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1ICFO – Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona), Spain
2Institute of Theoretical Physics and Astronomy,
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SUPPLEMENTAL MATERIAL

Edge states in thin stripes: Hofstadter square lattice
vs Hofstadter ladder

In the main text, we have concentrated on the spectra
and edge-state dynamics for spin 1 atoms (F = 1). In
that case a synthetic 2D lattice is constituted of N × 3
lattice sites, where 3 = W = 2F + 1 is the number of
sites along the synthetic (spin) direction and N is the
number of sites along the spatial direction x (see Figs. 1
– 3 in the main text). Such a lattice has natural open
boundaries along the spin direction at y = ±Fa (where
a is the lattice spacing), while N can be arbitrarily large.
In this Appendix, we illustrate how the edge-state prop-
erties discussed in the main text can be related to the
topological band structure and chiral edge states of the
standard Hofstadter square lattice [1], namely, a square
lattice of N ×W sites, with N,W � 1, subjected to a
uniform magnetic flux Φ per plaquette. The number of
lattice sites along the y direction is denoted W , so as to
refer to the width of the stripe.

To do so, we consider an extrapolation between the
Hofstadter lattice (size N ×W ) and the thin stripe con-
sidered in the main text (size N × 3), by progressively
reducing the number of lattice sites along the y direction
W , while applying periodic boundary conditions along
the x direction, see Fig. 1 (a). The first spectrum shown
in Fig. 1 (b), obtained for W = 50, shows the usual
band structure of the Hofstadter model, where a clear
distinction between the bulk bands and the edge states
dispersions is observed. To highlight this edge/bulk pic-
ture, we simultaneously represent the energies E = E(q)
together with the mean position 〈y〉 of the eigenstates
along the spin direction, see the color code in Fig. 1
(a). The many bulk states progressively disappear, as the
number of inequivalent lattice sites is reduced to W = 5,
while the dispersion branches of the edge states are only
slightly modified. In fact, for Φ = p/q ∈ Q, the edge-
state branches remain remarkably robust for W → q.
When W is further reduced such that W < q, the edge-
state branches are altered, but they retain their general

characteristics: in the thin stripe (“double-ladder”) limit
W = 3 considered in the main text, the lowest energy
band describes edges states localized on opposite edges
(at y = ±a) of the double-ladder, propagating in op-
posite directions. Therefore, we can conclude that the
edge-state structure present in the double-ladder lattice
(W = 3) is reminiscent of the chiral (topological) edge
states present in the standard Hofstadter square lattice
(see also Ref. 2 for a detailed study of the Hofstadter
ladder with W = 2 corresponding to F = 1/2).

Experimental realization

Inhomogeneity in the synthetic dimension

In deriving the atomic Hamiltonian Eq. (3) in the main
text, we have assumed that the synthetic dimension is ho-
mogeneous, i.e. that all spin-dependent energy shifts can
be neglected. In a real experiment, (i) quadratic Zeeman
shift and also (ii) detuning errors can induce such shifts
of the atomic hyperfine states. These terms are equiva-
lent to an effective trapping (or anti trapping) potential
along the synthetic dimension. It is consistent to neglect
this potential when it is small or comparable to the band
width. A typical hopping strength is ∼ 0.1EL, giving a
0.4EL band width along one direction. For typical atomic
parameters this can be of order ∼ 1 kHz. Regarding (i),
for instance in 87Rb’s F=1 manifold, the quadratic shift
(which will be “trapping” in the synthetic direction) can
be safely neglected for fields below about 3G. Regarding
(ii), the absolute field stability generally gives detuning
uncertainties and noise at the 100 Hz level (and less un-
der exceptional conditions where great care is taken to
stabilize the field, see Ref. [3]). As a result, we conclude
that both effective trapping contributions of (i) and (ii)
should not significantly affect the proposed scheme.

Temperature requirements

In the simulations presented in this paper, we have re-
stricted ourselves to the zero temperature case. We ad-
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FIG. 1. (a) Hofstadter model on a stripe of width W , and
definition of the color code: dark blue (resp. red) dots cor-
respond to states localized at the bottom (resp. top) edge
of the system, whereas green-yellow dots correspond to bulk
states. (b) Energy spectrum E = E(q) of the Hofstadter
model with the flux Φ = 1/5, for different stripe widths W .
Here, the modulus of the hopping amplitude is taken equal to
t along both directions, and q denotes the quasi-momentum.
The double-ladder configuration used in the main text corre-
sponds to W = 3 (i.e., F = 1 and Ω0 = t).

dress here the validity of this approximation, when com-
paring to realistic experimental conditions.

The detection of a clear edge-state signal, namely, ob-
serving the propagation of particles characterized by a
unique chirality along the “edges”, requires that the tem-
perature should be smaller than the energy separation be-
tween states localized on the same edge (or spin state±F ,
as shown by red and blue colors in Fig. 2 of the main text,
and Figs. 1-2 of the present Supplemental Material) and
propagating in opposite directions. For the parameters
in Fig.2(b) of the main text, Ω = 0.5t, such excitations
lie approximately 2t above the Fermi energy (the dashed
horizontal line). Moreover, to improve the signal it is
also important not to populate dispersive “bulk” states,
thus temperatures should also be small compared to the
energy separation between the low-energy (almost disper-
sionless) bulk states and higher-energy dispersive states.

This separation is of order t, i.e., this condition imposes
the most stringent requirement. For typical experimen-
tal realizations, the tunneling t is of order ∼ 10nK. As
such, the temperature of the system should be at most
of order of a few nK.

The F = 9/2 case

In the main text, we focused on the study of the
F = 1 case, which is widely investigated in current cold-
atom experiments [4, 5]. This leads to the double-ladder
lattice, whose connection with the standard Hofstadter
model has been described in the previous Section of this
Supplementary material. However, it would be desirable
to engineer a synthetic 2D lattice with more internal
states to make this connection even more visible. For
example, considering the ground-state manifold of 40K,
where F = 9/2, would allow to engineer a lattice of size
N × 10, which according to Fig. 1 (b) would clearly
display the topological band structure of the Hofstadter
model. We note that using other atomic species (such
as 173Yb) could also lead to similar configurations with
W > 5, both for bosonic and fermionic systems.
One important aspect of the present proposal is the fact
that for F > 1 the magnitude of hopping along the y
(spin) direction is not constant. Indeed, the hopping
from a lattice site m to a lattice site m + 1 is given by
the frequency

tm→m+1 = ΩgF,m = Ω
√
F (F + 1)−m(m+ 1), (1)

where we remind that m = m refers to the internal states
of the atom and F is the total angular momentum. This
inhomogenous hopping, shown in Fig. 2 (a) for F = 9/2,
is not present in the standard Hofstadter model, where
the tight-binding hopping amplitude t is constant. To
illustrate this effect, we show the band structure of a
synthetic lattice engineered with F = 9/2 atoms (Fig.
2 (b)), and we compare it with the band structure of
the homogenous Hofstadter model with W = 10 (Fig.
2 (c)). We observe that the bulk/edge band structure
is well conserved, when choosing Ω = t/〈gF,m〉, where
〈gF,m〉 =

∑
m gF,m/2F . However, we note that the states

corresponding to the edge-state dispersions are no longer
perfectly localized at the edges: close to the lowest bulk
band, there are dispersive states with |〈m〉| < 9/2. We
also note that the states with the highest velocity v∼∂qE
are those that are the most localized at the edges.

In Fig. 3, we show the edge-state dynamics for a
fermionic system with F = 9/2 atoms (e.g. 40K), con-
fined by a harmonic potential Vharm(x) = t(x/50a)2. We
clearly observe a chiral motion in the 2D synthetic lattice,
which is due to the populated edge states lying within the
lowest bulk gap (Fig. 2 (b)). As already described above,
these edge states are not perfectly localized at m = ±9/2,
due to the inhomogeneity of the hopping along the spin
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FIG. 2. (a) Synthetic lattice for F = 9/2 atoms. The hopping
amplitude t along the x (spatial) direction is constant, while
the hopping amplitude along the y (spin) direction, ΩgF,m, is
given by Eq. (1). (b) The energy spectrum for the F = 9/2
synthetic lattice, setting Φ = 1/5 and Ω = t/〈gF,m〉 = 0.24t.
(c) The energy spectrum for the homogenous Hofstadter lat-
tice with W = 10 lattice sites along the y direction and
Φ = 1/5, see also Fig. 1b. Note that the edge states are
more spatially localized in the homogeneous case [(c)] than in
the inhomogeneous synthetic lattice [(b)].

direction. As a result, the dynamics show the rotation of
the cloud in the 2D lattice, instead of a clear edge-state
motion.

Scattering on a localized impurity

Formulation

Our aim here is to calculate the transmission proba-
bility for an atom in the 1D physical lattice affected by
an impurity localized at n = 0 and thus described by the
Hamiltonian

Himp = H + V , V =
∑
m,m′

Vm,m′a†0,ma0,m′ , (2)

where H is an unperturbed Hamiltonian for the 1D array
of atoms is given by Eq.(3) of the main text, and m
refers to the spin levels representing a synthetic degree
of freedom.

We shall make use of the Green’s operator G = [E −
Himp+i0+]−1 of the full Hamiltonian Himp. The Green’s
operator of the complete system will be expressed in
terms of the Green’s operator G0 = [E − H + i0+]−1

FIG. 3. Edge-states dynamics for a fermionic system with
F = 9/2 atoms (e.g. 40K): the Fermi gas is trapped in the
central region x ∈ [−13a, 13a] and the Fermi energy is set
such as to populate only the lowest energy band. The popu-
lated “edge” states localized at m = ±F have opposite group
velocities. An additional harmonic potential limits the edge-
states propagation, leading to chiral dynamics around the syn-
thetic 2D lattice. The parameters are Ω = t/〈gF,m〉 = 0.24t,
Φ = 1/5, Vharm(x) = t(x/50a)2 and EF =−2t. Dashed lines
represent the Fermi radius RF at which the edge states local-
ized at m=±F jump unto the opposite edge m=∓F . The
time steps are ∆t = 37.5~/J .

of the unperturbed system using the Dyson equation [6]
G = G0 + G0V G. On the other hand, the zero-order
Green’s operator G0 will be presented via the eigenfunc-
tions and eigen-energies of the unperturbed Hamiltonian
H. Having the complete Green’s operator G we will de-
termine the scattering T-matrix T = V + V GV from
which the transmission probabilities will be calculated.

Spectrum of the Hamiltonian without impurity

Applying a gauge transformation ãn,m = an,me
−iγnm

we transfer the phases featured in the hopping elements
to the hopping in the physical direction in the Hamilto-
nian H defined by Eq. (3) in the main text, giving:

H =
∑
n,m

(
−te−iγmã†n+1,m + Ωm−1ã

†
n,m−1

)
ãn,m + H.c. .

(3)
From now on we will express all energies in the units
of the hopping integral t; therefore, we will set t = 1.
The atomic center-of mass wave function satisfies the
Schrödinger equation

HΨ = EΨ . (4)
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We search for the eigenvectors of the Hamiltonian (3)
in the form of plane waves (Bloch states) by taking the
probability amplitudes to find an atom in the site n,m
as

Ψm(n) = χq,me
iqn . (5)

We will interpret the index m as a row number and con-
sider Ψ and χq as columns. Equation (4) yields the fol-
lowing eigenvalue equations

Hqχq = Eqχq .

Here Hq is (2F + 1) × (2F + 1) matrix with the diag-
onal matrix elements (Hq)m,m = −2 cos(q + γm) and
nonzero non-diagonal elements (Hq)m,m′ = Ωmδm′,m+1

and (Hq)m,m′ = Ωm−1δm′,m−1. In particular, when
F = 1 the matrix Hq reduces to

Hq =

 −2 cos(q − γ) Ω 0
Ω −2 cos(q) Ω
0 Ω −2 cos(q + γ)

 .

(6)
By solving an eigenvalue problem we get a set of 2F + 1
algebraic equations. It has has 2F + 1 solutions to be
labelled with an index ν.

Green’s function of the system without impurity

Given the eigenfunctions Ψq,s(n), the general expres-
sion for the retarded zero-order Green’s function is

G0(n, n′;E) =

2F+1∑
ν=1

∫ π

−π

Ψq,ν(n)Ψ∗q,ν(n′)

E − Eq,ν + iη
dq , (7)

where η → +0. Zeros in the denominator can be obtained
from the eigen-energy equation

det[E −Hq] = 0 , (8)

which generally has 2F + 1 solutions. For each eigen-
energy E and wave vector qν , the analytical expressions
for the eigenvectors χqν ,ν can be obtained from the equa-
tion [Hq − E]χqν ,ν = 0 by setting the first element of
χqν ,ν to unity and dropping one of the resulting equa-
tions. Using Eq. (7) and performing the integration we

obtain the retarded zero-order Green’s function

G0(n, n′;E) = −i
∑
ν

1

vν

{
χqν ,νχ

T
qν ,νe

iqν(n−n′) , n > n′,

χ−qν ,νχ
T
−qν ,νe

−iqν(n−n′) , n < n′,

(9)
Here

vν ≡
∂

∂q
Eq,ν

∣∣∣∣
q=qν

(10)

is the group velocity. It can be calculated from the equa-
tion

vν = −
∂
∂q det[E −Hq]
∂
∂E det[E −Hq]

∣∣∣∣∣
q=qν

. (11)

Note that we do not have complex conjugation in Eq. (9)
since for real wave vectors qν the colums χqν ,ν are real.
This is because the Hamiltonian Hq has real matrix ele-
ments.

Green’s function for the system with localized impurity

Combining the Dyson equation G = G0 +G0V G with
Eq. (2) for V , one has

G(n, n′) = G0(n, n′) +
∑
n′′

G0(n, n′′)V δn′′,0G(n′′, n′)

= G0(n, n′) +G0(n, 0)V G(0, n′) . (12)

Taking n = 0 in Eq. (12) we get

G(0, n′) = G0(0, n′) +G0(0, 0)V G(0, n′) . (13)

From here we obtain

G(0, n′) = [1−G0(0, 0)V ]−1G0(0, n′) . (14)

Substituting Eq. (14) back into Eq. (12) we get the re-
quired expression for the Green’s function

G(n, n′) = G0(n, n′)+G0(n, 0)V [1−G0(0, 0)V ]−1G0(0, n′) .
(15)

Transmission probabilities

The scattering is described by T matrix

T = V + V GV . (16)

Using Eq. (15), T matrix reads

T (n, n′) = V [1−G(0)(0, 0)V ]−1δn,0δn′,0 . (17)
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For transmitted waves the matrix element of the scattering matrix is

Stν,ν′ = δν,ν′ − i 1
√
vνvν′

∑
n,n′

χ†qν ,νe
−iqνnT (n, n′)χqν′ ,ν′eiqν′n′

. (18)

Using Eq. (17) we obtain

Stν,ν′ = δν,ν′ −
√
vν
vν′

i
1

vν
χ†qν ,νV

[
1 + i

∑
ν′′

1

vν′′
χqν′′ ,ν′′χ†qν′′ ,ν′′V

]−1
χqν′ ,ν′ . (19)

Transmission probability from the propagating mode ν′

to the mode ν is

Tν,ν′ = |Stν,ν′ |2 . (20)

These equations are used in calculating the transmis-
sion probabilities in the main text.

[1] Y. Hatsugai, Phys. Rev. Lett. (1993).
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