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Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators
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Fractional Chern insulators are the proposed phases of matter mimicking the physics of fractional quantum
Hall states on a lattice without an overall magnetic field. The notion of Floquet fractional Chern insulators
refers to the potential possibilities to generate the underlying topological band structure by means of Floquet
engineering. In these schemes, a highly controllable and strongly interacting system is periodically driven by
an external force at a frequency such that double tunneling events during one forcing period become important
and contribute to shaping the required effective energy bands. We show that in the described circumstances it
is necessary to take into account also third order processes combining two tunneling events with interactions.
Referring to the obtained contributions as micromotion-induced interactions, we find that those interactions tend
to have a negative impact on the stability of fractional Chern insulating phases and discuss implications for future
experiments.
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I. INTRODUCTION

Chern insulators [1] form a primary and most widely stud-
ied class of more general topological insulators [2,3], proposed
in condensed matter settings, in particular, heterostructures
[4–6] and graphene [7,8]. They are characterized by topo-
logical Bloch bands, that is, energy bands that give rise
to a quantized Hall conductivity, when filled completely in
a band-insulating state. The contribution of each band to
the Hall conductivity is identified by an integer topological
index, known as the Chern number. From this point of view
topological bands can be thought of as generalizations of the
Landau level [9]. However, they can be realized in a broad
variety of physical settings independent of the requirement
to have electrically charged particles coupled to an intense
uniform magnetic field. The analogy between a Landau level
and a Chern band hints at the idea of fractional Chern
insulators (FCI) [10–17]. In this case, in addition to an isolated
energy band characterized by a nonvanishing integral of the
Berry curvature (which defines the Chern number) one also
needs strong particle interactions to form the collective states
analogous to (and presumably richer than) the usual fractional
quantum Hall states.

It turned out that a powerful method to produce the desired
topological band structures is Floquet engineering. This form
of quantum engineering is based on the fact that the dynamics
of a time-periodically driven quantum system, a so-called Flo-
quet system, is (apart from a periodic micromotion) captured
by a time-independent effective Hamiltonian. Properties of
the effective Hamiltonian can be engineered by tailoring a
suitable driving protocol. Floquet engineering has been very
successfully applied to quantum systems of ultracold atoms
in periodically driven optical lattices [18–35]. These systems
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are particularly suitable for such control schemes due to their
high degree of isolation from the environment and versatile
possibilities for controlling parameters in a time-dependent
fashion during the experiment. In recent years, several schemes
have been proposed where periodic driving is employed for the
realization of topologically nontrivial effective band structures
in lattice systems, which in the absence of the driving are
topologically trivial. These schemes can be divided into two
classes: (i) methods working at high driving frequencies
[26,28,31,32,36–39] and relying on averaging the driven
Hamiltonian over a period, and (ii) methods working at
intermediate driving frequencies [34,40–43] and going beyond
the time-averaged description. For the latter, the term Floquet
topological insulator has been coined [44,45].

The high-frequency schemes have been proposed and
implemented in the context of ultracold atomic quantum gases
in optical lattices [26–32,36,38] and trapped ions [37]. Here,
static and time-periodic potentials are combined in such a way
that the wave function acquires time-periodic relative phases
on neighboring lattice sites. When averaged over one driving
period, these phases resemble the nontrivial phases induced
by a magnetic field. These schemes work at large frequencies,
since it is assumed that the driving period T determining the
phase modulation is short compared to the tunneling time.
The topologically nontrivial effective band structure of such a
system has been recently probed in a square optical lattice [38].

The Floquet topological insulator schemes [40,41,44]
were originally proposed in the context of condensed mat-
ter systems, considering irradiated graphene [40,46–48] or
semiconductor heterostructures, and are based on a different
principle. Here, the effective Hamiltonian acquires new terms
that describe tunneling between next-nearest neighbors and
open a topological gap in the band structure. These new terms
are related to second-order processes, where a particle tunnels
twice during one driving period. Obviously they are significant
only at intermediate driving frequencies, with the driving
period being comparable to (or at most moderately shorter
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than) the tunneling time. This is the regime where particles
undergo a significant periodic real-space micromotion in
response to the driving. Signatures of such Floquet topological
band structures have been observed in optical waveguides [43]
and with ultracold fermionic atoms in a shaken honeycomb
lattice [34].

As a natural next step, recently it has been proposed to
stabilize a fractional topological insulator phase in such a
Floquet topological band structure, referred to as the Floquet
fractional Chern insulator [17]. The scheme is based on
fermions in a circularly driven honeycomb lattice, which
acquires a topologically nontrivial effective band structure
[40]. For their analysis, the authors employed a high-frequency
approximation [49–51] of the effective Hamiltonian, including
terms up to the second order. On this level of approximation,
the nontrivial tunneling terms opening the topological single-
particle band gap are included, but no corrections to the
interaction terms appear [51,52]. The exact diagonalization
of the approximate effective Hamiltonian for small systems
suggested that a topologically ordered state can be stabilized
at a band filling of 1/3.

The realization of such a topologically ordered many-body
Floquet state is, however, challenged in various ways. One
difficulty concerns the preparation of the state both in open
condensed matter systems as well as in isolated cold-atom
systems. As a consequence of the coupling to a bath, open
Floquet systems will assume steady states, which are generally
quite different from equilibrium states [53–60]. In turn, an
isolated Floquet system has to be prepared in the desired state
using smooth, effectively adiabatic [61] parameter variations
starting from the undriven ground state (or from a low-
temperature state close to it). A second concern is that
excitations to higher-lying bands, which are not included in the
tight-binding description, via multi-“photon” transitions may
become relevant on the time scale of the experiment; see Ref.
[62] for a recent experimental investigation of such processes.
Finally, also the impact of interactions beyond the second-
order high-frequency approximation can be a relevant issue.
Such “residual” interactions enter on two different levels, they
cause heating, and they lead to higher-order corrections to
the approximate effective Hamiltonian. Interaction-induced
heating corresponds to processes that can be viewed as the
resonant creation of collective excitations of the effective
Hamiltonian in high-frequency approximation. Such processes
are not captured within the high-frequency expansion, they
indicate that such an expansion cannot be expected to converge
for an interacting system [51], and they are expected to even-
tually drive the system towards an infinite-temperature regime
[63,64]. A perturbative argument suggests that the rate of such
detrimental heating will decrease exponentially with increas-
ing driving frequency (as the order in which the corresponding
processes appear increases with the driving frequency) [61].
Apart from heating, interactions will also lead to corrections
appearing in higher orders of the high-frequency expansion,
with the leading correction appearing in third order [51].

In this paper we investigate this latter effect, namely
the impact of leading interaction corrections to the ap-
proximate effective Hamiltonian. We do not address the
issues of preparation and heating due to either multiphoton
interband transitions or the resonant excitation of collec-

tive excitations. While it is rather clear that heating is a
detrimental effect, it is an interesting question without an
a priori obvious answer of whether the interaction corrections
will tend to stabilize or to destabilize a Floquet fractional Chern
insulator state. Even though the leading interaction corrections
appear in third order only, they are still relevant for the required
intermediate driving frequencies. First of all, if interactions
are strong compared to tunneling, a third-order interaction
correction can be comparable to a second-order kinetic term
and, second, because the correction has to be compared with
the tiny many-body gap that protects the ground-state manifold
of the effective Hamiltonian from excited states. The origin
of the interaction corrections to be investigated here is a
significant real-space micromotion at intermediate driving
frequencies. A particle at a certain lattice site will explore also
neighboring sites during one driving period. This real-space
micromotion generates new effective interactions at distances
longer than those of the bare interactions characterizing the
undriven model.

For our study, we use exact diagonalization for small
systems, taking into account the leading interaction correction.
In addition to a model of spin-polarized fermions with nearest-
neighbor interactions (which includes the ground states found
in Ref. [17]) we also consider a system of spinless bosons with
on-site interactions. The latter is particularly interesting for
experiments with ultracold atoms in shaken optical lattices, and
is typically governed by on-site interactions. In both models
we find that taking into account interaction corrections tends
to destabilize topologically ordered fractional Chern states.
Thus the realization of Floquet fractional Chern insulator states
seems rather challenging and it might be more promising
to consider high-frequency schemes or schemes involving
internal degrees of freedom [35,65].

The bulk of the presented material is split between two large
sections, each subdivided into three subsections. Section II
discusses the model, starting with the description of the lattice
and the shaking protocol, and later proceeding to the Floquet
analysis, the underlying single-particle problem, and the role of
interactions. Section III focuses on results, and encompasses
description of the numerical procedure, the obtained many-
body band structures and quasihole spectra, characterizing the
fractional Chern insulating states. Finally, we conclude with a
brief summarizing Sec. IV.

II. MODEL

The model proposed by Grushin et al. [17] is based on a
honeycomb lattice sketched in Fig. 1, and consisting of two
intertwined triangular sublattices A and B. For the sake of
further reference, Fig. 1 defines the vectors

δ1 = a êy, δ2|3 = ∓
√

3
2 a êx − 1

2a êy, (1)

connecting a given site A to its three nearest neighbors (NN)
on sublattice B, with a denoting the nearest-neighbor distance,
and êx,y being the unit coordinate vectors. Likewise, the
vectors ±a with

a1 =
√

3a êx, a2|3 = −
√

3
2 a êx ± 3

2a êy (2)

connect a given site of either type to its six next-nearest
neighbors (NNN) belonging to the same sublattice. Note
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A

B

FIG. 1. (Color online) Honeycomb lattice as a triangular Bravais
lattice with a two-site basis. The inequivalent sites A and B are
marked with filled and open dots, respectively. Nearest neighbors are
connected by the vectors δμ, while the set of next-nearest neighbor
vectors aj also defines the elementary translations.

that NNN hopping transitions naturally separate into two
classes. Transitions starting from a site A (B) in the direction
of aj correspond to counterclockwise (clockwise) motion
around the hexagonal cell, and the opposite statement applies
to transitions along −aj . The vectors a1 and a2 are also
taken to define the Bravais lattice r = n1a1 + n2a2, while
a3 = −a1 − a2 is linearly dependent.

The honeycomb lattice is subjected to a circular time-
periodic force of fixed magnitude F , whose direction rotates
in the (x-y) lattice plane at a constant frequency ω; thus

F(t) = F sin ωt êx − F cos ωt êy. (3)

This force results from either the circular shaking [23,34,66]
of an optical lattice or, in the case of charged particles,
from irradiation by circularly polarized light [40]. A suitable
gauge transformation [35,51] (corresponding to transition to
the comoving frame of reference) restores the translational
invariance of the Hamiltonian, which is then represented in
the tight-binding form as a sum of the time-periodic kinetic
and time-independent interaction parts,

Ĥ (t) = Ĥkin(t) + Ĥint. (4)

The kinetic Hamiltonian reads

Ĥkin(t) = −
∑
i∈A

3∑
μ=1

Jμ(t)â†
i+μâi + H.c.. (5)

Here, the operator â
†
i creates a spinless particle (fermion or

boson) on lattice site i. The index μ labels the three distinct
directions connecting any given site of sublattice A to its
nearest neighbors belonging to sublattice B, and denoted by
the shorthand label “i + μ” with i ∈ A. Extension to spinful
particles, although not necessary for the purposes of the
current presentation, is straightforward. Equation (5) describes
the nearest-neighbor tunneling kinetics. The tunneling matrix
elements along the three different directions acquire their time
dependence due to the circular driving, and thus are time
periodic with uniformly distributed relative phases, i.e.,

Jμ(t) = J (t − ϕμ/ω), with ϕμ = 2π

3
(μ − 1). (6)

Having in mind applications to ultracold atoms in a circularly
shaken optical lattice or graphene electrons irradiated by
circularly polarized light, we write

J (t) = J exp(iα sin ωt), (7)

with

α = Fa

�ω
(8)

denoting the dimensionless shaking strength.
In bosonic quantum gases contact interactions may be

assumed; therefore, the interaction Hamiltonian is written in
the standard Bose-Hubbard form

Ĥ
(b)
int = U

2

∑
i∈A,B

n̂i(n̂i − 1), (9)

with the operator n̂i = â
†
i âi measuring the particle number

on a given site. In contrast, for spinless fermions the on-
site interaction term vanishes due to the Pauli exclusion
principle, and repulsion between pairs of particles occupying
neighboring sites must be taken into account; thus

Ĥ
(f)
int = V

∑
i∈A

3∑
μ=1

n̂i n̂i+μ. (10)

Therefore, depending on the particle statistics, we model the
interactions using one of the two alternative forms given by
either Eq. (9) or (10). Note also that in both cases the interaction
Hamiltonian depends only on densities, and thus remains static
also in the presence of periodic driving. Our choice of treating
spinless, that is spin-polarized, fermions is motivated not only
by simplicity, but also by the observation of Ref. [17] that
the relevant Floquet fractional Chern insulating states are
ferromagnetic.

A. Floquet analysis

As discussed in the Introduction, Floquet Chern insulators
by construction require intermediate driving frequencies on
the order of the tunneling strength or just moderately larger.
This observation identifies the dimensionless inverse shaking
frequency

β = J

�ω
(11)

as the series-expansion parameter that classifies the successive
contributions to the effective Hamiltonian and, in turn, to the
ensuing physics. In further study we focus on the interval 0.1 ≤
β ≤ 0.5. At the lower limit of this range, one crosses over to
the high-frequency regime where the effective Hamiltonian
is adequately represented by the time average of the driven
Hamiltonian, while the relevance of higher-order contributions
fades away. In the opposite limit, for values of β exceeding
one-half the representation of the effective Hamiltonian in
terms of a β-series expansion in no longer reliable.

A powerful description of periodically driven quantum
systems [49–51,67,68] relies on the factorization of the
quantum-mechanical evolution operator according to

Û (t2,t1) = ÛF (t2)e−iĤF (t2−t1)/�Û
†
F (t1), (12)
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thus separating micromotion described by the time-periodic
unitary micromotion operator ÛF (t) from the long-term dy-
namics captured by the effective Hamiltonian ĤF . A consistent
high-frequency approximation to the effective Hamiltonian
ĤF is constructed in Refs. [49,51,67] following different ap-
proaches and resulting in equivalent [69] series representation
in powers of ω−1

ĤF = Ĥ
(1)
F + Ĥ

(2)
F + Ĥ

(3)
F + · · · , (13)

where

Ĥ
(1)
F = Ĥ0, (14a)

Ĥ
(2)
F =

∞∑
m=1

1

m�ω
[Ĥm,Ĥ †

m], (14b)

Ĥ
(3)
F = 1

2(�ω)2

∞∑
m=1

[Ĥm,[Ĥ0,Ĥ
†
m]]

m2
+ 1

3(�ω)2

∞∑
m,m′=1

m′ �=m

× [Ĥ−m′ ,[Ĥm′−m,Ĥm]] − [Ĥm′ ,[Ĥ−m′−m,Ĥm]]

mm′

+ H.c., (14c)

are expressed in terms of Fourier components of the driven
Hamiltonian

Ĥ (t) =
∞∑

m=−∞
Ĥmeimωt . (15)

It is useful to note the Hermiticity condition Ĥ−m = Ĥ
†
m. The

leading terms of the corresponding expansion of ÛF (t) can
be found in Ref. [51]. Note that the high-frequency expansion
of ÛF (t) and ĤF can be related to the Magnus expansion, as
described in Refs. [49,51].

For the purposes of the current application, the general
expressions (14) can be simplified in two aspects. First, we
note that the time dependence of the driven Hamiltonian
stems entirely from the time-dependent hopping amplitudes
described by the Fourier expansion

Jμ(t) =
∞∑

m=−∞
JJm(α)e−imϕμeimωt , (16)

with Bessel functions of the first kind (and order m), denoted
here by Jm. Anticipating moderate shaking strengths α (see
Table I) we note that the Fourier series of the Hamiltonian
converge very fast since contributions originating from the
mth harmonic with m > 0 include a prefactor J 2

m(α) ∼ α2|m|
(see Fig. 2). Further noting that all harmonics contribute with
the same operator form and thus cannot induce qualitative
changes, we truncate the Fourier expansion and include

TABLE I. Numerical values of parameters used in calculation.

β = 0.1 α0 = 1.814 η = 0.003
β = 0.2 α0 = 1.391 η = 0.011
β = 0.3 α0 = 1.153 η = 0.021
β = 0.4 α0 = 1.004 η = 0.031
β = 0.5 α0 = 0.900 η = 0.041

FIG. 2. (Color online) Comparison of the importance of various
Fourier harmonics. The shaded background shows the range of the
dimensionless shaking amplitudes α considered in the calculations.
The red lines depict the behavior of J0(α) and J 2

1 (α), setting the
scale of, respectively, the static components of the Hamiltonian and
the first harmonic. The dashed blue lines show the behavior of the
(omitted) subleading contributions J 2

2,3(α).

only the terms with |m| ≤ 1. Consequently, nonzero Fourier
components of the driven Hamiltonian are

Ĥ0 = Ĥint −
∑
i∈A

∑
μ

JJ0(α)[â†
i+μâi + â

†
i âi+μ], (17a)

Ĥ±1 = ∓
∑
i∈A

∑
μ

JJ1(α)e∓iϕμ [â†
i+μâi − â

†
i âi+μ], (17b)

where the interaction Hamiltonian Ĥint is given by either
Eq. (9) or Eq. (10) for bosonic and fermionic systems,
respectively.

Secondly, focusing on the interplay of micromotion and
interactions we take into account the leading third-order
interaction correction while neglecting purely kinetic terms
of third order. Thus the expansion of the effective Hamiltonian
considered in our work reads

Ĥ
(1)
F = Ĥ0, (18a)

Ĥ
(2)
F = 1

�ω
[Ĥ1,Ĥ

†
1 ], (18b)

Ĥ
(3)
F = 1

2(�ω)2
[Ĥ1,[Ĥint,Ĥ

†
1 ]] + H.c. (18c)

B. Single-particle spectrum

The first-order contribution to the effective Hamiltonian
given by Eq. (18a) is obtained by averaging the driven Hamil-
tonian Ĥ (t) over a period. This leads to the result given by
Eq. (17a) and featuring the well known renormalization of NN
hopping amplitude according to the prescription J → JJ0(α),
which has been extensively exploited to demonstrate a number
of interesting physical effects in cold atom settings, including
the superfluid-Mott insulator phase transition [18,21].

The second-order Floquet contribution is expressed by
the commutator in Eq. (18b), and physically corresponds to
two subsequent tunneling processes of a particle during one
driving period. The basic commutation relation [â†

kâ�,â
†
mân] =

δ�mâ
†
kân − δknâ

†
mâ� is valid for particles of either statistics and

combines two successive NN tunneling events into an effective
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NNN transition. Thus [70]

Ĥ
(2)
F = −

∑
〈〈ij〉〉

J
(2)
〈〈ij〉〉â

†
i âj , (19)

with the sum running over all next-nearest neighbor connec-
tions, and

J
(2)
〈〈ij〉〉 = ±i

√
3βJJ 2

1 (α). (20)

The plus (minus) sign applies to clockwise (counterclockwise)
transitions around the hexagonal unit cell. Note that NNN
transitions in Eq. (19) are characterized by purely imaginary
amplitudes.

The role of the second-order contribution to the effective
Hamiltonian in Floquet engineering is to open topological gaps
in the single-particle spectrum. This produces the Haldane
model [1] using driven honeycomb lattices [23,34,35,41,66].
Since the possibility to stabilize the FCI phases is the
ultimate question of this work, one is interested in starting
from a favorable single-particle band structure characterized
by relatively flat bands (at least in a part of the Brillouin
zone) that are separated by large energy gaps. As noted
previously [17], this requirement leads to a constraint relating
the shaking amplitude α to the inverse frequency β. The
detailed discussion of this matter is delegated to Appendix A,
with the conclusion that the relative strengths of NNN and NN
transition amplitudes must be close to the ratio

βJ 2
1 (α)

J0(α)
= 1

4
√

6
. (21)

Thus, for any given value of the inverse shaking strength β,
the constraint (21) defines the corresponding “nominal” value
of the driving strength α0 which optimizes the single-particle
band structure. Let us stress, however, that thus defined value
α0 should be regarded more as representative rather than
precisely defined optimal value. We verified that moderate
deviations of the value of α from α0 do not change the results
qualitatively. Thus focusing on a single value helps to reduce
the dimensionality of the parameter phase space.

C. Role of interactions

A cornerstone of the present contribution is the argument
that the real-space micromotion couples to the particle inter-
actions through Eq. (18c), which leads to the generation of
new (and modification of existing [71]) interaction terms and,
in particular, influences the formation and stability of FCI
phases. Possible interplay of micromotion and interactions
was previously discussed [72–74] based on approximation
schemes related to the Magnus expansion [75]. The obtained
terms are proportional to the inverse driving frequency and
typically offer a clear physical interpretation (such as the
density-assisted tunneling). However, as discussed in Ref. [51]
as well as Ref. [49], these terms do not influence the spectrum
within the order of the approximation.

In the present context of circularly shaken honeycomb
lattices, micromotion-induced interaction corrections were
analyzed and the physical nature of the additional terms was
identified in Ref. [51]. Following this work and specializing
to moderate driving amplitudes, such that Fourier components
|m| ≤ 1 are sufficient, we observe that the overall strength of

these terms is set by the prefactor

UJ 2J 2
1 (α)

(�ω)2
= Uβ2J 2

1 (α) = ηU. (22)

Here we introduced the dimensionless quantity η = β2J 2
1 (α)

as a natural measure of the relative strength of micromotion-
induced interactions with respect to the bare on-site repulsion.
The five additional contributions for bosons with contact
interactions read

Ĥ
(3,b)
F = −2zηU

∑
i

n̂i(n̂i − 1) (23a)

+ 4ηU
∑
〈ij〉

n̂i n̂j (23b)

+ 2ηU
∑
〈ij〉

â
†
i â

†
i âj âj (23c)

− 1

2
ηU

∑
〈ijk〉

â
†
i (4n̂j − n̂i − n̂k)âk (23d)

− 1

2
ηU

∑
〈ijk〉

(â†
j â

†
j âi âk + H.c.). (23e)

Here, z = 3 is the coordination number (the number of
nearest neighbors), and the sums are taken, respectively,
over the lattice sites i, all directed NN links 〈ij 〉, and all
directed three-site strings 〈ijk〉 with i and k being next-nearest
neighbors connected via an intermediate site j . The physical
interpretation of the obtained terms is as follows: (a) reduc-
tion of the on-site interaction strength, (b) nearest-neighbor
density-density interaction, (c) pair tunneling, (d) density-
assisted tunneling between NNN sites, and (e) cotunneling
of pairs of particles into (from) a given site from (into) two
distinct nearest neighbors. While for fermionic particles the
corresponding analysis becomes more involved and is not
presented here, we emphasize that the general comparison of
the relative importance of micromotion-induced interactions
and the definition of η remain unchanged except for the
replacement of on-site repulsion energy U with NN repulsion
energy V .

In general, the overall scale of the micromotion-induced
interactions (i.e., the value of η) is not an independent
parameter but is set by the driving frequency (β) and strength
(α). Since the preferred value of the driving strength α0 is
in turn fixed by the flat-band condition, all in all, we have
to consider a one-dimensional cut through the apparently
three-dimensional parameter space (α,β,η). The characteristic
range of values is summarized in Table I.

As explained previously, the eligible values of the dimen-
sionless inverse shaking frequencies β are constrained to an
interval consistent with the physical setting. One can see that
the corresponding values of the shaking strength α0 are also
restricted to an interval where (i) the single-particle bands do
not collapse as the zeros of the zeroth-order Bessel function
are avoided, and (ii) the employed truncation of the Fourier
series is indeed valid.

Turning to the last column displaying the values of η, one
observes that the relative contribution of micromotion-induced
corrections to the overall strength of interactions is limited
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to a few percent. However, these low values should not be
taken as a proof that micromotion-induced interactions may
be neglected. In fact, in the context of the stabilization of
FCI phases, their importance should be measured with respect
to many-body gaps separating the ground-state manifold, and
judged by their impact on the FCI stability diagram. As we will
see shortly, micromotion-induced interactions may indeed be
significant and tend to destabilize fractional Floquet states.

III. RESULTS

A. Numerical procedure

To gain specific insights into the impact of micromotion
on the formation and stability of FCI phases we performed a
numerical exact-diagonalization study of periodically driven
honeycomb lattices. The most stable fractional quantum Hall-
like states are expected to form at filling fractions ν = 1

3

for fermions and ν = 1
2 for bosons. Therefore, our numerical

modeling mostly focused on finite systems of Np = 8 spinless
fermions (bosons) moving on a lattice containing N1 × N2 =
6 × 4 (N1 × N2 = 4 × 4) elementary two-site cells. While
comparisons with results obtained for larger systems were
used for consistency checks and validation of the general
conclusions, the bulk of calculations was performed on
moderate eight-particle systems. Keeping the system size
relatively small allowed for looping over a dense grid in the
parameter phase space defined by the aforementioned inverse
driving frequency β and the interaction strength U or V , as well
as the auxiliary phases γ1 and γ2 introduced through twisted
boundary conditions [76] in the two primary lattice directions.
Twisting the boundary conditions in the ith direction by a phase
factor eiγi represents the insertion of the dimensionless flux γi ,
and leads to the variation of the calculated energy levels, which
is commonly referred to as the spectral flow. The formation
of the topological order is signaled (however, not rigorously
proven) by the formation of the ground-state manifold (GSM)
consisting of ν−1 quasidegenerate states that rearrange under
the spectral flow but remain isolated from the other states by a
finite many-body gap [12,15].

In view of the translational invariance, restored in the finite
system by the cyclic boundary conditions, our calculations
are performed in the reciprocal (or quasimomentum) k space.
The finite geometry of the lattice imposes a discreet grid of
N1 × N2 permissible values in a Brillouin zone (BZ) for both
single-particle and total quasimomenta. The diagonalizations
can be performed separately at each total quasimomentum k,
thus significantly reducing the size of the problem. To quote
a specific example, in the eight-fermion system the dimen-
sionality of the Hilbert space reduces from 24!/(16!8!) ≈
7.35 × 105 to just above 3 × 104 when translational invariance
is taken into account. The k-space points belonging to a
single Brillouin zone are labeled by integer pairs (k1,k2)
with k1 ∈ [0,N1 − 1] and k2 ∈ [0,N2 − 1] or, equivalently,
by a single index K = k1 + N1k2 with K ∈ [0,N1N2 − 1].
The total quasimomentum sectors at which the FCI states
will form are predicted by a simple counting rule [12] whose
validity in the present case is indeed confirmed by the actual
numerical results. Thus, for eight fermions, the FCI states form

at K = {0,2,4}, while for eight bosons one finds two states at
K = 0.

Following previous works that demonstrated the potential
existence of FCI phases in various lattice models [10–14]
with strong particle interactions, we use the customary band
projection technique (see, e.g., reviews in Refs. [15,16] for an
extensive discussion). Thereby, only processes in the relevant
single-particle band are included, while the interband scatter-
ing events as well as processes related to the remaining band
are neglected. Note, however, that we do not flatten the band
structure which is another standard tool of the trade [11,15].
The reason for this choice of techniques is the following:
in contrast to models based on energy bands featuring weak
dispersion throughout the Brillouin zone, we deal here with
single-particle bands that are in general dispersive; however,
the upper (lower) single-particle band develops a relatively flat
section at the bottom (top), where also the Berry curvature is
the largest. In this situation, band flattening would lead to an
essential distortion of the model and therefore must be avoided.
When modeling fermionic systems we adopt the approach of
Ref. [17] and consider a gas at the density of four particles
per three elementary cells. This produces a completely filled,
and thus inert, lower band plus a partially filled upper band
with particles predominantly concentrating in the flat section.
Therefore, projecting onto the upper band we are able to focus
on the physics at the effective filling factor ν = 1

3 . Proceeding
to bosonic systems we envision a gas at the density of one
particle per two elementary cells, and employ projection onto
the lower single-particle band.

B. Many-body topological gap

As discussed previously, the parameter phase space to be
explored is essentially two dimensional, and is spanned by
the inverse driving frequency β = J/�ω, and the particle
repulsion strength. It is natural to measure the interaction
energies with respect to the basic hopping amplitude, thus
introducing the corresponding dimensionless quantities

u = U

J
and v = V

J
, (24)

for bosonic and fermionic systems, respectively.
Figure 3 shows the calculated energy spectra of eight-

fermion many-body states in the form of spectral flows along
the first (commensurate) direction. The three states belonging
to the expected FCI total quasimomentum sectors K = {0,2,4}
are plotted in color, while the remaining states are plotted
in black. The insertion of the artificial flux γ1 defining the
twisted boundary conditions makes the three states in the GSM
interchange and reconnect to their partners at the opposite
boundary of the many-body Brillouin zone (MBZ). The plot
is obtained by setting β = 0.3, v = 5, and γ2 = 0. In the left
panel, the micromotion strength η is artificially set to zero
(as would happen in a calculation omitting the presence of
real-space micromotion). The nearly degenerate states in the
GSM stay protected from the excited states by a many-body
gap, and their total Chern number obtained from sampling
over the whole MBZ (γ1,γ2) ∈ [0,2π ) × [0,2π ) sums up to
unity with numerical precision. The right panel shows the
realistic situation where coupling between micromotion and
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FIG. 3. (Color online) Typical energy spectra of the driven hon-
eycomb lattice with micromotion-induced interactions ignored [panel
(a)], and taken into account [panel (b)] plotted versus the auxiliary
flux γ1 inserted along the first (commensurate) lattice direction.
Here, the energies of many body states in the eight-fermion system
numerically calculated at β = 0.3, v = 5, and γ2 = 0 are shown.
Colored (black) lines denote the states in the ground-state manifold
(other) total quasimomentum sectors, and two lowest-energy states
of each quasimomentum sector are included. The dark red arrow
illustrates the definition of the local many body gap referred to in the
text.

interactions is duly taken into account up to the third order.
While the topological nature of the lowest-energy manifold and
the many-body gap persist, its width is reduced and the energy
spread of the states in the GSM is now considerably larger.
These observations serve as an early hint that the interplay of
micromotion and interactions is significant, and may indeed
have a detrimental role on the stability of the Floquet fractional
Chern insulating phases.

Referring to Fig. 3, we also take the opportunity to give a
precise definition to the notion of the many-body gap to be
used in presentation of further results. Since calculations are
performed looping over the many-body Brillouin zone we first
define the local (that is, corresponding to fixed values of γ1,2)
dimensionless many-body gap

�(γ1,γ2) = 1

J

[
min

not in GSM
E(γ1,γ2) − max

GSM
E(γ1,γ2)

]
, (25)

as the energy difference between the highest state belonging
to GSM and the lowest-lying state outside the GSM measured
in units of J . Thus �(γ1,γ2) is positive when an isolated
ground-state manifold is formed and negative when the states
in the ground-state manifold mix with the remaining states.
The overall many-body gap is then obtained by minimizing
the local many-body gap over the entire MBZ; thus

� = min
MBZ

�(γ1,γ2). (26)

The complete phase diagrams in the β-u (β-v) plane for
bosons (fermions) occupying the lower (upper) single-particle
band at 1/3 (1/2) filling are shown in Figs. 4 and 5. In both
instances we map out the behavior of the many-body gap as
a function of the governing parameters, β and u (v). The
red areas correspond to the presence of a positive many-body
gap implying that the states comprising the GSM are isolated

FIG. 4. (Color online) Phase diagram showing the many body
gap � as a function of the inverse shaking frequency β and
the dimensionless interaction strength u for eight-boson system.
Micromotion-induced interactions are omitted in panel (a) and taken
into account to the third order in panel (b). The full black lines
delimit the regions of positive many body gaps (shown in red shades)
and differ considerably between the panels. The white dashed line
indicates the parameter regime where the interaction strength U is
equal to the single-particle band gap. Well below this line mixing
between single-particle bands becomes small.

from the remaining ones everywhere in the MBZ and thus
the two manifolds do not mix. On the contrary, blue areas
correspond to a negative many-body gap. In this situation,
at least one state from the GSM attains higher energy value
than the lowest state not belonging to the GSM, and the two
manifolds overlap somewhere in the MBZ. The full black
line separates phase space areas characterized by many-body
gaps of different signs and thus serves as a first criterion for
the possibility of formation of the Floquet fractional Chern
insulator. Of course, this criterion takes into account only the
aspects of the energy spectra and must be further supported by,
e.g., information obtained from excitation spectra discussed in
the following subsection. Nevertheless, already these phase
diagrams indicate that inclusion of micromotion-induced
interactions typically pushes the phase boundary upwards in
the phase diagram. That is, stronger interactions will be needed
to stabilize FCI phases at equal other conditions.

FIG. 5. (Color online) Same as Fig. 4 but for eight-fermion
system with dimensionless NN repulsion energy v. Note that the
scale of the color bar and correspondingly the typical many body
gaps are significantly smaller than for bosons.
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Bosonic lattice systems seem to be much more promising
candidates for the stabilization of FCI phases than fermionic
ones. Indeed, they find a realization in quantum gas ex-
periments where strong and tunable on-site interactions are
possible, and Fig. 4 reveals that in bosonic systems large many-
body gaps on the order of the tunneling amplitude J can be
obtained. In contrast, for fermionic systems nearest-neighbor
repulsions are harder to tune into strongly interacting limit (in
graphene the strength of NN repulsion is estimated [77] to
be around 2J ), and the overall scale of attainable many-body
gaps is also smaller, as demonstrated by Fig. 5.

Viewing FCI states as direct analogs of Laughlin’s frac-
tional quantum Hall states, one would ideally prefer working
in the regime where the fractional states are induced by
strong interactions mixing single-particle states within a single
topological (Chern or Landau) band and not among several
bands. (Recent results suggest, however, that weak interband
mixing is not detrimental for the formation of fermionic ν = 1

3
FCI state [78,79]). This corresponds to the situation where the
single-particle band gap exceeds the characteristic interaction
strength. In Figs. 4 and 5, the white dashed lines indicate the
regime where the corresponding interaction parameter, U or V ,
is equal to the single-particle band gap; well below these lines
mixing between single-particle bands is small. Obviously, the
approximation based on the band projection is not justified
in the considered regime. Moreover, the interaction strengths
required to stabilize FCI phases in the current model also
generally exceed the above-stated limit. These observations
suggest that it must be quite challenging to explore FCI
phases within the considered model. A window of opportunity
might persist at the higher end of the considered range of
driving frequencies (equivalently, at the lower end of the
range of β ′s). Although the approximation focusing on just
one single-particle band is not fully justified here, the effects
of band mixing were reported not to be critical [78,79]. In
this limit, notably weaker interaction strengths are required
to stabilize FCI phases (see Figs. 4 and 5) and, moreover,
problems caused by heating due to the resonant excitation of
collective excitations become smaller.

C. Quasihole spectra

Finally, let us also take a brief look at the quasihole
excitation spectra, corresponding to the removal of a particle
from the ground state [12]. Here, we are driven by twofold
motivation. On the one hand, these spectra serve as an
additional identification check confirming that the obtained
phases display behavior characteristic of fractional Chern
insulator. Thus one expects to observe the formation of
an isolated low-energy manifold of quasihole states whose
number is predicted by counting rules based on the generalized
Pauli principle [12]. On the other hand, one is interested
in the evolution of the size of the gap separating the low-
energy manifold from the remaining states as a function of
the computational parameters. In this way, we also obtain
complementary information about the interaction strengths
that are sufficient to induce the FCI phases.

Qualitatively similar results are obtained for both fermionic
and bosonic systems. Focusing on the latter, we perform exact
diagonalizations for systems of seven bosonic particles moving

FIG. 6. (Color online) Quasihole excitation spectra for eight-
boson system calculated at the inverse dimensionless driving strength
β = 0.1. Formation of an isolated manifold of 4 × 16 states is
visible for strong interactions with u = 5, and gradually closes when
interaction becomes weaker.

on a lattice consisting of 4 × 4 elementary cells. This is one
particle less than would correspond to the exact 1/2 filling
of the band, and can be interpreted as an introduction of
a hole into the previously studied system. In this specific
case, the (1,2)-admissible counting rule [12] predicts the
formation of an isolated manifold with four states per each
total quasimomentum sector, implying the total of 64 states.
The actual numerical results obtained for β = 0.1 and varying
values of the interaction strength are shown in Fig. 6. In all
panels, the abscissa axes enumerate the total quasimomentum
sectors indexed by the integer values K running from zero to
15 ≡ 4 × 4 − 1, and the ordinate axes display the energies
of the lowest many-body states obtained from the exact-
diagonalization calculations. The left (right) column of three
plots corresponds to omitted (included to the third order)
micromotion-induced corrections to the effective Hamiltonian.
The strength of particle interactions u = U/J is decreasing
from the top to the bottom. At the strongest considered
interactions, u = 5 (top row) one sees a clear gap separating the
lower group of exactly four states per quasimomentum sector
from the rest of the spectrum. For weaker interactions (u = 3
in the middle row) the gap is barely discernible in the absence
of micromotion-induced interactions and is obliterated when
micromotion is taken into account. Finally, in the bottom row
corresponding to weak interactions with u = 1 there is no
visible gap indicating the absence of FCI phase. In general,
the information provided by the quasihole spectra is broadly
compatible with that obtained from the ordinary many-body
spectra; however, the constraints placed on interactions being
“sufficiently strong” are even more stringent, thus further
contributing to the pessimistic outlook on the feasibility of
fractional Chern insulating states in the studied system.

IV. CONCLUSIONS

To summarize, we address the issue of the stabilization
of Floquet fractional Chern insulator states for strongly
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interacting particles (bosons or fermions) on a time-
periodically driven honeycomb lattice. In this system, the
necessary topological single particle bands are formed due to
the next-nearest neighbor transitions, which is a second-order
effect corresponding to two consecutive tunneling events
during a single driving period. This requires sufficiently
low driving frequencies and necessitates the consideration
of further expansion terms beyond the averaging of the
Hamiltonian used in high-frequency schemes. The third-order
terms describe the coupling of real-space micromotion and
interactions. In strongly interacting systems, the importance
of these terms is, in general, comparable to that of the
second-order contributions. The prefactor features not only
the expansion parameter (�ω)−1 but also the on-site repulsion
energy U for bosonic systems or, alternatively, nearest-site
repulsion energy V for fermionic systems. Within simulations
of small systems, the coupling of micromotion and interactions
turns out to be both significant and detrimental to the formation
of quantum-Hall–like states. Thus the realization of Floquet
fractional Chern insulator states seems rather challenging.
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APPENDIX A: HALDANE MODEL

The Haldane model [1,28,34,39,80–84] sets a paradigmatic
example of the topological band structure supported by a
simple two-band setup. This model features a honeycomb
lattice (see Fig. 1) with nearest-neighbor hopping described
by a real amplitude −J1 plus next-nearest neighbor hopping
described by a complex amplitude −J2e

iϕ (−J2e
−iϕ) in the

counterclockwise (clockwise) direction. In the quasimomen-
tum representation, the Hamiltonian matrix reads

H (k) =
[−J2f̃ (k,ϕ) −J1g

∗(k)

−J1g(k) −J2f̃ (k, − ϕ)

]
, (A1)

with

g(k) =
3∑

j=1

e−ik·(δj −δ1) = 1 + ei(k1+k2) + eik2 , (A2)

f̃ (k,ϕ) = 2
3∑

j=1

cos(k · aj − ϕ)

= 2[cos(k1 − ϕ) + cos(k2 − ϕ) + cos(k1 + k2 + ϕ)].
(A3)

Here we define k = (k1/2π )b1 + (k2/2π )b2, with b1,2 de-
noting the reciprocal lattice vectors, and (k1,k2) ∈ [0,2π ) ×
[0,2π ) covering the rhombic Brillouin zone. In the case

FIG. 7. (Color online) Dispersion of the upper band of the
Haldane model drawn along the diagonal of the rhombic BZ.

considered in the main text, the NNN hopping amplitude is
purely imaginary, corresponding to ϕ → π/2, and therefore

H (k) =
[−J2f (k) −J1g

∗(k)

−J1g(k) J2f (k)

]
, (A4)

with the unchanged definition for g(k), and

f (k) = 2[sin k1 + sin k2 − sin(k1 + k2)]. (A5)

While the resulting bands are not globally flat, they feature flat
sections that cover BZ regions characterized by large Berry
curvatures. This fact forms the basis for the anticipation [17]
that the Haldane model might support FCI phases for strongly
interacting particles.

The formation of the flat segments in the energy bands is
best visualized focusing on a one-dimensional cut through the
rhombic BZ along its diagonal (obtained by setting k1 = k2).
This line connects the zone center at (0,0) to the equivalent
point at (2π,2π ), and passes through both inequivalent Dirac
points at (2π/3,2π/3) and (4π/3,4π/3). Using the single
coordinate, x ≡ k1 = k2, we simplify (A2) and (A5) to read

g(x) = 1 + eix + ei2x, (A6)

f (x) = 4 sin x − 2 sin 2x, (A7)

and obtain the scaled band energies

ε±
J1

= ±
[(

J2

J1

)2

f 2(x) + |g(x)|2
]1/2

. (A8)

The two bands are mirror symmetric with respect to the line
ε = 0, and the dispersion of the upper band is shown in Fig. 7
for a few selected values of the governing parameter F =
J2/J1. Weak NNN hopping amplitudes open small topological
gaps at the Dirac points, as illustrated by the dotted black
line corresponding to F = 0.02. Stronger couplings produce
relatively dispersionless portions of the bands. In Fig. 7, this

245135-9



EGIDIJUS ANISIMOVAS et al. PHYSICAL REVIEW B 91, 245135 (2015)

result is illustrated by the full red and dashed blue lines drawn,
respectively, for FQ = 1/

√
32 and FD = 1/

√
27. The two

reference values are obtained from different flatness criteria,
and are very similar. The first value, FQ, is defined by the
requirement that the Taylor expansion of the energy ε+/J

around the midpoint x = π starts with the quartic (rather than
the second order) term. The latter value, FD , is the smallest
at which the band gap at the Dirac points becomes equal
to the gap at the midpoint of the BZ diagonal. These two
alternative criteria lead only to miniscule variations in the
resulting many-body band structure, and we choose to adopt
the value FQ as the reference.

APPENDIX B: OPERATORS IN QUASIMOMENTUM
REPRESENTATION

In the main text, we discuss the constituent parts of
the effective Hamiltonian using their real-space forms
which typically lend themselves to physically transparent
interpretation as combinations of hopping and interaction
events. The purpose of the present appendix is to give the
corresponding expressions in the reciprocal space, used in the
actual numerical work.

Denoting the number of elementary cells in the lattice Ns ,
we define the reciprocal-space creation operators â

†
kA and â

†
kB

in terms of the usual Fourier transforms

â
†
kA = 1√

Ns

∑
i∈A

â
†
i e

ik·r i , (B1)

â
†
kB = 1√

Ns

∑
i∈B

â
†
i e

ik·(r i−δ1), (B2)

with the conjugate version of this equation applicable to
annihilation operators. Note that in the quasimomentum
representation we explicitly specify the sublattice index A or B
while in the real space this was avoided by using the shorthand
notation i versus i + μ.

The first-order contribution to the effective Hamiltonian is
now written

Ĥ
(1)
F = Ĥint − JJ0(α)

∑
k

[â†
kBâkAg(k) + H.c.], (B3)

with g(k) = ∑
μ e−ik·(δμ−δ1). The interaction Hamiltonian

reads for bosons

Ĥ
(b)
int =

1

2

∑
{k}

Wb({k})[â†
k1Aâ

†
k2Aâk3Aâk4A + â

†
k1Bâ

†
k2Bâk3Bâk4B

]
,

(B4a)

Wb({k}) = U

Ns

δ′
k1+k2,k3+k4

, (B4b)

and for fermions

Ĥ
(f)
int =

∑
{k}

â
†
k1Bâ

†
k2Aâk3Aâk4B · Wf({k}), (B5a)

Wf ({k}) = V

Ns

g(k1 − k4)δ′
k1+k2,k3+k4

, (B5b)

with the periodic Kronecker δ that allows the quasimomenta
in its arguments to differ by an elementary translation on the
reciprocal lattice. The symbol {k} ≡ (k1,k2,k3,k4) stands for
the set of four quasimomenta involved in a scattering event.

Proceeding to the second order we write

Ĥ1= − JJ1(α)
∑

k

[â†
kBâkAhBA(k) + â

†
kAâkBhAB(k)], (B6)

with

hBA(k) =
3∑

μ=1

e−ik·(δμ−δ1)e−iϕμ , (B7a)

hAB(k) = −
3∑

μ=1

eik·(δμ−δ1)e−iϕμ , (B7b)

and evaluating the commutator in Eq. (18b) obtain

Ĥ
(2)
F = 1

�ω
[Ĥ1,Ĥ

†
1 ] =

√
3J 2J 2

1 (α)

�ω

∑
k

f (k)[â†
kAâkA − â

†
kBâkB], (B8)

with f (k) = 2
∑

j sin k · aj . These terms are diagonal and describe NNN hopping on separate sublattices.
To describe the coupling of micromotion and interactions, we evaluate the nested commutators in Eq. (18c) and obtain,

depending on the statistics,

Ĥ
(3,b|f)
F = −J 2J 2

1 (α)

2(�ω)2

∑
{k}

Wb|f({k})Sb|f, (B9)

with

Sb({k}) = +hAB(k3)h∗
AB(k3)â†

k1Aâ
†
k2Aâk3Aâk4A − hAB(k3)h∗

AB(k1)â†
k1Bâ

†
k2Aâk3Bâk4A − hAB(k3)h∗

AB(k2)â†
k1Aâ

†
k2Bâk3Bâk4A

+hAB(k3)h∗
BA(k4)â†

k1Aâ
†
k2Aâk3Bâk4B + hAB(k4)h∗

AB(k4)â†
k1Aâ

†
k2Aâk3Aâk4A − hAB(k4)h∗

AB(k1)â†
k1Bâ

†
k2Aâk3Aâk4B

−hAB(k4)h∗
AB(k2)â†

k1Aâ
†
k2Bâk3Aâk4B + hAB(k4)h∗

BA(k3)â†
k1Aâ

†
k2Aâk3Bâk4B + hBA(k1)h∗

AB(k2)â†
k1Bâ

†
k2Bâk3Aâk4A

−hBA(k1)h∗
BA(k3)â†

k1Bâ
†
k2Aâk3Bâk4A − hBA(k1)h∗

BA(k4)â†
k1Bâ

†
k2Aâk3Aâk4B + hBA(k1)h∗

BA(k1)â†
k1Aâ

†
k2Aâk3Aâk4A
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+hBA(k2)h∗
AB(k1)â†

k1Bâ
†
k2Bâk3Aâk4A − hBA(k2)h∗

BA(k3)â†
k1Aâ

†
k2Bâk3Bâk4A − hBA(k2)h∗

BA(k4)â†
k1Aâ

†
k2Bâk3Aâk4B

+hBA(k2)h∗
BA(k2)â†

k1Aâ
†
k2Aâk3Aâk4A, + H.c. + {A ↔ B}, (B10)

Sf ({k}) = −hBA(k4)h∗
AB(k2)â†

k1Bâ
†
k2Bâk3Aâk4A − hBA(k2)h∗

AB(k4)â†
k1Bâ

†
k2Bâk3Aâk4A

−hBA(k4)h∗
BA(k1)â†

k1Aâ
†
k2Aâk3Aâk4A + hBA(k4)h∗

BA(k3)â†
k1Bâ

†
k2Aâk3Bâk4A

+hBA(k4)h∗
BA(k4)â†

k1Bâ
†
k2Aâk3Aâk4B + hBA(k2)h∗

BA(k1)â†
k1Aâ

†
k2Bâk3Aâk4B

+hBA(k2)h∗
BA(k2)â†

k1Bâ
†
k2Aâk3Aâk4B − hBA(k2)h∗

BA(k3)â†
k1Bâ

†
k2Bâk3Bâk4B

−hAB(k3)h∗
AB(k2)â†

k1Bâ
†
k2Bâk3Bâk4B + hAB(k3)h∗

AB(k3)â†
k1Bâ

†
k2Aâk3Aâk4B

+hAB(k3)h∗
AB(k4)â†

k1Bâ
†
k2Aâk3Bâk4A + hAB(k1)h∗

AB(k1)â†
k1Bâ

†
k2Aâk3Aâk4B

+hAB(k1)h∗
AB(k2)â†

k1Aâ
†
k2Bâk3Aâk4B − hAB(k1)h∗

AB(k4)â†
k1Aâ

†
k2Aâk3Aâk4A

−hAB(k3)h∗
BA(k1)â†

k1Aâ
†
k2Aâk3Bâk4B − hAB(k1)h∗

BA(k3)â†
k1Aâ

†
k2Aâk3Bâk4B + H.c. (B11)
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H.-C. Nägerl, Phys. Rev. Lett. 104, 200403 (2010).
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Spielman, and G. Juzeliūnas, New J. Phys. 15, 013025 (2013).

[84] E. Anisimovas, F. Gerbier, T. Andrijauskas, and N. Goldman,
Phys. Rev. A 89, 013632 (2014).

245135-12

http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1103/PhysRevA.89.051605
http://dx.doi.org/10.1103/PhysRevA.89.051605
http://dx.doi.org/10.1103/PhysRevA.89.051605
http://dx.doi.org/10.1103/PhysRevA.89.051605
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.89.121401
http://dx.doi.org/10.1103/PhysRevB.89.121401
http://dx.doi.org/10.1103/PhysRevB.89.121401
http://dx.doi.org/10.1103/PhysRevB.89.121401
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1103/PhysRevLett.108.056602
http://dx.doi.org/10.1103/PhysRevLett.108.056602
http://dx.doi.org/10.1103/PhysRevLett.108.056602
http://dx.doi.org/10.1103/PhysRevLett.108.056602
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1103/PhysRevB.88.245422
http://dx.doi.org/10.1103/PhysRevB.88.245422
http://dx.doi.org/10.1103/PhysRevB.88.245422
http://dx.doi.org/10.1103/PhysRevB.88.245422
http://dx.doi.org/10.1103/PhysRevB.89.205408
http://dx.doi.org/10.1103/PhysRevB.89.205408
http://dx.doi.org/10.1103/PhysRevB.89.205408
http://dx.doi.org/10.1103/PhysRevB.89.205408
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://arxiv.org/abs/arXiv:1401.0402v2
http://arxiv.org/abs/arXiv:1502.06477v3
http://arxiv.org/abs/arXiv:1503.02580
http://dx.doi.org/10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevE.55.300
http://dx.doi.org/10.1103/PhysRevE.55.300
http://dx.doi.org/10.1103/PhysRevE.55.300
http://dx.doi.org/10.1103/PhysRevE.55.300
http://dx.doi.org/10.1103/PhysRevE.61.4883
http://dx.doi.org/10.1103/PhysRevE.61.4883
http://dx.doi.org/10.1103/PhysRevE.61.4883
http://dx.doi.org/10.1103/PhysRevE.61.4883
http://dx.doi.org/10.1103/PhysRevE.79.051129
http://dx.doi.org/10.1103/PhysRevE.79.051129
http://dx.doi.org/10.1103/PhysRevE.79.051129
http://dx.doi.org/10.1103/PhysRevE.79.051129
http://dx.doi.org/10.1103/PhysRevE.82.021114
http://dx.doi.org/10.1103/PhysRevE.82.021114
http://dx.doi.org/10.1103/PhysRevE.82.021114
http://dx.doi.org/10.1103/PhysRevE.82.021114
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://arxiv.org/abs/arXiv:1502.02664v1
http://arxiv.org/abs/arXiv:1502.05047v2
http://dx.doi.org/10.1103/PhysRevLett.101.245302
http://dx.doi.org/10.1103/PhysRevLett.101.245302
http://dx.doi.org/10.1103/PhysRevLett.101.245302
http://dx.doi.org/10.1103/PhysRevLett.101.245302
http://arxiv.org/abs/arXiv:1505.02657
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevE.90.012110
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevA.68.013820
http://dx.doi.org/10.1103/PhysRevA.68.013820
http://dx.doi.org/10.1103/PhysRevA.68.013820
http://dx.doi.org/10.1103/PhysRevA.68.013820
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevA.91.033632
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://arxiv.org/abs/arXiv:1503.03096
http://arxiv.org/abs/arXiv:1407.4803v4
http://dx.doi.org/10.1103/PhysRevLett.111.175301
http://dx.doi.org/10.1103/PhysRevLett.111.175301
http://dx.doi.org/10.1103/PhysRevLett.111.175301
http://dx.doi.org/10.1103/PhysRevLett.111.175301
http://arxiv.org/abs/arXiv:1412.3481
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1088/0305-4470/17/12/016
http://dx.doi.org/10.1088/0305-4470/17/12/016
http://dx.doi.org/10.1088/0305-4470/17/12/016
http://dx.doi.org/10.1088/0305-4470/17/12/016
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.112.126806
http://dx.doi.org/10.1103/PhysRevLett.112.126806
http://dx.doi.org/10.1103/PhysRevLett.112.126806
http://dx.doi.org/10.1103/PhysRevLett.112.126806
http://dx.doi.org/10.1103/PhysRevB.91.035136
http://dx.doi.org/10.1103/PhysRevB.91.035136
http://dx.doi.org/10.1103/PhysRevB.91.035136
http://dx.doi.org/10.1103/PhysRevB.91.035136
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevLett.101.246810
http://dx.doi.org/10.1103/PhysRevA.82.013608
http://dx.doi.org/10.1103/PhysRevA.82.013608
http://dx.doi.org/10.1103/PhysRevA.82.013608
http://dx.doi.org/10.1103/PhysRevA.82.013608
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevA.89.013632
http://dx.doi.org/10.1103/PhysRevA.89.013632



