3j� � H:c: (1)

Thus j0i is coupled only to the bright state jBi � ���1j1i �
��2j2i ���3j3i�=�, where ���j�1j

2�j�2j
2�j�3j

2�1=2

is the total Rabi frequency. The two states jBi and j0i split
into a dressed doublet j�i � �jBi � j0i�=

���
2
p

with energies

FIG. 1 (color online). Three light fields acting on atom in a
tripod configuration of energy levels involved.
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�@�. The remaining two eigenstates jDji (j � 1, 2),
known as dark states, are orthogonal to jBi and hence are
decoupled from the light fields, Ĥ0jDji � 0. We assume
that the light fields are sufficiently strong, so that � is large
compared to the two-photon detuning due to the laser
mismatch and/or Doppler shift. The dark states are thus
well separated in energies from the doublet j�i, and the
internal atomic state evolves within the dark-state mani-
fold. The full atomic state vector j�i can then be expanded
in terms of the dark states, j�i �

P2
j�1 �j�r�jDj�r�i,

where �j�r� is a wave function for the center-of-mass
motion of an atom in the jth dark state. The two-
component spinorlike wave function � � f�1;�2g

T

obeys the Schrödinger equation i@@�=@t � H�, with
the center-of-mass Hamiltonian [11]

 H �
1

2M
��i@r�A�2 � V ��; (2)

whereM is the atomic mass. The gauge potentials A and �
emerge due to the spatial dependence of the dark states.
The 2� 2 matrix A with the elements Anm �
i@hDn�r�jrDm�r�i represents the effective vector potential
known as the Mead-Berry connection [11,16,19–22]. The
2� 2 matrix � with elements �nm � �@

2=2M��
hDn�r�jrB�r�ihB�r�jrDm�r�i acts as an effective scalar
potential. Finally, the 2� 2 matrix V with elements Vnm �
hDn�r�jV̂jDm�r�i is an external potential for the dark-state
atoms. Here, V̂ �

P3
j�1 Vj�r�jjihjj, with Vj�r� being the

trapping potential for an atom in the jth internal state. Note
that the potential Vj can also accommodate a detuning of
the jth laser from the resonance of the j! 0 transition.

Laser arrangement.—Although elaborate laser configu-
rations may allow for a wealth of possible gauge potentials
in the tripod scheme [11], here we concentrate on a rela-
tively simple laser setup providing non-Abelian potentials.
The first two laser beams are assumed to counterpropa-
gate with the same intensity along the x axis, �1 �

� sin�e�i�0x=
���
2
p

and �2 � � sin�ei�0x=
���
2
p

, and the third
one propagating in the z direction [16], �3 � � cos�ei�0z.
Here, �0 is the wave number, and the mixing angle �
characterizes the relative intensity of the third laser. A set
of two dark states is then given by

 jD1i � 2�1=2�j~1i � j~2i�e�i�
0z; (3)

 jD2i � 	2
�1=2 cos��j~1i � j~2i� � sin�j3i
e�i�

0z; (4)

with �0 � �0�1� cos��, where the modified atomic state
vectors j~1i � j1i exp	i�0�x� z�
 and j~2i � j2i�
exp	�i�0�x� z�
 accommodate the phases of the laser
fields. An additional phase factor exp�i�0z� introduces a
shift in the origin of the momentum k! k� �0ez. By
imposing cos� �

���
2
p
� 1, the vector potential becomes

A � �@��?, where �? � ex�x � ez�z is the operator
of spin 1=2 in the xz plane, and � � �0 cos� � 0:414�0.

The Cartesian components Ax and Az are proportional to
the Pauli matrices �x and�z which do not commute, so the
vector potential A is non-Abelian. Note that similar non-
Abelian gauge potentials can also be induced by means of
standing waves in a tripod setup [12,13] or by state selec-
tive tunneling in optical lattices [9].

Furthermore, we take the trapping potentials V1 � V2

and V3 � V1 � @�2
0sin2�=2M. This can be achieved by

detuning properly the third laser from the two-photon
resonance. Hence the overall trapping potential V ��
becomes proportional to the unit matrix, both dark states
being affected by the same potential V1 � V1�r�, giving

 H �
1

2M
��i@r� @��?�2 � V1�r�: (5)

Dispersion law.—We shall consider a two dimensional
case where the atomic motion is confined to the xz plane. If
the trapping potential V1 is constant, the eigenfunctions of
the Hamiltonian (5) are the plane waves

 ��k �r� � g�k e
ikr; g�k �

1

2
1� iei’k

�i� ei’k

� �
; (6)

where ’k is the angle between the atomic wave vector k
and the x axis. The two-component spinors g�k are eigen-
functions of the chirality operator�k � �  k=k represent-
ing a spin along the atomic motion, �kg

�
k � �g

�
k . It

should be emphasized that the chirality is here associated
with the subspace of two dark states rather than with the
spin in the usual sense.

The corresponding eigenenergies of the Hamiltonian (5)
are isotropic, @!�k � @!�k , with

 @!�k �
@

2

2M
�k� ��2 � @!0 � V1; (7)

where !0 � @�2=2M is the recoil frequency. The relative
dispersion!�k =!0 is plotted in Fig. 2 for V1 � �@!0. The
upper (lower) dispersion branch is characterized by a posi-
tive (negative) chirality. For small wave numbers k� �
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FIG. 2 (color online). Upper (blue dashed) and lower (red
solid) dispersion branch for tripod atoms in light fields.
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the dispersion is linear,!�k ��k, so the atoms behave like
ultrarelativistic Dirac fermions [16] similar to electrons in
graphene [17]. For larger wave numbers each k � k1 < 2�
has a counterpart, k2 � 2�� k, characterized by the same
eigenfrequency @!�k2

� @!�k1
and opposite slope in the

lower dispersion branch [23]. As shown below, this leads
to unusual reflection properties.

Double and negative reflection of atoms.—To prepare an
incident atom in the lower dispersion branch we suggest
the following procedure. Initially the first two lasers are on,
the third laser is off, and the atom is in the internal state j3i
coinciding (up to a phase) with the second dark state,
jD2i � j3i exp��i�0z�. The atomic center-of-mass motion
is initially characterized by a wave vector kin � kinez [24],
giving the full state vector j�i � jD2i exp�ikz�, where k �
kin � �0. Subsequently, the laser 3 is switched on slowly, so
that the atom remains in the dark state jD2i. Yet the
duration of the switching-on should be short enough to
avoid any substantial atomic motion at this stage. Since
k � kez, the spinor g�k represents the dark state jD2i.
Hence one arrives at the atomic state vector j�i corre-
sponding to the negative-chirality solution ��k , as re-
quired. The atoms prepared in this way will propagate
along the z axis for k > � or opposite to it for k < �.

The atoms are impinging on an infinitely high potential
barrier at an angle of incidence �. We shall take k < 2�, so
that both reflected waves ��k1

and ��k2
remain in the lower

dispersion branch with wave numbers k1 � k and k2 �
2�� k. Figure 3(b) shows the case of an incident wave
with � < k < 2�. Here the group velocity v�k � @!�k =@k
is positive, so the wave vectors of the incident and second
reflected waves point inwards to the surface, whereas the
wave vector of the first reflected wave points outwards
from the surface. Since v�k � v�k1

� �v�k2
, this ensures

the forward propagation of the incident wave and back-
ward propagation of the reflected ones. Figure 3(a) illus-
trates a situation where 0< k< �. Here the group velocity
v�k is negative and hence the wave vectors are reversed.

In front of the barrier the solution to the stationary
Schrödinger equation �H � @!�k �� � 0 is a linear super-
position of the incident wave and two reflected waves:

 � � ��k � r1��k1
� r2��k2

: (8)

The wave vector is conserved along the reflection plane,
kk � k1k � k2k, so the first wave exhibits an ordinary
reflection with the reflection angle equal to the angle of
incidence, �1 � �. The second wave is characterized by
the opposite group velocity v�k2

� �v�k � �v
�
k1

, and
hence it experiences a negative reflection at an angle

 �2 � arcsin	sin���k=k2
: (9)

The reflection coefficients r1 and r2 are determined using
Eqs. (6) and (8) together with the boundary condition at the
potential barrier �jbarrier � 0, giving

 r1 �
ei� � ei�2

e�i� � ei�2
; r2 � �1� r1: (10)

The corresponding reflection probabilities are

 P1 � jr1j
2; P2 �

cos�2

cos�
jr2j

2; (11)

with P1 � P2 � 1, where the weight factor cos�2= cos�
appears when calculating the flow of atoms in and out of
the surface for the incident and reflected waves. The prob-
abilities P1 and P2 plotted in Fig. 4 are seen to depend both
on the angle of incidence � and also on the wave number k.
For small angles, �� 1, there is predominantly a negative
reflection to the second branch, jP1j � 1 and jP2j � 1.
For large angles of incidence (�! �=2) and 0< k< �
we have mostly a specular reflection to the first branch,
jP2j � 1 and jP1j � 1.

If � < k < 2�, the situation is more complex. In this
case, the second reflected wave becomes evanescent when
the angle of incidence � exceeds a critical value given by
sin�crit � k2=k, i.e., for kk � k2k > k2. Consequently the
out-of-plane projection of the wave vector k2 becomes

imaginary, k2? � �iq, with q �
����������������
k2
k
� k2

2

q
. In the region

where x < 0 we can once again use Eq. (8) in which ��k2
is

FIG. 3 (color online). Reflection of atoms with negative chi-
rality for 0< k< � (a) and � < k< 2� (b).
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now an evanescent wave. The boundary condition at the
potential barrier gives the reflection coefficient

 r1 �
ei�

��������������
kk � q

p
� i

��������������
kk � q

p
e�i�

��������������
kk � q

p
� i

��������������
kk � q

p ; (12)

with jr1j � 1. Thus, there is a total reflection to the first
mode at an angle �1 � � accompanied by a phase shift,
with the second reflected wave being evanescent. The
phenomenon resembles the total internal reflection of op-
tical waves at an interface with an optically thinner me-
dium. In our situation, however, the evanescent wave is the
reflected wave rather than the refracted one.

Our plane-wave analysis may be easily extended to the
case of wave packet reflection. Similar results may be
found if the momentum width of the wave packet �k is
sufficiently small with respect to �. Figure 5 displays the
double and negative reflection of atomic wave packets
from an atomic mirror, for an incident wave packet ��r� �
g��k e

i �krf�r�, with f�r� a Gaussian, and �k the central wave
number. The propagation direction and population of each
of the reflected wave-packets are in good agreement with
the analytical plane-wave results (9)–(11). Similar results
are also found for more realistic Gaussian or evanescent
atomic mirrors [1,2], as long as the potential barrier is
sufficiently high compared to the incident kinetic energy.
Lower barriers would lead to partial reflection, transmis-
sion and tunneling, whose physics will be the subject of
further investigations.

Summarizing, the reflection of atoms under a non-
Abelian gauge potential presents unusual features. In par-
ticular, one can have a double reflection comprising a
specular and a nonspecular one. Remarkably, the latter
wave shows negative reflection due to the special proper-
ties of the dispersion law, and becomes evanescent for
sufficiently large incident angles. Atom mirrors are a key
tool in atom optics. Hence the anomalous reflection prop-
erties may be of crucial importance for the design of non-

Abelian atom optics elements, e.g., atom interferometers
which exploit the non-Abelian Aharanov-Bohm effect.
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FIG. 5 (color online). Reflection of an atomic wave packet
with a negative chirality for � � 15�, k � 1:5� (left) and � �
65�, k � 0:5� (right). The incident wave packet is taken to be
Gaussian with momentum width �k � 0:1�. An additional
arrow indicates the incident direction.
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