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We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field.
Our method is to extend a one-dimensional optical lattice into the “dimension” provided by the internal
atomic degrees of freedom, yielding a synthetic two-dimensional lattice. Suitable laser coupling between
these internal states leads to a uniform magnetic flux within the two-dimensional lattice. We show that this
setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter-butterfly
spectrum and the chiral edge states of the associated Chern insulating phases.
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Intense effort is currently devoted to the creation of
gauge fields for electrically neutral atoms [1–4]. Following
a number of theoretical proposals in the presence [5–13] or
in the absence of optical lattices [14–20], synthetic mag-
netic fields have been engineered both in vacuum [21–25]
and in periodic lattices [26–29]. The addition of a lattice
offers the advantage to realize extraordinarily large mag-
netic fluxes, of the order of 1 magnetic flux quantum
per plaquette [5–7,10,11], which are out of reach using
real magnetic fields in standard solid-state systems (see
Refs. [30–34] for the realization of large fluxes in graphe-
nelike and photonics systems). Such cold-atom lattice
configurations will enable one to access striking properties,
such as Hofstadter-like fractal spectra [35] and Chern
insulating phases, in a controllable manner. Existing
schemes for creating uniform magnetic fluxes require
several laser fields and/or additional ingredients, such as
tilted potentials [6,10], superlattices [11], or lattice-shaking
methods [9,13,36–39]. Experimentally, strong staggered
magnetic flux configurations have been reported [26,27],
and very recently also uniform ones [28,29]. Besides, an
alternative route is offered by optical flux lattices [40–43].
In all of these lattice schemes, the sites are identified

by their location in space. This need not be the case: the
available spatial degrees of freedom can be augmented by
employing the internal atomic “spin” degrees of freedom.
When three or more internal states are coupled in a
sequential manner, one effectively obtains an extra, or
synthetic, lattice dimension [44]. Here we demonstrate that
this extra dimension can support a uniform magnetic flux,
and we propose a specific scheme using a one-dimensional
(1D) optical lattice along with Raman transitions within the
atomic ground-state manifold (Fig. 1). The flux is produced
by a combination of ordinary tunneling in real space and
laser-assisted tunneling in the extra dimension creating the

necessary Peierls phases. Our proposal therefore extends
the toolbox of existing techniques to create gauge potentials
for cold atoms [3,4]. The proposed scheme distinguishes
itself by the naturally sharp boundaries in the extra
dimension, a feature which greatly simplifies the detection
of chiral edge states resulting from the synthetic magnetic
flux [45–49]. We demonstrate that the chiral motion of
these topological edge states can be directly visualized
using in situ images of the cloud, and we explicitly show
their robustness against impurity scattering. We also show
that by using additional Raman and radio-frequency
transitions one can connect the edges in the extra dimen-
sion, providing a remarkably simple way to realize the
fractal Hofstadter-butterfly spectrum [35].
Model.—For specificity, consider 87Rb’s F ¼ 1 ground-

state hyperfine manifold [50], composed of three magnetic
sublevels mF ¼ 0, �1, illuminated by the combination of
the optical lattice and Raman laser beams depicted in
Fig. 1(a) (additional lattice potentials along ey and ez
confining motion to ex are not shown, and exyz are the three
Cartesian unit vectors). In the schematic, the counter-
propagating λ ¼ 1064 nm lasers beams define the lattice
with period a ¼ λ=2, recoil momentum kL ¼ 2π=λ, and
recoil energy EL ¼ ℏ2kL2=2m (where m is the atomic
mass). We consider a sufficiently deep lattice V lat ¼ 5EL
for the tight binding approximation to be valid, but
shallow enough to avoid Mott-insulator physics. For these
parameters, the tunneling amplitude is t ¼ 0.065EL ¼
h × 133 Hz. The Raman lasers at wavelength λR ≈
790 nm intersect with opening angle θ, giving an asso-
ciated Raman recoil momentum kR ¼ 2π cosðθÞ=λR. The
Raman couplings recently exploited in experiment [21,22],
between the three magnetic sublevels mF ¼ 0, �1 of
the F ¼ 1 ground-state manifold of 87Rb, are shown in
Fig. 1(b). The Raman transitions provide the hopping in
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the synthetic dimension which require a minimum amount
of laser light (less than 1% required for existing schemes
[19]), minimizing spontaneous emission. In addition,
periodic boundary conditions in the synthetic direction
can be created by coupling mF ¼ þ1 to mF ¼ −1 using
an off-resonant Raman transition from jF ¼ 1; mF ¼ þ1i
to an ancillary state, e.g., jF ¼ 2; mF ¼ 0i (detuned by a
frequency δpbc and coupled with strength ΩR;pbc), com-
pleted by a radio-frequency transition to jF ¼ 1; mF ¼ 1i
with strength ΩRF, giving a Λ-like scheme with strength
Ωpbc ¼ −ΩR;pbcΩRF=2δpbc.
A constant magnetic field B0ez Zeeman splits the

magnetic sublevels jmF ¼ �1i by∓ℏω0 ¼ gFμBB0, where
gF is the Landé g factor and μB is the Bohr magneton;
see Figs. 1(a) and 1(b). We do not include the quadratic
Zeeman effect, as it can be made negligible in a realistic
experiment [51]. The Raman transitions, detuned by δ from
two-photon resonance, impart a 2kR recoil momentum
along ex. Taking ℏ ¼ 1, the laser fields can be described
via an effective magnetic field

ΩT ¼ δez þ ΩR½cos ð2kRxÞex − sin ð2kRxÞey�; (1)

which couples the hyperfine ground states giving the
effective atom-light Hamiltonian [4,40,43,52]

Hal ¼ ΩT · F ¼ δFz þ ðFþeikRx þ F−e−ikRxÞΩR=2; (2)

where the operators F� ¼ Fx � iFy act as Fþjmi ¼
gF;mjmþ 1i with gF;m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðF þ 1Þ −mðmþ 1Þp

. Thus,
the Raman beams sequentially couple states m ¼
−F;…; F, with each transition accompanied by an
x-dependent phase. This naturally generates Peierls phases
for “motion” along the m (spin) direction, denoted as em.
The combination of the optical lattice along ex and the

Raman-induced hopping along em yields an effective
two-dimensional (2D) lattice with one physical and one
synthetic dimension, as depicted in Fig. 1(c) for F ¼ 1. For
a system of length Lx along ex, the lattice has N ¼ Lx=a
sites along ex, and a width of W ¼ 2F þ 1 sites along em.
For δ ¼ 0 the system is described by the Hamiltonian

H ¼
X

n;m

ð−ta†nþ1;m þ Ωm−1e−iγna†n;m−1Þan;m þ H:c:; (3)

where n ¼ x=a and m label, respectively, the spatial and
spin indices, γ ¼ 2kRa sets the magnetic flux, Ωm ¼
ΩRgF;m=2 is the synthetic tunneling strength, and a†n;m is
the atomic creation operator in the extended lattice. This
two-dimensional lattice is pierced by a uniform synthetic
magnetic flux Φ ¼ γ=2π ¼ kRa=π per plaquette (in units of
the Dirac flux quantum). The quantity gF;m is independent
of m for F ¼ 1=2 and F ¼ 1, but for larger F hopping
along em is generally nonuniform.
Open boundaries.—Since Ωm ≠ 0 only when

m ∈ f−F;…; F − 1g, Eq. (3) has open boundary condi-
tions along em, with sharp edges at m ¼ �F. By gauge
transforming an;m and a†n;m, the hopping phase
expði2kRxÞ can be transferred to the hopping along ex.
Combining this with a Fourier transformation along ex,
b†q;m ¼ N−1=2PN

n¼1 a
†
n;meiðqþγmÞn, splits the Hamiltonian

H ¼ P

qHq into momentum components

Hq ¼
X

F

m¼−F
εqþγmb

†
q;mbq;m þ ðΩmb

†
q;mþ1bq;m þ H:c:Þ;

where εk ¼ −2t cosðkÞ, q≡ 2πl=N, and l ∈ f1;…; Ng.
Figure 2 shows the resulting band structure for F ¼ 1.
Away from the avoided crossings, the lowest band
describes the propagation of “edge states” localized in
spin space at m ¼ �F (blue and red arrows): these states
propagate along ex in opposite directions. In the physical
system, these give rise to a spin current jsðxÞ ¼ j↑ − j↓.
When W ¼ 2F þ 1 ≫ 1, these edge states become analo-
gous to those in quantum Hall systems [51,53]. The
F ¼ 9=2 manifold of 40K allows experimental access to
this large-W limit [54], since its 10 internal states reproduce
the Hofstadter-butterfly topological band structure.
The edge-state propagation can be directly visualized by

confining a multicomponent Fermi gas to a region x ∈
½−Lx=2; Lx=2� and by setting the Fermi energy EF within
the Raman-induced gap (dashed line in Fig. 2) [55]. In this

(b)(a)

(c)

FIG. 1 (color online). (a) Proposed experimental layout with
87Rb. A pair of counterpropagating λ ¼ 1064 nm lasers provide a
5EL deep optical lattice lattice with period a ¼ λ=2. A pair of
“Raman” laser beams with wavelength λR ¼ 790 nm, at angles
�θ from ex, couple the internal atomic states with recoil wave
vector kR ¼ 2π cosðθÞ=λR. The laser beams’ polarizations all
linear—are marked by symbols at their ends. (b) Raman couplings
in the F ¼ 1 manifold. The Raman lasers, far detuned from the
electronic excited state, connect to the ground electronic states as
indicated with the green and blue arrows [each coupling resulting
from the like-colored laser beam in Fig. 1(a)]. (c) Synthetic 2D
lattice with magnetic flux Φ ¼ γ=2π per plaquette (γ ¼ 2kRa).

PRL 112, 043001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

043001-2



configuration, different types of states are initially popu-
lated: (a) edge states localized at m ¼ �F with opposite
group velocities, and (b) bulk states delocalized in spin
space with small group velocities (the central or bulk region
of the lowest band is almost dispersionless for small flux
Φ ≪ 1). When the confining potential along ex is suddenly
released, the edge states at m ¼ �F propagate along �ex.
Figure 3 depicts such dynamics, where we allowed tightly
confined atoms (as above) to expand into a harmonic
potential VharmðxÞ. This potential limits the propagation of
the edge states along ex and leads to chiral dynamics
around the synthetic 2D lattice: when an edge state
localized at m ¼ þF reaches the Fermi radius x ¼ RF, it
cannot backscatter because of its chiral nature, and thus, it
is obliged to jump on the other edge located at m ¼ −F
and counterpropagate. At low energy, the lowest branch in
Fig. 2(b) is separated from the two upper branches with a

gap of the order of the tunneling t, requiring temperatures
∼nK to detect edge-state motion with given chirality
[47,49,51]. The edge-state dynamics of a F ¼ 9=2 lattice
is shown in [51].
An interesting feature of edge states is their robustness

against local perturbations. To check this in the context
of our proposal, we consider the effects of a spatially
localized impurity on the transmission probability T. The
Hamiltonian with an impurity localized at n ¼ 0 is

Himp ¼ H þ V; V ¼
X

m

Vma
†
0;ma0;m; (4)

where the free Hamiltonian H is given in Eq. (3), and Vm
models the interaction between the impurity and atoms in
state m. The perturbation may be generated by a tightly
focused laser, or by a distinguishable atom, deeply trapped
by a species selective optical lattice [56–58]. If the impurity
scatters equally strongly with all spin components, it
corresponds to an extended obstacle along em: a “road-
block” in the synthetic 2D lattice. On the other hand, if
the impurity interacts significantly only with a given spin
component, it yields a localized perturbation in the syn-
thetic 2D lattice. In particular, edge perturbations can be
engineered by choosing an impurity that only scatters
strongly the m ¼ F or m ¼ −F states.
ForF ¼ 1 there are three dispersion branches, as shown in

Fig. 2, so there are nine possible scattering channels.
However, here we focus on the energy range lying inside
the bulk gap (around the dashed lines in Fig. 2), where there
is only one available scattering channel, i.e., scattering to
the opposite edge state. The transmission as a function of the
energyof the incident atom is calculated in [51] and shown in
Fig. 4. For spin-independent collisions with the impurity
(Vm ¼ U), T goes to zero at two values of the energy within
thegap. InanalogywithFano resonances [59,60], thesezeros
are associated with two quasibound states localized around
the impurity potential due to two local parabolicminima (for
F ¼ 1) in the upper dispersion branches. Outside of the
resonant regions, the transmission probability is close to 1.
On the other hand, an impuritywhich scatters only them ¼ 0
component (Vm ¼ Uδm;0) is effectively localized in the
central chain of the synthetic 2D lattice. As such, it can
couple resonantly two oppositely propagating edge states,
leading to a single sharp minimum in the transmission
probability. Instead, an impurity which is localized at the
edge of the synthetic dimension (e.g.,Vm ¼ Uδm;1) does not
lead to a resonant behavior of the transmission probability.
For such spin-dependent impurity the transmission proba-
bility is always close to 1, since the edge state can go around
the impurity in the synthetic dimension.
Cyclic couplings.—In the F ¼ 1 case, periodic boundary

conditions along em can be induced with an extra coupling
(with a Rabi frequency Ω1 ¼ Ωpbc ¼ Ω0) from jm ¼ 1i to
jm ¼ −1i accompanied by a momentum recoil k along ex.
The system becomes periodic once the flux γ per plaquette
is rational, i.e., γ ¼ 2πP=Q with P, Q coprime integers.

(a) (b)

FIG. 2 (color online). Spectrum for open boundary conditions:
F ¼ 1 and Φ ¼ γ=2π ¼ 1=2π flux per plaquette. Colors specify
the spin state m, i.e., blue, green, and red correspond to
m ¼ − 1; 0; 1, respectively. The ground-state branch displays
“edges” corresponding to m ¼ �1.

(a)

(b)

FIG. 3 (color online). Edge-state dynamics. (a) Initial condi-
tion: A Fermi gas is trapped in the central region x ∈ ½−13a; 13a�
of a lattice with Ω0 ¼ 0.5t, Φ ¼ 1=2π, and the Fermi energy
EF ¼ −1.4t is chosen to populate only the lowest energy band.
The occupied edge states localized at m ¼ �F have opposite
group velocities (for simplicity we sketch the F ¼ 1 case).
(b) Time-evolving density ρ after releasing the cloud into a
harmonic potential VharmðxÞ ¼ tðx=50aÞ2. The confinement lim-
its the edge-state propagation and leads to chiral dynamics around
the synthetic 2D lattice. Dashed white lines represent the Fermi
radius RF at which the edge states localized at m ¼ �F jump to
the opposite edge m ¼ ∓F.
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Periodicity requires the number of loops in the synthetic
dimension to be l=M, where l is the least common multiple
of M and Q, thus, for M ¼ 3, Q, or Q=3 loops.
In this cyclic scheme, the system reproduces the

Hofstadter problem defined in the infinite plane: its
spectrum E ¼ EðpÞ is obtained by solving the Harper
equation along ex [54], where p is the quasimomentum
associated with the closed synthetic dimension ey. The
conserved momentum along ey can only take three values:
pj ¼ 2πj=3 with j ∈ f−1; 0; 1g. Exploiting the fact that
the Hamiltonian (3) with closed boundary conditions is
translationally invariant in the spin dimension, we perform
the Fourier transform a†n;m ¼ 3−1=2

P

1
j¼−1 ei2πmj=3c†n;j,

giving

H ¼
X

j;n

ϵð2πj=3þ nγÞc†n;jcn;j − ðtc†nþ1;jcn;j þ H:c:Þ (5)

and ϵðkÞ ¼ −2Ω0 cosðkÞ. Its spectrum is plotted in Fig. 5.
There are l points in each band associated with the rational
flux γ, enough to be visible. For our finite chain of length
N, the infinite-chain result will be accurate only for
Q ≪ N, while for Q approaching N the system is far from
periodic in Q and the butterfly gets blurred.
Interactions.—We consider the effects of repulsive

interactions, focusing on the case where those are
SUðWÞ invariant (this amounts to neglecting the spin-
dependent contribution to the interaction, a very good
approximation for F ¼ 1 87Rb). In our lattice, the resulting
interaction Hamiltonian

Hint ¼
U
2

X

n

N nðN n − 1Þ; N n ≡
X

m

a†n;man;m;

is local along ex, but infinite in range along em. We exploit
the SUðWÞ invariance of Hint by adopting the Fock basis
cn;j in which the hopping along em is diagonal, as in Eq. (5)
(a similar basis exists for open boundary conditions in the
synthetic dimension). Let us denote its eigenvalues by ϵn;j.

We can minimize the energy for fixed hHinti by populating
only the states associated to cn;jn with lowest ϵn;jn , as this
minimizes the kinetic term hHi.
Two cases are possible: (i) jn is unique, i.e., the local

ground state is not degenerate; (ii) ϵj;n is minimal for two of
the three possible values of j. The latter case can occur only
for closed boundary conditions in the synthetic dimension
and for rational values of the flux γ=ð2πÞ ¼ P=Q. In the
presence of open boundary conditions, it is indeed easy to
show that the eigenvalues are always independent of γ (and
therefore of n), and never degenerate. In case (i), the ground
state can be mapped to one of a 1D uniform Bose-Hubbard
chain. In case (ii) instead, the 1D Hubbard chain will
possess a primitive cell containing Q consecutive lattice
points, as is well known from the noninteracting Hofstadter
problem. Interactions which are non-SUðWÞ invariant lead
to considerably more complicated situations, with the
ground state possessing a complex, fully 2D character.
Conclusions.—Our proposal for creating strong syn-

thetic gauge fields using a synthetic 2D lattice is well
suited to directly observe chiral edge-state dynamics, by
using spin-sensitive detection of the different edge modes.
This platform also allows us to test the edge states’
robustness against impurities. The complete Hofstadter
spectrum can be detected either with bosons or fermions.
Interaction effects shall be kept at reasonably small values,
e.g., by using a dilute thermal gas of bosons, or a
degenerate Fermi gas far from any Feshbach resonances.
As the Hofstadter spectrum is symmetric around E ¼ 0, its
mapping may be obtained by investigating systems at band
filling less than 1=2, thereby avoiding, e.g., strong inter-
action effects arising in fermionic systems close to unit
filling [61]. The spectrum may also be probed by transport
measurements: wave packets with narrow energy
dispersion can be prepared and brought into the lattice
using a waveguide, and their transmission through the
region of effective magnetic field observed [62,63].
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FIG. 5 (color online). The spectrum of Eq. (5) on an infinite 1D
chain, for a three-level system with closed boundary conditions
has the typical Hofstadter-butterfly characteristics.

FIG. 4 (color online). Edge-state transmission probability.
Short dashes (black): A spin-independent impurity. Solid (blue):
Only m ¼ 0 scatters. Long dashes (red): Only m ¼ 1 scatters.
Parameters are the same as in Fig. 2(a) and the scattering strength
is U ¼ −t.
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