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Semisynthetic zigzag optical lattice for ultracold bosons
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We propose a cold-atom realization of a zigzag ladder. The two legs of the ladder correspond to a “synthetic”
dimension given by two internal (spin) states of the atoms, so that tunneling between them can be realized as
a laser-assisted process. The zigzag geometry is achieved by employing a spin-dependent optical lattice with
the site position depending on the internal atomic state, i.e., on the ladder’s leg. The lattice offers a possibility
to tune the single-particle dispersion from a double-well to a single-minimum configuration. In contrast to
previously considered semisynthetic lattices with a square geometry, the tunneling in the synthetic dimension
is accompanied by spatial displacements of atoms. Therefore, the atom-atom interactions are nonlocal and act
along the diagonal (semisynthetic) direction. We investigate the ground-state properties of the system for the
case of strongly interacting bosons. In particular, we find that the interplay between the frustration induced
by the magnetic field and the interactions gives rise to an interesting gapped phase at fractional filling factors
corresponding to one particle per magnetic unit cell.
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I. INTRODUCTION

Optical lattices provide a unique tool for simulating quan-
tum condensed-matter physics using ultracold atoms [1–3].
These lattices can be enriched by introducing laser-coupled
internal atomic states [4–9] that can play the role of an extra
“synthetic” dimension [10–12]. For example, a semisynthetic
square lattice results from the combination of the interlayer
tunneling among the sites of a one-dimensional optical lattice
and laser-assisted transitions between the onsite atomic levels.
If the laser coupling is accompanied by a recoil in the
lattice direction, the semisynthetic lattice acquires a uniform
magnetic flux traversing the square plaquettes [11]. This
leads to the formation of chiral edge states in the resulting
quantum Hall ribbon [11,13–16]. A characteristic feature of
the square geometry is that the atom-atom interaction is long
ranged in the synthetic dimension but short ranged in the real
dimension [11,17–19].

In this work, we depart from the square geometry and find
the ground states of a semisynthetic optical zigzag lattice which
can be created combining a spin-dependent one-dimensional
optical lattice with laser-induced transitions between the
atomic internal states [20]. The lattice is affected by a
tunable homogeneous magnetic flux, and furthermore features
nonlocal interactions along the semisynthetic directions that
connect different internal states situated at different spatial
locations, see also Ref. [21]. Generation of magnetic fluxes
in an effectively one-dimensional setting is intriguing and was
recently considered in Ref. [22]. Nonlocal interactions are also
important goals in recent experiments, and such interactions
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have been engineered via superexchange [23–26] dipole-
dipole coupling [27–30] or Rydberg dressing [31–34]. We
investigate the ground-state properties of the proposed system
for the case of bosonic atoms with strong interactions using the
density-matrix renormalization group [35–37] calculations.
We find that the interplay between the frustration induced
by the magnetic flux and the interactions gives rise to an
interesting gapped phase at fractional per-site filling fractions
corresponding to one particle per magnetic unit cell.

The paper has the following structure. The single-particle
model is formulated in Sec. II A introducing the experimentally
motivated lattice setup. The model is solved and analyzed in
Secs. II B–II D; in particular, in Sec. II D we explore the mani-
festation of the resulting band structure via Bloch oscillations
of a wave packet in a tilted lattice. Section III is devoted to
the many-body phases supported by the semisynthetic zigzag
lattice. The concluding Sec. IV summarizes the findings.

II. SINGLE-PARTICLE PROBLEM

A. Lattice setup

We consider bosonic atoms with two relevant internal
states labeled with the (quasi)spin index s = ±1. To create
the semisynthetic zigzag lattice shown in Fig. 1(a), the
atoms are confined in a one-dimensional periodic trapping
potential V ∝ ± cos(κx), opposite for each internal state. In
addition, the two quasispin states are coupled by laser-induced
transitions characterized by a Rabi frequency � and a recoil
wave vector κ̃ex aligned along the lattice direction ex . The
resulting single-particle Hamiltonian is

H = p̂2

2m
+ V0

2
cos(κx) σz + ��(σ+eiκ̃x + σ−e−iκ̃x), (1)

where V0 is the height of the trapping potential while σz and
σ± = σx ± iσy denote the standard Pauli spin matrices and
combinations thereof.
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FIG. 1. (a) Semisynthetic zigzag lattice corresponding to the
tight-binding Hamiltonian (6). The lattice is affected by a nonstag-
gered flux γ = aκ̃/2 = πκ̃/κ over triangular plaquettes. (b) Tight-
binding parameters. Left: Horizontal nearest-neighbor (t) and next-
nearest-neighbor (t (2)) hopping parameters together with diagonal
tunneling strength tD as a function of the scaled lattice depth V0/ER

for � = 0.2020ER . Right: Normalized interactions U1 and U2 as
functions of the scaled lattice depth.

The out-of-phase optical lattice can be produced by taking
the quasispin states with s = ±1 to be the ground state 1S0 and
the long-lived excited state 3

P0 of the alkaline-earth(-like)-
metal atoms, such as ytterbium [15] or strontium [40,41], for
which the excited state has a typical lifetime far exceeding
the experimental time scale [7,15,40,42]. In contrast to the
recent experiments [15,40], the atoms are to be trapped at
an antimagic (rather than magic) wavelength to have the
opposite trapping potentials for the two atomic internal states.
Alternatively, one may use two Raman-coupled hyperfine
atomic states |F,mF 〉 with projections mF = 0 and mF = −1
from the F = 1 ground-state manifold of the 87Rb atoms [43]
as the two quasispin states (see Fig. 2). The lattice potential
V ∝ ± cos(κz) is then obtained by balancing the vector and
scalar light shifts of a state-dependent lattice [8,38]. This can
be done by using a standing wave of a circularly (either σ+
or σ−) polarized light, and detuning slightly away from the
frequency at which the scalar light shift is exactly zero.

B. Tight-binding approximation

We focus on a sufficiently deep lattice potential with
the depth V0 typically exceeding the recoil energy ER =
�

2κ2/8m five times. In this regime, a tight-binding approach
is appropriate. We use the index j to label the sites along the
physical (long) direction, and the internal states with s = ±1
are interpreted as sites along the synthetic dimension [11]. This
provides a semisynthetic zigzag lattice depicted in Fig. 1(a).

To proceed with the tight-binding approach, we introduce
the Wannier functions wj (x) for the atomic motion in the one-
dimensional cosine potential V (x) = V0 cos(κx)/2 oscillating
with the spatial periodicity a = 2π/κ . The functions wj (x) ≡

FIG. 2. (a) Schematic layout of proposed experimental setup.
A bias magnetic field B0 = B0ex Zeeman splits the hyperfine spin
states of 87Rb atoms. A counterpropagating pair of σ+ polarized
laser beams (shown in red) with λL = 4π/κ ≈ 789 nm form a
spin-dependent lattice with opposite signs for atoms in the mF = −1
and mF = 0 states [8,38,39]. This traps the |F = 1,mF = −1,0〉
states on lattice sites shifted by half the lattice constant a/2 = π/κ

providing a semisynthetic zigzag lattice. Two horizontally polarized
lasers (shown in red) at λR = 2π/κ̃ ≈ 790 nm resonantly couple the
two spin states producing the flux γ = κ̃a/2 = π/2 tuned by taking
the angle α ≈ 60◦ between the laser beams. (b) Level diagram. The σ+
polarized lattice laser beams (dashed red arrows) shift individual mF

states, but do not drive transitions. The strength of the state-dependent
contribution to this shift is maximized when the beams propagate
parallel to B0. The Raman lasers (solid green arrows) are tuned to
be in resonance with mF = −1 → 0 transition, but detuned from
the mF = 0 → +1 transition. Note that the Zeeman splitting of
the ground-state F = 1 hyperfine manifold is shown on a greatly
exaggerated scale.

w0(x − ja) are localized at the potential minima xj = aj . The
Wannier basis for the two spin states with s = ±1 is thus given
by

ws,j (x) = w0(x − sa/4 − ja), (2)

where for convenience the origin of the x axis has been shifted
to the midpoint between the neighboring s = ±1 sites. The
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locations of the opposite spin states differ by a/2, i.e., by a
half of the lattice constant.

Matrix elements for tunneling along the real dimension
have the usual form

−t =
∫

w∗
s,j+1(x)

[
p̂2

2m
− V0

2
cos(κx)

]
ws,j (x) dx. (3)

With the minus sign absorbed into the definition in Eq. (3),
the quantity t is real and positive. Matrix elements for the
laser-assisted tunneling along the two “diagonal” directions
of the semisynthetic lattice are obtained by overlapping the
Wannier functions weighted with the position-dependent laser
coupling term:

∫
w∗

1,j (x) �eiκ̃xw−1,j (x) dx = tD eiκ̃aj , (4a)

and ∫
w∗

1,j+1(x) �eiκ̃xw−1,j (x) dx = tD eiκ̃a(j+1/2). (4b)

Here the amplitude tD is determined by both the Rabi fre-
quency � and the overlap integral ρ between the neighboring
Wannier functions for the opposite spin states:

tD = �ρ, ρ =
∫

w∗
0(x − a/4) eiκ̃x w0(x + a/4) dx. (5)

Within the tight-binding approach, we introduce the Bose
operators cs,j and c

†
s,j to describe the annihilation and creation

of atoms on the sites (s,j ) of the semisynthetic zigzag lattice.
By adding appropriate phase factors to these operators cs,j →
cs,j e−ijsaκ̃/2, one arrives at the tight-binding Hamiltonian with
complex-valued tunneling elements e±isaκ̃/2 along the long
direction (real dimension) and real-valued tunneling tD along
the diagonal semisynthetic directions:

H = tD
∑

j

[c†1,j c−1,j + c
†
1,j−1c−1,j ]

− t
∑
j,s

c
†
s,j+1cs,j e−isaκ̃/2 + H.c. (6)

Here the first contribution describes the diagonal (spin-flip)
tunneling in the semisynthetic lattice. The lattice is affected
by a nonstaggered flux γ = aκ̃/2 = πκ̃/κ over triangular
plaquettes due to the recoil, as illustrated in Fig. 1(a).

Figure 1(b) displays the dependence of the tunneling
parameters t and tD on the lattice depth for the characteristic
value of the Rabi frequency � = 0.2020ER . This particular
choice of the laser strength leads to equal values of the two
hopping parameters t = tD for the lattice depth V0 = 5ER

subsequently used in the many-body calculations. Note that
the ratio tD/t is tunable and increases linearly with the Rabi
frequency �. Couplings between more distant sites are much
smaller and can be safely neglected.

C. Single-particle spectrum

In terms of the momentum-space bosonic operators ĉ
(†)
s,k the

Hamiltonian reads

H =
∑

k

(ĉ†1,k ĉ
†
−1,k

)

(
h11 h12

h21 h22

)(
ĉ1,k

ĉ−1,k

)
, (7)

FIG. 3. Exactly calculated dispersion curves for V0 = 5ER , κ =
2κ̃ (γ = π/2), and various strengths of the spin-flip coupling:
(a) � = 0.05, (b) � = 0.2020, (c) � = 0.4039ER (the critical value),
and (d) � = 0.8ER . This corresponds to: (a) tD = 0.25t , (b) tD = t ,
(c) tD = 2t (quartic dispersion at k = 0), and (d) tD = 4t .

where h12 = h21 = 2tD cos(ka/2) and hjj = −2t cos[ka +
γ (−1)j ], with the row index j = 1, 2. To develop more
intuition into the single-particle properties of the model, let
us look at the case where κ̃ = κ/2. The flux over a triangular
plaquette is then γ = π/2, so that the time-reversal symmetry
is broken in the semisynthetic lattice even though the flux over
a full elementary cell evaluates to 2γ = π . In passing we note
that the time-reversal symmetry is preserved if the triangular
plaquette of the zigzag lattice is pierced by a π flux [44].
Returning to the situation where γ = π/2, the two dispersion
branches read

ε±(k) = ±2
√

t2 sin2(ka) + t2
D cos2(ka/2). (8)

The tight-binding dispersion (8) is in a good agreement with
the exact band structure shown in Fig. 3 for the zigzag lattice
with κ̃ = κ/2 and V0 = 5ER corresponding to γ = π/2,
t = 0.0658ER , and ρ = 0.3258, with different values of �

determining tD = �ρ. It is noteworthy that the dispersion
becomes quartic around k = 0 for tD = tD,critical = 2t which
corresponds to the critical Rabi frequency �critical = 2t/ρ.
For the lattice depth V0 = 5ER the critical Rabi frequency
is �critical = 0.4039ER , and the resulting band structure is
shown in Fig. 3(c). Below the critical value, tD < 2t , there are
two symmetric minima at ka = ± arccos[(tD/2t)2]. Above the
critical value, tD > 2t , there is a single minimum at k = 0.

We stress that the plots in Fig. 3 represent the exact
calculations which agree well with the tight-binding model
for � up to the critical value �critical and a little above it. Yet
for � = 0.8ER ≈ 2�critical (i.e., for �ρ ≈ 4t), there is already
a marked deviation from the tight-binding model due to mixing
with higher orbital bands. In fact, since the gap between the
first and the second orbital bands is of the order of 2ER at
V0 = 5ER , the interband coupling becomes relevant only for
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larger � which is comparable to ER , such as for � = 0.8ER .
This is approximately the regime where Zhou and Cui [45]
also saw deviations from the tight-binding model for a square
semisynthetic lattice.

The spin magnetization 〈σz〉 of the eigenstates is indicated
by color in Fig. 3. The red and blue colors correspond to a
fully magnetized state with s = 1 and s = −1, respectively.
In the case of weak coupling (upper panels) the dispersion has
a double-well shape with a clear spin separation in different
minima. For stronger coupling the spin states get increasingly
mixed. At the critical value � = 0.4039ER , the double well
transforms to a single-minimum shape with a strong spin
mixture.

D. Bloch oscillations

A characteristic feature of the zigzag lattice is the crossing
of the two energy bands at the edges of the Brillouin zone
ka = ±π . In Fig. 3 we see that there is no band gap at these
points and the spin polarization is preserved when moving from
one energy band to the other at the Brillouin zone boundary
ka = ±π . This is also true for other values of the flux γ . The
absence of the gap is a consequence of the invariance of the
Hamiltonian (1) under the spatial translation by half the lattice
period a/2 followed by time reversal, the latter representing
a spin flip combined with an inversion of the Peierls phase
γ → −γ [46]. As a result, the period of Bloch oscillations is
doubled, cf. Ref. [47].

To illustrate the observable consequences of symmetry-
related doubling of the Brillouin zone, we performed a
numerical simulation of a wave packet in the zigzag lattice.
We prepared a Gaussian wave packet composed entirely of the
states from the lower energy band close to k = 0 and initially
situated at a certain position (referred to as site j = 0) in the
real space. Under the influence of a lattice tilt the wave packet is
scanning the single-particle band structure while transferring
diabatically between the two energy bands at the edges of
the Brillouin zone. The results of our numerical simulation
are shown in Fig. 4(a) for the specific choice tD = t , and
clearly indicate the doubling of the Bloch period. To further
clarify this effect, we contrast these results to those shown

FIG. 4. Bloch oscillations for a Gaussian wave packet in a tilted
zigzag lattice. Panel (a) corresponds to the band structure presented
in Fig. 2(b) of the main text. In panel (b) the legs of the ladder legs
are additionally biased by introducing a spin-dependent onsite energy
shift ±0.3tσz, and the band gaps opened close to the Brillouin zone
boundary lead to the Landau-Zener tunneling between the two bands.

in Fig. 4(b) in which the onsite energies are modified by an
additional spin-dependent bias 0.3tσz. In such a situation the
single-particle bands acquire small gaps at the Brillouin zone
boundaries. As a consequence, the wave packet is split with
the atoms being partially transferred into the other band each
time the Brillouin zone boundary is reached.

III. MANY-BODY EFFECTS

A. Interaction Hamiltonian

To take interactions into account, the tight-binding Hamil-
tonian (7) is complemented with the interaction term

Hint = U1

2

∑
j,s

ns,j (ns,j − 1)

+U2

∑
j

[n1,j + n1,j−1]n−1,j , (9)

where

U1 = U0

∫
|w0(x)|4 dx (10)

is the onsite interaction energy between atoms with the same
spin states. On the other hand,

U2 = U0

∫
|w0(x + a/4)|2|w0(x − a/4)|2 dx (11)

represents the density-density interaction between atoms oc-
cupying neighboring sites with opposite spin states, i.e., the in-
teractions acting along the diagonal links of the semisynthetic
zigzag lattice shown in Fig. 1(a). The prefactor U0 is defined by
the scattering length (assumed to be state independent) and the
confinement in the perpendicular (y and z) spatial directions.
The specific value of U0 ≈ 1.09ER used in our simulations was
obtained for the perpendicular confinement depths of 30ER .
In Fig. 1(b), we plot U1 and U2 as functions of the lattice depth
showing that U2 is around five times smaller than U1 for a
typical lattice height V0 = 5ER . On the other hand, interaction
between the atoms at the neighboring sites with the same spin
state is not included because it is much smaller than both U1

and U2.

B. Many-body phases

In our calculations we take the lattice height V0 = 5ER

for which the interaction energies read U1 ≈ 0.56ER and
U2 ≈ 0.074ER . To investigate the many-body phases sup-
ported by the semisynthetic zigzag lattice we performed a
series of numerical simulations based on the density-matrix
renormalization group technique [36] using the open-source
OSMPS code [48]. Our simulations targeted the ground states of
lattices containing L = 60 sites (that is, 30 two-site unit cells)
with open boundary conditions and fractional filling factors
N/L corresponding to all integer particle numbers N up to 60.
Working with such finite systems we were able to stay close to
the experimentally feasible regime [49] while also maintaining
a reasonable numerical effort. To check the scaling properties
of the obtained results, representative simulations were rerun
also with larger lattice sizes containing up to 120 sites. The
remaining two parameters whose values were tuned in a broad
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interval are the flux γ and the diagonal hopping parameter
tD . On the other hand, the values for the horizontal hopping
parameter t ≈ 0.066ER and the nearest-neighbor interaction
strength U2 were taken from the modeling of a lattice of depth
V0 = 5ER [cf. Fig. 1(b)]. Focusing on the effects brought
about by the strong atom-atom interactions, in the main part
of our calculations we chose to work in the limit of hardcore
bosons. Thus, the onsite interaction strength U1 ≈ 0.56ER is
regarded to be the dominant energy scale and is accounted
for by restricting the number of bosons per lattice site to be
not more than one. Having rerun the calculations with more
than one boson per site we were able to confirm that the
observed interesting many-body phases described below are
indeed adequately represented by the hardcore limit.

The zigzag lattice offers a possibility to realize a tunable
single-particle dispersion, seen in Fig. 3, by changing the ratio
of the diagonal and horizontal tunneling parameters tD/t . In
the limits where one of these quantities significantly exceeds
the other, tD � t or t � tD , we observe quasicondensed
phases signaled by the algebraic decay of the single-particle
density matrix g1(i,j ) ≡ 〈c†i cj 〉 as a function of the separation
of sites |i − j | [50]. In the limit of a dominant diagonal
tunneling tD , one obtains the usual quasicondensate at the
single minimum at k = 0. Since the magnetic flux is not
absorbed into the internal structure of the quasicondensate
wave function with k = 0, the chiral currents are induced
in the legs of the lattice [49,51]. This phase supported by
the zigzag lattice corresponds to the one observed in square
ladders [49,51]. It has been termed the Meissner phase in
analogy to the physics of superconductors. In the opposite
limit of weakly coupled spin-polarized legs—that is, when
the horizontal hopping t is dominant—we find a striped phase
analogous to the vortex phase formed in square ladders [49,51].
Here, the current and density oscillations are induced by
the interference of partial quasicondensates occupying the
two minima in the single-particle band structure. While this
qualitative picture is strictly valid for noninteracting bosons

it does survive also in the presence of finite interactions. Let
us also stress that in the thermodynamic limit (as opposed to
finite-size simulations) the gapless vortex phase is expected
to support oscillations in the density correlations and not the
density itself.

In between the two limits supporting quasicondensed
ground states there lies an intriguing regime of balanced
tunneling strengths t ∼ tD associated with the presence of
kinetic frustration. In particular, when t = tD each triangular
plaquette is characterized by the absence of a weak link
that could absorb the complex phase accumulated while
encircling the plaquette. Under such circumstances the role
of the atom-atom interactions will be enhanced, which might
drive the system into a gapped phase. Indeed, our simulations
show that the power-law decay of the single-particle density
matrix g1(i,j ) is replaced by an exponential decay signaling
the destruction of the quasicondensed phase. To complement
these observations, in Fig. 5 we plot the behavior of the
charge gap [52] �c(N ) = EN+1 + EN−1 − 2EN calculated
from the ground-state energies of the zigzag lattice with a
varying number of particles. In the top row, the coordinate
axes represent the two governing parameters, the filling factor
N/L (with L = 60) plotted on the horizontal axis and the ratio
of the hopping parameters tD/t plotted on the vertical axis. The
series of five phase diagrams represents a subset of calculations
performed on a dense set of different values of the flux γ .

The phase diagrams reveal the emergence of areas (marked
with white ovals) where charge gaps are significantly en-
hanced. It is noteworthy that these gapped “islands” are situ-
ated precisely at the parameter values where the single-particle
correlations decay exponentially and the filling factor assumes
flux-dependent values N/L = γ /2π and N/L = 1 − γ /2π .
These two values are related by the particle-hole symmetry
brought about by the hardcore constraint. They correspond
precisely to the situation with one particle or hole per magnetic
unit cell containing 2π/γ triangular lattice plaquettes or 2π/γ

sites, like in the integer bosonic Hall effect [53–56].
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FIG. 5. Many-body phase diagram of the zigzag lattice for a set of flux values γ = {0.4 π,0.5 π,0.55 π, 2
3 π, 3

4 π}. Top row: the scaled charge
gap �c/ER plotted as a function of the number of particles N in the lattice of size L = 60 and the ratio of the hopping strengths tD/t . Areas
corresponding to enhanced charge gaps close to tD ≈ t and the filling factor N/L = γ /2π are conspicuous and are marked with white ovals.
Bottom row: the expectation of the site occupation 〈n�〉 versus the site number � calculated at the phase-diagram points inside the white ovals.
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The bottom row of panels in Fig. 5 shows the particle
density oscillations calculated at points taken from inside the
white ovals. Here, the expectation value of the density 〈n�〉
is plotted as a function of the site index 0 � � � 59. We see
that for any value of the scaled flux γ and the corresponding
flux-dependent filling N/L = γ /2π , the density oscillations
occur at the wavelength corresponding to one particle per
oscillation. For example, in the second column we look at
γ = π/2 and the filling N/L = 1/4, thus implying N = 15
for L = 60. Here we count 15 full oscillations of the density,
each covering four sites. Note that the observed density wave
is fundamentally different from a gapped phase with staggered
density modulation, which is directly favored by strong
nearest-neighbor interactions U2 and found at half filling (see
the following section), since it occurs on longer wavelengths
dictated by the magnetic flux. Nevertheless, a finite value
of U2 enhances the charge gap of the flux-induced density
wave. As seen in the plots corresponding to γ = 2π/5 and
γ = 2π/3, periodicities of three and five sites are also possible.
The remaining two panels are calculated at γ = 11π/20 and
γ = 3π/4. Here, according to the general observed trend one
expects an incommensurate filling of, respectively, 16.5 and
22.5 particles per 60 sites. Although the density distributions
look less regular in these cases, one still observes the formation
of a density wave following the same predictive pattern. The
required filling corresponds to the density where the magnetic
unit length matches the wavelength of Friedel oscillations [57]
in a system of free fermions, to which the simulated system
can be mapped for t = U2 = 0. Friedel oscillations occur near
local defects, such as the boundary of the system, and decay
algebraically. One can see in Fig. 5 that (at finite U2) they are
promoted to a long-ranged density wave and persist across the
sample, when a commensurate magnetic length is introduced
with a finite value of t .

C. Spin polarization

As a further example of the many-body physics supported
by the zigzag lattice, we look at the spin polarization induced
by the strong nearest-neighbor interactions. Here, we work at
the average filling N/L close to one-half and in the absence of
the artificial flux, γ = 0. In the presence of a nearest-neighbor
interaction, which is a distinguishing feature of the zigzag
configuration, the particles are expected to occupy every
second site, thereby preferentially flocking onto one of the
ladder legs and inducing nonzero net spin polarization defined
as P = (n↑ − n↓)/(n↑ + n↓). A numerical calculation reveals
that in this particular case the supported ground-state configu-
ration is sensitive to the total number of sites being even or odd.
The effect can be explained in a simple way as the tendency
of strong interactions to push particles into the sharp corners
formed at the ends of the finite lattice. This is illustrated in the
inset of Fig. 6 where the dark (light) blue color is used to mark
preferentially occupied (depleted) lattice sites. Obviously, if
the total number of sites L is even, the boundary conditions
lead to opposite preferred spin polarizations at the two ends
of the finite lattice, and the polarization must change sign
somewhere in the middle of the lattice. In contrast, when the
total number of sites is odd, the boundary conditions facilitate
the largely uniform spin polarization of the whole lattice.

FIG. 6. Spin polarization P as a function of the nearest-neighbor
repulsion strength calculated for N = 30 particles on a zigzag
lattice of L = 59 sites without the artificial flux. When diagonal
transitions dominate over the horizontal transitions, tD � t , the shown
dependence of the polarization P becomes insensitive to the relative
magnitude of t . The thick line is a superposition of many dependencies
with the ratio of the hopping parameters 1 � tD/t � 20.

As a matter of fact, whether such a spin-polarized con-
figuration will be formed depends on the competition of
the nearest-neighbor repulsion and the delocalizing effect of
intersite hopping. The results of our numerical simulations
performed on the system of N = 30 hardcore particles on
a lattice of L = 59 sites are presented in Fig. 6. It is
striking that as soon as tD � t the behavior of the spin
polarization P shows a universal behavior: it depends only
on the ratio U2/tD and is virtually independent of the strength
of the relatively weaker spin-preserving transitions with the
parameter t � tD . The thick line shown in Fig. 6 is in fact
a superposition of many dependencies with the ratio of the
hopping parameters 1 � tD/t � 20. In the complementary
regime t � tD , spin-preserving hopping transitions start to
contribute to the melting of the spin-polarized state. Here,
relatively stronger interactions are needed to induce the spin
imbalance, and the polarization P depends on both U2/t and
U2/tD and thus loses its universal behavior.

IV. SUMMARY

We proposed a scheme for the realization of a semisynthetic
zigzag optical lattice built from a one-dimensional spin-
dependent optical lattice with transitions between internal
atomic states. Each of the lattice’s triangular plaquettes
ensnares the same—tunable—magnetic flux that can con-
trollably deform the single-particle band structure from the
single-minimum to the double-well configuration. In the
proposed setup, the atom-atom interactions are nonlocal in
both dimensions and stabilize density-wave-like phases at
flux-dependent filling factors.
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quium: Artificial gauge potentials for neutral atoms, Rev. Mod.
Phys. 83, 1523 (2011).
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