SUPPLEMENTAL MATERIALS: IMPLEMENTATION

The 3DSOC can be implemented in ⁸⁷Rb using two photon transitions. A possible implementation is given in Fig. ??. Nine laser beams with wavelength λ are used to couple states within the F = 1 and F = 2 hyperfine manifolds. A Zeeman field of B = 200mT sets the quantization axis along the \hat{z} direction. The remaining hyperfine transitions are isolated with a 6.8 GHz microwave field. Each pair of non-adjacent couplings is induced with three laser beams. All lasers have frequencies tuned between the D_1 and D_2 transitions. To ensure that all unwanted couplings are off resonance, we chose the base frequencies much larger than the splitting between the hyperfine levels $\omega_a, \omega_b, \omega_c \gg \delta_{ij}$.

The six optical couplings are induced in non-adjacent pairs on the state-linkage diagram. We list the properties of the three pairs of couplings independently. In what follows we define the vectors $\hat{e}_{\pm} = \pm \frac{1}{\sqrt{2}} (\hat{x} \pm \hat{y})$ and $\hbar k_L$ is the recoil momentum of the laser.

Couplings Ω_{12} and Ω_{34}

The two couplings Ω_{12} and Ω_{34} will be induced with three lasers, denoted L_a , L_{12} and L_{34} . The beam L_a will be shared in the two-photon couplings. The frequencies of the three beams will be chosen such that

$$\omega_{12} = \omega_a + \delta_{12} \tag{1}$$

$$\omega_{34} = \omega_a + \delta_{34},\tag{2}$$

where ω_a is the frequency of the laser L_a and δ_{ij} , is the frequency splitting between the states $|i\rangle$ and $|j\rangle$. With such a configuration, the transition $|1\rangle \leftrightarrow |2\rangle$ and $|3\rangle \leftrightarrow$ $|4\rangle$ will be on resonance, while all other dipole allowed transitions will be off resonance. The wavevectors of the lasers are given by

$$\boldsymbol{\kappa}_a = k_L \hat{z} \tag{3}$$

$$\boldsymbol{\kappa}_{12} = -k_L \hat{\boldsymbol{e}}_- \tag{4}$$

$$\boldsymbol{\kappa}_{34} = k_L \hat{\boldsymbol{e}}_{-}.\tag{5}$$

We can check that the effective momentum transfer of the couplings are given by

$$\mathbf{k}_{12} = k_L(\hat{e}_- + \hat{z}) \tag{6}$$

$$=\frac{k_L}{\sqrt{2}}\left(\hat{x}-\hat{y}+\sqrt{2}\hat{z}\right) \tag{7}$$

$$=\mathbf{K}_1 - \mathbf{K}_2 \tag{8}$$

and

$$\mathbf{k}_{34} = k_L(-\hat{e}_- + \hat{z}) \tag{9}$$

$$=\frac{k_L}{\sqrt{2}}\left(\hat{y}-\hat{x}+\sqrt{2}\hat{z}\right)\tag{10}$$

$$= \mathbf{K}_3 - \mathbf{K}_4. \tag{11}$$

 m_F

FIG. 1. Four hyperfine states $|F, m_F\rangle$ of ⁸⁷Rb are coupled using nine lasers. The quantization axis is set by a Zeeman field along the \hat{z} -axis. The couplings are produced in pairs. (a) The four states in the tetrahedral coupling are mapped to physical states according to $|1\rangle = |2, 0\rangle$, $|2\rangle = |1, +1\rangle$, $|3\rangle = |1, 0\rangle$, $|1\rangle = |2, +1\rangle$. (b) The frequencies of the three sets of lasers are given by $\{\omega_a, \omega_a + \delta_{12}, \omega_a + \delta_{34}\}$ (dashed blue), $\{\omega_b, \omega_b + \delta_{13}, \omega_b + \delta_{24}\}$ (dotted black), and $\{\omega_c, \omega_c + \delta_{14}, \omega_c + \delta_{23}\}$ (solid red), where $\delta_{ij} = \omega_i - \omega_j$ is the frequency difference between the states $|i\rangle$ and $|j\rangle$ in the rotating frame. (c) The geometry of the nine laser beams. $-\mathbf{k}_{12} = -\mathbf{k}_{13} = \mathbf{k}_{23} =$ $\mathbf{k}_{34} = k_L \hat{e}_-$, $\mathbf{k}_a = \mathbf{k}_{23} = -\mathbf{k}_{14} = k_L \hat{z}$ and $\mathbf{k}_b = -\mathbf{k}_c = k_L \hat{e}_-$. The unit vectors $\hat{e}_{\pm} = \pm \frac{1}{\sqrt{2}}(\hat{x} \pm \hat{y})$.

 $L_{a}L_{23}$

 \hat{e}

Finally, the polarizations of the lasers will be chosen such that the beams L_{12} and L_{34} are linearly polarized along the \hat{z} direction, while L_a is σ_+ polarized.

Couplings Ω_{14} and Ω_{23}

The couplings Ω_{14} and Ω_{23} will similarly be induced with three lasers, denoted L_b , L_{14} and L_{23} . The beam L_b will be shared in the two-photon couplings. The frequencies of the three beams will be chosen such that

$$\omega_{14} = \omega_b + \delta_{14} \tag{12}$$

$$\omega_{23} = \omega_b + \delta_{23},\tag{13}$$

where ω_b is the frequency of the laser L_b . This choice of frequencies will isolate the transitions $|1\rangle \leftrightarrow |4\rangle$ and $|2\rangle \leftrightarrow |3\rangle$ in a manner similar to above couplings. The wavevectors of the lasers are given by

$$\boldsymbol{\kappa}_b = k_L \hat{\boldsymbol{e}}_+ \tag{14}$$

$$\boldsymbol{\kappa}_{14} = -k_L \hat{z} \tag{15}$$

$$\boldsymbol{\kappa}_{23} = k_L \hat{z}.\tag{16}$$

We can check that the effective momentum transfer of the couplings are given by

$$\mathbf{k}_{14} = k_L(\hat{e}_+ + \hat{z}) \tag{17}$$

$$=\frac{k_L}{\sqrt{2}}\left(\hat{x}+\hat{y}+\sqrt{2}\hat{z}\right)\tag{18}$$

$$=\mathbf{K}_1-\mathbf{K}_4\tag{19}$$

and

$$\mathbf{k}_{23} = k_L (\hat{e}_+ - \hat{z}) \tag{20}$$

$$= \frac{\kappa_L}{\sqrt{2}} \left(\hat{x} + \hat{y} - \sqrt{2}\hat{z} \right) \tag{21}$$

$$= \mathbf{K}_2 - \mathbf{K}_3. \tag{22}$$

Finally, the polarizations of the lasers will be chosen such that the beams L_b is linearly polarized along the \hat{z} direction, while L_{14} and L_{23} are linearly polarized along the \hat{x} axis.

Couplings Ω_{13} and Ω_{24}

The last pair of couplings Ω_{13} and Ω_{24} will similarly be induced with three lasers, denoted L_c , L_{13} and L_{24} . The beam L_c will be shared in the two-photon couplings. The frequencies of the three beams will be chosen such that

$$\omega_{13} = \omega_c + \delta_{13} \tag{23}$$

$$\omega_{24} = \omega_c + \delta_{24},\tag{24}$$

where ω_c is the frequency of the laser L_c . This choice of frequencies will isolate the transitions $|1\rangle \leftrightarrow |3\rangle$ and $|2\rangle \leftrightarrow |4\rangle$ in a manner similar to above couplings. The wavevectors of the lasers are given by

$$\boldsymbol{\kappa}_c = -k_L \hat{\boldsymbol{e}}_+ \tag{25}$$

$$\boldsymbol{\kappa}_{13} = -k_L \hat{e}_- \tag{26}$$

$$\boldsymbol{\kappa}_{24} = k_L \hat{e}_-. \tag{27}$$

We can check that the effective momentum transfer of the couplings are given by

$$\mathbf{k}_{13} = k_L(-\hat{e}_+ + \hat{e}_-) \tag{28}$$

$$=\frac{k_L}{\sqrt{2}}\left(2\hat{x}\right)\tag{29}$$

$$=\mathbf{K}_1-\mathbf{K}_3\tag{30}$$

and

$$\mathbf{k}_{24} = k_L(-\hat{e}_+ - \hat{e}_-) \tag{31}$$

$$=\frac{k_L}{\sqrt{2}}\left(2\hat{y}\right)\tag{32}$$

$$\mathbf{K}_2 - \mathbf{K}_4. \tag{33}$$

Finally, the polarizations of the lasers will be chosen such that the beams L_{12} and L_{34} are linearly polarized along the \hat{e}_+ direction, while L_c is linearly polarized along \hat{e}_- .

Amplitude and Phase

In each pair of transitions, the three lasers provide a sufficient number of both amplitude and phase degrees of freedom to chose the the values of the couplings as desired in the main text.