
PHYSICAL REVIEW A 92, 033617 (2015)
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We consider ultracold atoms in a two-dimensional optical lattice of the dice geometry in a tight-binding
regime. The atoms experience a laser-assisted tunneling between the nearest neighbor sites of the dice lattice
accompanied by the momentum recoil. This allows one to engineer staggered synthetic magnetic fluxes over
plaquettes, and thus pave a way towards the realization of topologically nontrivial band structures. In such a
lattice the real-valued next-nearest neighbor transitions are not needed to reach a topological regime. Yet, such
transitions can increase a variety of the obtained topological phases. The dice lattice represents a triangular
Bravais lattice with a three-site basis consisting of a hub site connected to two rim sites. As a consequence, the
dice lattice supports three energy bands. From this point of view, our model can be interpreted as a generalization
of the paradigmatic Haldane model which is reproduced if one of the two rim sublattices is eliminated. We
demonstrate that the proposed upgrade of the Haldane model creates a significant added value, including an
easy access to topological semimetal phases relying only on the nearest neighbor coupling, as well as enhanced
topological band structures featuring Chern numbers higher than one leading to physics beyond the usual quantum
Hall effect. The numerical investigation is supported and complemented by an analytical scheme based on the
study of singularities in the Berry connection.
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I. INTRODUCTION

Optical lattices have firmly established themselves as a
modern and versatile tool to study fundamental physics
in a clean environment with various physical parameters
being under experimentalist’s control and often extensively
tunable [1–3]. One is typically interested in implementing
a paradigmatic Hamiltonian that clearly demonstrates a par-
ticular phenomenon or an effect. A list of recent successes
features, to mention just a few examples, realization of
the Harper-Hofstadter [4–6] and Haldane models [7], direct
observation and control of the Dirac points [8], creation
of artificial magnetic fluxes via lattice shaking [9] and
reproduction of models of magnetism [10], and engineering of
a spin-dependent optical lattice resulting from a combination
of Raman coupling and radio-frequency magnetic fields [11].

In particular, access to topological band structures is of
enormous interest [12–14]. The presence of the topological
order is signaled by a nonzero Chern index reflecting a
nonvanishing integral of the Berry curvature over the entire
two-dimensional Brillouin zone. A topological band supported
by a spatially periodic optical lattice acts as a model of a
Landau level. The unique band structure consisting of a ladder
of Landau levels defines an apparent insulator with current-
carrying edge states and has traditionally been associated
with the presence of an external magnetic field. In cold-atom
setups, however, the topological character becomes an intrinsic
property of the band and is not necessarily associated with the
presence of a physical magnetic field [14,15]. Synthetic fluxes
piercing the lattice plaquettes may be imparted by the lattice
shaking [9,14,16–18], laser-assisted tunneling [14,19–21] or
using synthetic dimensions [22].

Many of the breakthroughs mentioned in the introductory
paragraph can be classified as mimicking or reproduction
of phenomena known from the condensed matter physics.

However, significant contributions from cold-atom systems
to extending the known physics should also be recog-
nized [1,2,14,21,23]. Perhaps the most obvious examples
relate to the construction of topological bands with the values
of the Chern index greater than one [24–30], which is a central
topic of the present paper. The properties of such a band is not
a direct sum of the properties of several Landau levels, and
reach beyond the traditional (integer or fractional) quantum
Hall physics [31,32].

Indeed, the study of bands with higher Chern numbers
has been particularly relevant in connection to the so-called
fractional Chern insulators [33–35]. Although many-body
interactions, which play the central role in these studies, are
beyond the scope of the present contribution, we stress that
many insights into the nature of the fractional topological
states were obtained from somewhat artificial lattice constructs
often involving many layers [25] or distant-neighbor hop-
pings [26,27,36]. Ongoing efforts [37–40] are also based on the
Harper-Hofstadter model that in principle supports subbands
of arbitrarily high Chern numbers. Here, one also has to defy
rather stringent requirements posed by large magnetic unit
cells, low particle densities, and a large number of subbands
implying small topological band gaps [40]. In the present
paper we focus on exploring the potential offered by relatively
simple and thus more realistic lattice models. We construct
a generalization of the Haldane model [41–45] by coupling
three rather than two triangular sublattices. In this way, the
honeycomb lattice featured in the Haldane model is upgraded
to the dice lattice [46–51] which supports a three-band model
with a clean access to interesting topological configurations,
such as bands characterized by the Chern number equal
to 2. In the dice-lattice model it is just a complex valued
nearest-neighbor (NN) coupling that is sufficient to generate a
staggered synthetic magnetic flux and reach nontrivial setups
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including a topological semimetal phase. On the other hand,
for spatially periodic hexagonal lattices, nontrivial phases
cannot be reached just by having the complex-valued nearest-
neighbor coupling, one should add a real-valued next-neighbor
coupling [42–44]. Note that the dice lattice affected by a
uniform magnetic flux was used to demonstrate a novel
and intriguing mechanism of localization of wave packets in
Aharonov-Bohm cages [52–54].

The paper is structured as follows. In Sec. II, we introduce
the lattice geometry and derive the 3×3 momentum-space
Hamiltonian encapsulating the physics. Then, Sec. III de-
scribes the obtained results starting from phases obtained in the
presence of NN couplings alone and proceeding to more com-
plex configurations requiring next-nearest neighbor (NNN)
transitions. We conclude with a brief summarizing Sec. V.

II. THE MODEL

A. Lattice geometry

We consider a dice lattice, which consists of three triangular
sublattices. One of them is called a hub sublattice. It is coupled
to other two rim sublattices, that in turn are not coupled with
each other. Let us denote the hub sublattice by B and the rim
sublattice by A and C. The vectors that connect the nearest
lattice sites are (Fig. 1)

δ1 = a

2
(ex +

√
3ey), δ2 = a

2
(ex −

√
3ey), δ3 = −aex,

(1)
where a is the distance between two such sites. The elementary
lattice vectors,

a1 = a(3ex +
√

3ey)/2, a2 = a(3ex −
√

3ey)/2, (2)

define a rhombic elementary cell. The set of lattice vectors
rn = n1a1 + n2a2 (with integers n1 and n2) span the hub
sublattice B (Bravais lattice). The two rim sublattices are
defined in the following way. The first rim sublattice A is
shifted from the hub sublattice B by the vector δ1 in such a
way that sublattices A and B alone make a honeycomb lattice.

(a) (b)

FIG. 1. (Color online) (a) Dice lattice. The blue, green, and red
sites correspond to three different triangular sublattices A, B, and
C. Solid lines show couplings between the sites A and B. Dashed
lines show couplings between the sites B and C. The primitive lattice
vectors are a1 and a2. Nearest sites are connected with the vectors
δ1, δ2, and δ3. (b) Hexagonal first Brillouin zone of the reciprocal
lattice defined by the primitive reciprocal lattice vectors b1 and b2.
Two inequivalent corners are at the points K (red) and K ′ (blue).

The second rim sublattice C is shifted to the opposite direction
by −δ1 (see Fig. 1). Let us introduce a set of vectors, that span
all the lattice sites:

rn,s = rn + sδ1. (3)

Here the index s = 0,±1 labels the three sublattices. The sites
of the hub sublattice (s = 0) coincide with the lattice vectors:
rn,0 = rn. The sites of the rim sublattices A and C shifted by
±δ1, i.e., rn,+1 = rn + δ1 and rn,−1 = rn − δ1.

It is convenient to introduce an additional lattice vector
a3 = a1 − a2. The set of the three lattice vectors ai (i = 1,2,3)
together with the opposite vectors −ai connect all next-nearest
lattice sites, and can be related to δi as a1 = δ1 − δ3, a2 =
δ2 − δ3, and a3 = δ1 − δ2.

The basic reciprocal lattice vectors,

b1 = 2π

3a
(ex +

√
3ey), b2 = 2π

3a
(ex −

√
3ey), (4)

are orthogonal to the lattice vectors, ai · aj=2πδij , i,j=1,2.
The first Brillouin zone is hexagonal with two inequivalent
corners K and K ′ positioned at K = (2b1 + b2)/3 and K ′ =
(b1 + 2b2)/3. In terms of the Cartesian coordinates these
points are given by

K = 2π

9a
(3ex +

√
3ey), K ′ = 2π

9a
(3ex −

√
3ey), (5)

as one can see in Fig. 1.

B. Tight-binding model

We shall make use of the tight-binding model in which the
single-particle states |rn,s〉 represent the Wannier-type wave
functions localized at each lattice site rn,s , with s = 0,±1
being the sublattice index. In the language of the second quan-
tization these single-particle states read |rn,s〉 = c†(rn,s)|vac〉,
where |vac〉 is the Fock vacuum state, c†(rn,s) and c(rn,s)
being the creation and annihilation operators of an atom in the
corresponding localized state.

The full Hamiltonian of the system consist of three terms,

H = H1 + H2 + H3. (6)

The first term H1 describes the laser-assisted tunneling
[14,18–21,42,44,55] of atoms between the sites of the hub
sublattice B (s = 0) and its nearest neighboring sites that
belong to the rim sublattices A and C with s = ±1:

H1 =
∑

n

∑
s=±1

J (s)
3∑

i=1

ei ps ·(rn+sδi /2)c†(rn)c(rn + sδi) + H.c.,

(7)
where J (s) are the coupling amplitudes. Such generalization of
dice optical lattice with two different hopping parameters J (+)

and J (−) is already discussed in Ref. [56]. The laser-assisted
tunneling is accompanied by the transfer of the recoil mo-
mentum ps with s = ±1, to be labeled simply by p± ≡ p±1.
In the present situation p+ can generally differ from p−
because the transitions between the different sublattices can
be induced by different lasers. Note that the nearest neighbor
hopping alone is sufficient to generate fluxes through rhombic
plaquettes,

�i = ±( p+ − p−) · ai/2, (8)
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with ai representing a diagonal vector of the plaquette in
question. Yet the magnetic flux over the whole hexagonal
plaquette remains zero.

The second term H2 takes into account the tunneling
between the next-nearest neighboring sites belonging to the
same sublattice with s = 0,±1:

H2 =
∑

n

∑
s=0,±1

J
(s)
2

3∑
i=1

c†(rn,s)c(rn,s + ai) + H.c. (9)

This term describes the usual (not laser-assisted) hopping
transitions between nearest sites in each of the three triangular
sublattices, and J

(s)
2 with s = 0,±1 are the corresponding

matrix elements for the tunneling between the atoms belonging
to the sth sublattice.

The third term H3 describes the energy mismatch for the
particles populating the different sublattices:

H3 =
∑

n

∑
s=0,±1

εsc
†(rn,s)c(rn,s). (10)

The on-site energies εs are the diagonal matrix elements of
the Hamiltonian in the basis of the Wannier states. Without a
loss of generality we can take the on-site energy of the hub

sublattice B to be zero: ε0 = 0. The on-site energies of other
rim sublattices are to be labeled as ε±1 ≡ ε±.

Since the first term H1 involves complex phase factors that
depend on the elementary cell number n, the full Hamiltonian
H is not translationally invariant. Yet, we will transform
the annihilation operators according to c(rn,0) → c(rn,0) and
c(rn,s) → c(rn,s) exp(−i ps · rn) with s = ±1, and perform
the corresponding transformation for the creation operators.
This gauge transformation makes the full Hamiltonian (6)
translationally invariant.

Transition to the reciprocal space is carried out by intro-
ducing new operators,

cs(k) = 1√
N

∑
k

c(rn,s)e
−ik·rn ,

(11)

c(rn,s) = 1√
N

∑
k

cs(k)eik·rn ,

together with the Hermitian conjugated creation operators
c
†
s (k). Here N is a number of elementary cells in the quan-

tization area, and the vectors rn = rn,0 (defined in Sec. II A)
are located at the sites of the hub lattice. In terms of the new
operators the Hamiltonian (6) splits into its k components:

H =
∑

k

H (k), H (k) = [c†+(k) c
†
0(k) c

†
−(k)]H(k)

⎡
⎢⎣

c+(k)

c0(k)

c−(k)

⎤
⎥⎦, (12)

where H(k) is a 3 × 3 matrix:

H(k) =

⎡
⎢⎢⎣

ε+ + 2J
(+)
2 f (k − p+) J (+)g(k − p+/2) 0

J (+)g∗(k − p+/2) 2J
(0)
2 f (k) J (−)g(k − p−/2)

0 J (−)g∗(k − p−/2) ε− + 2J
(−)
2 f (k − p−)

⎤
⎥⎥⎦. (13)

Here we also added an extra phase factor to the transformed
operators cs(k) → cs(k)ei ps ·sδ1/2. The functions,

f (k) =
3∑

i=1

cos(k · ai), g(k) = eik·δ1

3∑
i=1

e−ik·δi , (14)

entering Eq. (13) are translationally symmetric in the recipro-
cal space,

f (k + G) = f (k), g(k + G) = g(k), (15)

where G = n1b1 + n2b2 is a reciprocal lattice vector, n1

and n2 being integers. Consequently the matrix Hamiltonian
H(k) is also fully translationally invariant in the reciprocal
space H(k) = H(k + G). Note that Berry curvature in general
depends on the choice of Fourier transformation (11), while the
corresponding Chern number does not [57,58]. Furthermore,
the functions f (k) and g(k) obey the following reflection
properties,

f (k) = f (−k), g(k) = g∗(−k). (16)

All this helps to consider various symmetries of the matrix
Hamiltonian (13).

III. PHASES OF NONINTERACTING FERMIONS

A. Chern numbers and symmetries of the system

Since the momentum-space Hamiltonian (13) represents a
three-level system, there are three energy bands characterized
by energies En(k), with n = 1,2,3. Each energy band has a
Chern number cn to be defined in Eq. (17). We also identify
two possible band gaps. The first band gap �12 measures the
energy between the first (n = 1) and second (n = 2) bands,
the second band gap �23 corresponding to the energy between
the second (n = 2) and the third (n = 3) bands.

The Chern number cn for the nth band is defined in terms of
a surface integral of a Berry curvature over the first Brillouin
zone (FBZ) [14,59]:

cn = − 1

2π

∫
FBZ

d2k Fn(k). (17)

The Berry curvature Fn(k) can be expressed in terms of the
eigenvectors |un,k〉 of the reciprocal space Hamiltonian (13)
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as

Fn(k) = i

(
∂

∂kx

〈un,k|
)(

∂

∂ky

|un,k〉
)

− i

(
∂

∂ky

〈un,k|
)(

∂

∂kx

|un,k〉
)

. (18)

It is well defined as long the eigenenergies En(k) are not
degenerate for any fixed value of k. Therefore the Chern
number cn can be ascribed to the nth band if the latter does not
touch any other bands. If the Fermi energy is situated in a band
gap, the Chern number is directly related to Hall conductivity
due to chiral edge states of the occupied bands [60] via

σxy = −e2cn/� [61–63]. For numerical calculation we make
use of the discretized version of the Berry curvature (18)
described in Ref. [64].

For both rim sublattices A and C, we set on-site energies
of to be symmetrically shifted away from the zero point
ε+ = −ε− = ε. We also take the tunneling amplitudes to be
equal J (+) = J (−) = J , J

(+)
2 = J

(0)
2 = J

(−)
2 = J2 and assume

the recoil momenta to be opposite p+ = − p− = p for both
rim sublattices A and C. The choice of opposite recoil momenta
ensures the maximum flux, because the magnetic flux through
a rhombic plaquette �i given by Eq. (8) is proportional to the
difference of these vectors. Under these conditions, the matrix
representation of the k-space Hamiltonian becomes

H(k) =

⎡
⎢⎣

ε + 2J2f (k − p) Jg(k − p/2) 0

Jg∗(k − p/2) 2J2f (k) Jg(k + p/2)

0 Jg∗(k + p/2) −ε + 2J2f (k + p)

⎤
⎥⎦. (19)

This form of the Hamiltonian exhibits some symmetries.
The first symmetry involves inversion of the on-site energies
ε → −ε followed by the unitary transformation that changes
the first row with the third one (i.e., interchanges the rim
sublattices A and C), as well as the momentum inversion
k → −k. Using the reflection properties of the functions f and
g given by Eq. (16), one arrives at the same Hamiltonian (19).
The second symmetry is J → −J , which is a simple gauge
transformation. Using these two symmetries we see that
the change J2 → −J2 gives H(k) → −H(k). To sum up,
all the three mentioned symmetries are (ε → −ε,H → H),
(J → −J,H → H), and (J2 → −J2,H → −H).

B. Numerical analysis

In this subsection, we numerically study the Chern phases
of noninteracting fermions. In order to present dependence
of the Chern number on the parameters ε, J , J2, and p we
adopt a similar presentation of the phase diagram scheme as
in Ref. [44]. We choose the energy unit to be the nearest-
neighbor tunneling amplitude J . For the recoil momentum
p, we express the px component in the units of Kx and the
component py in the units of Ky , where K is one of the FBZ
corners, defined in Eq. (5). In all the phase diagrams we present
the dependence of the Chern number cn = cn(px,py) on the
components of the recoil momentum p using different colors
for each possible values of cn. The areas corresponding to a
topologically trivial phase with a zero Chern number are shown
in green (cn = 0). On the other hand, the areas corresponding
to nontrivial Chern phases are shown in yellow (cn = 1), red
(cn = 2), cyan (cn = −1), and blue (cn = −2). Additionally
we display Chern number labels in all the presented phase
diagrams.

First we characterize topological properties of the band
structure if there is no next-nearest neighbor coupling (J2=0).
In Fig. 2 we show the Chern number phase diagrams for
ε = J . One can identify regions where the Chern numbers are
{c1,c2,c3} = {0,0,0}, {−1,2,−1}, and {1,−2,1}. In the first
type of the regions (green color) we have topologically trivial

regions. In other regions there are nonzero Chern numbers with
band gaps �12 = �23 = 0. Analysis of the band structure in
these regions shows that the bands do not overlap and touch
indirectly. Thus by filling the first one or the first two bands we
arrive at semimetallic phase with nonzero Hall conductivity.
The typical spectrum of such a nontrivial semimetallic case is
presented in Fig. 6. The size of the nontrivial regions in the
p plane depends on the mismatch ε of the on-site energies of
A and C sublattices. By increasing ε from zero these regions
immediately appear around the points p = K and become
larger in size. For about ε ≈ J these regions have the largest
area as presented in Fig. 2 for ε = J . For even larger values of
ε the nontrivial regions shrink back to the points K and finally
we are left only with the trivial phase {0,0,0} everywhere. The
analytical treatment, presented in Sec. IV gives the value of

(a) (b)

FIG. 2. (Color online) Chern number dependence on the recoil
momentum p in the case ε = J and J2 = 0. (a) The phase diagram
of the lowest band Chern number c1. (b) The corresponding phase
diagram for the middle band. Since the sum of Chern numbers over
all three bands is zero, the third band gives the same phase diagram
as the first one (c1 = c3). The green regions correspond to the Chern
number zero. The yellow, red, cyan, and blue regions correspond to
the Chern numbers 1, 2, −1, and −2, respectively. Nonzero Chern
numbers are also displayed as labels. The hexagon represents the FBZ
in the p plane.
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(a) (b)

FIG. 3. (Color online) Chern number dependence on the recoil
momentum p in the case ε = 2J and J2 = 0.3J . (a) The Chern
number c1 of the lowest band; (b) the Chern number c2 of the middle
band. For the third band (not shown here) we have c3 = −(c1 + c2).
The green, yellow, red, cyan, and blue regions correspond to the
Chern numbers 0, 1, 2, −1, and −2, respectively. Nonzero Chern
numbers are also displayed as labels. A smaller hexagon shows the
FBZ corresponding to the case J2 = 0. Since the introduction of
nonzero J2 changes the periodicity of the p dependence, we also
show a bigger hexagon, which is now the FBZ in the p plane.

ε = 3
√

2
2 J for which the semimetal regions completely disap-

pear. For J2 = 0 there are no other types of phases than the
trivial and semimetallic discussed above. Nonzero band gaps
appear only in the regions of trivial phase.

For the case J2 = 0, the change p → p + G, where G is
the reciprocal lattice vector, corresponds to a gauge transfor-
mation. Thus there is a symmetry ( p → p + G,H → H). In
the phase diagram (Fig. 2) we also show the FBZ in the p plane,
which is a hexagon with two inequivalent corners positioned
at points K and K ′.

Now let us analyze effects of the nonzero next-nearest
neighbor coupling. For this we set J2 = 0.3J and ε = 2J .
The phase diagrams of the Chern numbers are presented
in Fig. 3. We can see regions with the Chern numbers
corresponding to trivial phases {0,0,0} and phases {0,±1,∓1}
and {±1,0,∓1}. In the latter two types of regions we can find
points corresponding to nonzero band gaps �12 > 0 and/or
�23 > 0 (Fig. 4). This shows that there exist topological
Chern insulating phases. For example, at the point p = K , we

(a) (b)

FIG. 4. Dependence of the band gap on the recoil momentum
p in the case where ε = 2J and J2 = 0.3J . (a) The band gap �12

between the first and second bands. (b) The band gap �23 between
the second and third bands.

(a) (b)

FIG. 5. (Color online) Chern number dependence on the recoil
momentum in the case ε = 0.5J and J2 = 0.5J . (a) Chern number
c1 of the lowest band. (b) Chern number c2 of the middle band. The
color scheme and labeling are the same as in Figs. 2 and 3. The
white point is p = (2Kx,Ky) where the Chern numbers are c1 = −2,
c2 = 0, and c3 (see the spectrum in Fig. 6).

have the Chern numbers {0,−1,1}, the band gap between the
middle and highest bands being �23 ≈ 0.26J . Band widths
in this case are about 3J . By positioning the Fermi energy
in the gap between the second and third bands one arrives
at the Chern insulating phase. Another interesting point is
p = 2K , which gives the Chern numbers {−1,0,1}, the band
gaps �12 ≈ 1.55J and �23 ≈ 0.54J , and the band widths of
about 2J . The bottom and top bands have nonzero Chern
numbers, while it is zero for the middle band. Depending on the
filling there are two types of topologically nontrivial phases.
If the Fermi energy is positioned in one of the band gaps,
we get a topological insulating phase. If the Fermi energy is
situated within a band, the band is partially filled and supports
the Chern metal phase. The discussed types of Chern number
distributions over the bands are typical when J2 is nonzero and
smaller than J and ε.

In the case of nonzero NNN coupling J2 the translation
symmetry in the recoil momentum p is smaller than in the
case of zero NNN couplings: One has to shift the momentum
by 2G rather than G. In the phase diagram presented in Fig. 3
we show this by extending the FBZ, which is now a bigger
hexagon.

There are more types of Chern phases when the coupling
J2 is larger than in the previous discussion and comparable
to the on-site energy ε. For ε = J2 = 0.5J we find insulating
phases with Chern numbers {±1,±1,∓2} and metallic phases
with Chern numbers {±2,0,∓2} (Fig. 5). For example, in the
point p = 2K we get Chern numbers c1 = c2 = −1 and c3 =
2 with band gaps �12 ≈ 0.61J and �23 ≈ 0.54J . The width
of the lower two bands are around 3J , while the band width
of the highest band is about 1.5J . Another interesting point is
p = (2Kx,Ky) where the Chern numbers are c1 = −2, c2 = 0,
and c3 = 2 (white point in Fig. 5). The bulk spectrum in this
point is given in Fig. 6. Note that there is a gap �13 ≈ 1.35J

between the lowest and highest bands. In this gap there is a
middle band with a zero Chern number. By setting the Fermi
energy in this gap one gets the Chern metallic phase with the
Chern number c1 = −2.

To summarize the numeric analysis for J2 �= 0, the
typical nontrivial Chern number distributions over the
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(a) (b)

FIG. 6. (Color online) Bulk lattice spectrum projected along ky

for a number of different kx values in the range −Kx � kx � Kx .
(a) The spectrum for the recoil momentum p = K in the absence
of the NNN coupling (J2 = 0) and for ε = J corresponding to the
parameters used in Fig. 2. In that case there is no energy gap in the
spectrum, but different energy bands do not directly touch each other.
A topological semimetal phase is formed if the atoms fill the first
energy band or the first two bands. (b) The spectrum for the recoil
momentum p = (2Kx,Ky) in the case where ε = 0.5J and J2 = 0.5J

corresponding to the phase diagram shown in Fig. 5. Now there are
two bands with nonzero Chern numbers ±2 separated by a quasigap
�13 ≈ 1.35J containing a middle band with a zero Chern number.

bands are {0,±1,∓1}, {±1,∓1,0}, {±1,0,∓1}, {±1,±1,∓2},
{±2,∓1,∓1}, and {±2,0,∓2}. One can also find the case
{±1,∓2,±1}, which is typical for J2 = 0. For smaller J2

compared to J and ε, one usually gets Chern numbers up to 1
in modulus. For larger Chern numbers (up to 2 in modulus),
one needs to make the NNN-hopping J2 be comparable to the
on-site energy mismatch ε.

IV. ANALYTICAL CHERN NUMBER CALCULATION

Analytic Chern number calculation is based on integration
of a Berry connection around each singularity point. The Berry
connection of the nth band is defined as [14,59]

An(k) = i〈uk,n|∇k|uk,n〉, (20)

where |uk,n〉 denotes the nth eigenvector of the matrix (13).
One can express the Berry curvature (18) as the z component
of the curl Bn = ∇ × An, namely Fn(k) = ez · Bn. Using the
Stoke’s theorem we change the integral featured in Eq. (17)
over the FBZ to a contour integral around the FBZ,

1

2π

∫
FBZ

d2k Fn(k)

→ 1

2π

∮
FBZ

dk · An − 1

2π

∑ ∮
singul

dk · An,

where the last term excludes any contribution due to unphys-
ical gauge-dependent singular points of the Berry connec-
tion [44,65,66]. Since the k-space Hamiltonian H (k), given
by Eqs. (13) or (19), and its eigenstates are periodic in the
FBZ, An is also periodic. Thus the contour integral around
the FBZ (the first term on the right-hand side of the above
equation) is zero. Consequently the Chern number (17) can

be calculated by integrating An around each excluded singular
point [44]:

cn = 1

2π

∑ ∮
singul

dk · An, (21)

where the sum is over all singular points in the FBZ.
Let us summarize our analytical results, details being

presented in the Appendix. For the case where the recoil
momentum coincides with the inverse lattice vector ( p = G)
we always have trivial phase with all three Chern numbers
equal to zero. For the semimetal case (Fig. 2) with no NNN
hopping and p = K we find two phases, depending on the
mismatch ε of the on-site energies. If ε < ε0 = 3

√
2

2 J , we
get Chern semimetal phase with Chern numbers {1,−2,1}.
If ε > ε0, we get a trivial phase {0,0,0}. In this way at
larger mismatch between the on-site energies the topological
phenomena disappear. This is in agreement with the numerical
calculation presented in the previous section.

It is possible to apply this method for other values of
the recoil momenta p and for a general nonsymmetric case
with the NNN hoppings. In such calculations one needs to
diagonalize the matrices of the size at most 2×2. Yet generally
ordering of the eigenvalues might be a quite involved task,
especially if they depend on more than one parameter.

V. CONCLUDING REMARKS

In conclusion, we have considered a two-dimensional dice
lattice operating in a tight-binding regime. The laser-assisted
nearest neighbor transitions are accompanied by the momen-
tum recoils. This allows one to engineer staggered synthetic
magnetic fluxes and thus facilitates realization of topologically
nontrivial band structures. Real valued next-nearest neighbor
transitions—although not necessary in principle to reach the
topological regime—may also be present and contribute to the
richness of the obtained topological phases. The considered
dice lattice represents a triangular Bravais lattice with a
three-site basis consisting of a hub site connected to two rim
sites, providing three energy bands. Thus our model can be
interpreted as a generalization of the paradigmatic Haldane
model which is reproduced if one of the two rim sublattices is
eliminated. We have demonstrated that the proposed upgrade
of the Haldane model creates a significant added value such as
(i) an easy access to topological semimetal phases relying
on only the nearest neighbor coupling and (ii) enhanced
topological band structures featuring Chern numbers higher
than one and thus providing access to physics beyond the
usual quantum Hall effect. The numerical analysis has been
supported by an analytical scheme based on the study of
singularities in the Berry connection.
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APPENDIX: DETAILS ON ANALYTICAL CHERN
NUMBER CALCULATION

1. Momentum space Hamiltonian and its eigenstates

Let us establish a general structure of the eigenstates for the
matrix Hamiltonian H(k), Eq. (19). For this we introduce a
basis of our three-level system |s〉, with s = 0,±1, and rewrite
the matrix Hamiltonian in the state-vector notation as

H(k) =
∑

s=0,±1

|s〉ds(k)〈s| +
∑
s=±1

(|s〉gs(k)eisαs (k)〈0| + H.c.),

(A1)
where ds(k) stands for the diagonal matrix elements:

ds(k) = sε + 2J2f (k − s p). (A2)

The off-diagonal matrix elements,

Jg(k ∓ p/2) = g±(k)eiα±(k), (A3)

have been represented in terms of their amplitudes g±1(k) ≡
g±(k) and phases α±1(k) ≡ α±(k).

Since there is no coupling between the A and C sublat-
tices, one can perform a k-dependent unitary transformation
eliminating the phase factors,

|s〉 → |s,k〉 = |s〉eisαs (k), s = ±1,

and leave the basis vector |0〉 unchanged (|0〉 = |0,k〉). In the
new basis the Hamiltonian (A1) is characterized by real and
symmetric matrix elements. Its eigenvectors can be cast in
terms of these vectors with real coefficients Cn,s(k):

|uk,n〉 =
∑

s=0,±1

Cn,s(k)|s,k〉 ≡
∑

s=0,±1

|s〉Cn,s(k)eisαs (k). (A4)

Combining Eqs. (20) and (A4), one arrives at the following
expression for the Berry connection:

An(k) = −
∑
s=±1

sC2
n,s(k)∇kαs(k). (A5)

This result together with Eq. (21) will be subsequently used in
finding the Chern numbers.

2. Determination of the Chern numbers: General

To determine the Chern number given by (21), one needs to
study a behavior of the vector potential at its singular points.
Singularities of the vector potential can emerge at the points
where the phase of the coupling matrix element g±(k)eiα±(k)

given by Eq. (A3) is undefined. This happens if the function
g(k − p±/2) goes to zero. The function g(k) given by Eq. (14)
is zero at the corners of the FBZ, namely at two inequivalent
points K and K ′. Thus there are two pairs of points,

K± = ± p/2 + K , K ′
± = ± p/2 + K ′, (A6)

at which the function g(k ∓ p/2) goes to zero and its phase
α±(k) is undefined. Let us determine the coupling matrix
element g±(k)eiα±(k) in a vicinity of these points. Combining
Eqs. (14) and (A3), the amplitude and phase of the coupling
element reads up to the first order in the displacement vector

q, i.e., for qa  1 with q = |q|:

g±(K± + q) ≈ 3

2
qaJ, α±(K± + q) ≈ π

3
− ϕ, (A7)

g±(K ′
± + q) ≈ 3

2
qaJ, α±(K ′

± + q) ≈ −π

3
+ ϕ, (A8)

where ϕ is a phase of the complex number qx + iqy = qeiϕ .
Integrating over a small circle centered at q = 0 surrounding
each singular point of the phase, one finds∮

|q|→0
dq · ∇qα±(K± + q) = −2π,

∮
|q|→0

dq · ∇qα±(K ′
± + q) = 2π,

where the signs are different due to the opposite phases in
Eqs. (A7) and (A8). These equations together with Eqs. (21)
and (A5) provide the following result for the Chern number:

cn =
∑
s=±1

s
[
C2

n,s(K s) − C2
n,s(K ′

s)
]
, (A9)

with K±1 ≡ K± and K ′
±1 ≡ K ′

±. Therefore to find the Chern
number one needs to determine the coefficients Cn,s entering
the state vector at the points K± and K ′

±. If C2
n,± = 1, the

corresponding singular point contributes to the Chern number
of the nth band. In the following we shall analyze two different
situations.

3. Determination of the Chern numbers: Specific cases

Since the Hamiltonian H(k) given by Eqs. (19) or (A1) has
a symmetry (ε → −ε,H → H), we consider only the case
where ε > 0.

a. The case where p = G

Suppose first that the difference in the recoil momenta
coincides with the inverse lattice vector p = G. In that case
the coupling completely vanishes both for k = K± and also
for k = K ′

±. At these points g(k − p/2) = g(k + p/2) = 0,
so all the states |s〉 (s = 0,±1) are decoupled, and thus
the eigenstates are the bare states |s〉. The corresponding
eigenenergies of the matrix Hamiltonian H(k), Eq. (A1),
coincide with its diagonal elements ds(k) for k = K± and k =
K ′

±. Since p = G, one has f (k − p) = f (k) = f (k + p),
giving ds(k) = sε + 2J2f (k). Therefore the eigenstates are
ordered in the same manner d+1(k) > d0(k) > d−1(k) both
for k = K± and also k = K ′

±, giving C2
n,s(K s) = C2

n,s(K ′
s)

with s = ±1. As a result, the Chern number given by Eq. (A9)
is identically equal to zero, and the system does not exhibit any
topologically nontrivial phases. This is because for p = G the
flux over the rhombic plaquettes �i = ± p · ai is zero (modulo
2π ), and there is no breaking of the time-reversal symmetry.

b. The case where p = K

As another illustration we pick the recoil momentum
p = K and take J2 = 0. In that case the Chern numbers
have been numerically found to be c1 = 1, c2 = −2, and
c3 = 1 (see Fig. 2). By taking p = K the phase singularities
of the coupling elements g(k ∓ p/2) emerge at the points
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FIG. 7. (Color online) The phase singularity points K± and K ′
±

of the coupling matrix elements g(k ∓ p/2) for p = K . The points
K+ and K ′

− are equivalent. They are shown by red dots connected
with a double arrow.

K± = ±K/2 + K and K ′
± = ±K/2 + K ′, as one can see

in Fig. 7. Furthermore, the point k = K+ is equivalent to the
point k = K ′

−. For the latter two points we have g(k − p/2) =
g(k + p/2) = 0, so there are no coupling matrix elements.
Since J2 = 0, the Hamiltonian (A1) at these points is, simply,

H(K+) = H(K ′
−) = ε

∑
s=±1

s|s〉〈s|, (A10)

so the diagonal energies entering the Hamiltonian (A1) are
ds(k) = sε.

Eigenvalues, ordered from the lowest to the highest,
are E1(K+) = E1(K ′

−) = −ε, E2(K+) = E2(K ′
−) = 0, and

E3(K+) = E3(K ′
−) = ε. There is no degeneracy for ε > 0

and the coefficients Cn,+(K+) and Cn,−(K ′
−) do not change if

one increases ε. The only nonzero coefficients contributing to
the Chern numbers read

C3,+(K+) = C1,−(K ′
−) = 1. (A11)

For the point k = K− the nondiagonal matrix elements
of (A1) are Jg(k + p/2) = 0 and Jg(k − p/2) = 3J . Simi-
larly for the point k = K ′

+ these elements are Jg(k − p/2) =
0 and Jg(k + p/2) = 3J . Thus the Hamiltonian (A1) at these
points is

H (K−) = ε
∑
s=±1

s|s〉〈s| + 3J (|0〉〈+| + |+〉〈0|), (A12)

H (K ′
+) = ε

∑
s=±1

s|s〉〈s| + 3J (|0〉〈−| + |−〉〈0|). (A13)

Eigenvalues of the H (K−) are E(0)(K−) = −ε and
E(±)(K−) = 1

2 (ε ± √
ε2 + 36J 2), and those of H (K ′

+) are
E(0)(K ′

+) = ε and E(±)(K ′
+) = 1

2 (−ε ± √
ε2 + 36J 2). They

(a) (b)

FIG. 8. (Color online) Dependence of eigenvalues of the Hamil-
tonian H (k) on the on-site energy ε for p = K in the absence of
the next-nearest neighbor coupling. The eigenvalue E(0) is plotted in
red dashed lines to distinguish it from the other eigenvalues E(±).
(a) Eigenvalues at the point k = K−. (b) Eigenvalues at the point
k = K ′

+. The eigenvalue crossing point ε = 3
√

2
2 J ≡ ε0 corresponds

to a transition from a topological semimetal phase on the left to a
trivial phase on the right.

are plotted in Fig. 8. For ε = 3
√

2
2 J ≡ ε0 there are degeneracies

E(0)(K−) = E(−)(K−) = −ε0 and E(0)(K ′
+) = E(+)(K ′

+) =
ε0. The eigenvalues change their order at the crossing point
ε = ε0, as one can see in Fig. 8.

Let us first consider the case 0 < ε < ε0. The eigenvalues
of H (K−) are in the increasing order: E1(K−) = E(−)(K−),
E2(K−) = E(0)(K−), and E3(K−) = E(+)(K−). On the other
hand, coefficients required for the Chern number calcula-
tion are C1,−(K−) = 0, C2,−(K−) = 1, and C3,−(K−) = 0.
Similarly H (K ′

+) gives the eigenvalues E1(K ′
+) = E(−)(K ′

+),
E2(K ′

+) = E(0)(K ′
+), and E3(K ′

+) = E(+)(K ′
+) and the co-

efficients C1,+(K ′
+) = 0, C2,+(K ′

+) = 1 and C3,+(K ′
+) = 0.

Combining this result together with (A11) we collect four
nonzero coefficients: C3,+(K+), C1,−(K ′

−), C2,−(K−), and
C2,+(K ′

+). Substituting them into Eq. (A9), we get the Chern
numbers for each energy band:

c1 = C2
1,−(K ′

−) = 1, (A14)

c2 = −C2
2,+(K ′

+) − C2
2,−(K−) = −2, (A15)

c3 = C2
3,+(K+) = 1. (A16)

This result agrees with the numerical analysis presented in
Fig. 2.

Now let us consider the case ε > ε0. From Fig. 8 we see
that the eigenvalues are reordered as E1(K−) → E2(K−),
E2(K ′

+) → E3(K ′
+), so nonzero coefficients are C3,+(K+),

C1,−(K ′
−), C1,−(K−), and C3,+(K ′

+). Using Eq. (A9), one can
see that the Chern numbers of all bands are now zero:

c1 = −C2
1,−(K−) + C2

1,−(K ′
−) = 0, (A17)

c2 = 0, (A18)

c3 = C2
3,+(K+) − C2

3,+(K ′
+) = 0. (A19)

Thus there is a topological phase transition at ε = 3
√

2
2 J

corresponding to the eigenvalue crossing in Fig. 8.
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[30] D. Sticlet, F. Piéchon, J.-N. Fuchs, P. Kalugin, and P. Simon,

Phys. Rev. B 85, 165456 (2012).

[31] S. A. Parameswaran, R. Roy, and S. L. Sondhi, C. R. Phys. 14,
816 (2013).

[32] E. J. Bergholtz and Z. Liu, Int. J. Mod. Phys. B 27, 1330017
(2013).

[33] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.
Lett. 106, 236804 (2011).

[34] N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).
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Spielman, and G. Juzeliūnas, New J. Phys. 15, 013025 (2013).
[45] E. Anisimovas, F. Gerbier, T. Andrijauskas, and N. Goldman,

Phys. Rev. A 89, 013632 (2014).
[46] B. Sutherland, Phys. Rev. B 34, 5208 (1986).
[47] D. Bercioux, D. F. Urban, H. Grabert, and W. Häusler,
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[57] T. S. Jackson, G. Möller, and R. Roy, arXiv:1408.0843.
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