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We show how density dependent gauge potentials can be induced in dilute gases of ultracold atoms

using light-matter interactions. We study the effect of the resulting interacting gauge theory and show how

it gives rise to novel topological states in the ultracold gas. We find in particular that the onset of persistent

currents in a ring geometry is governed by a critical number of particles. The density-dependent gauge

potential is also found to support chiral solitons in a quasi-one-dimensional ultracold Bose gas.
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Introduction.—Our understanding of the fundamental
interactions between elementary particles is founded on
gauge fields. The role of the gauge field is to mediate the
interaction between particles. The simplest example we
know of is electromagnetism where charged particles inter-
act through exchanging virtual photons. The Coulomb
potential between charged particles is encompassed by
this gauge theory which can be recast in the familiar
form of Maxwell’s equations in the classical limit. Gauge
theories are not restricted to electromagnetism only.
The interactions in nuclei are governed by more compli-
cated objects as far as gauge fields are concerned. There
one has to use higher dimensions which typically requires a
non-Abelian theory, such as the Yang-Mills field for the
gluons [1]. For all this to hold, the gauge fields must be
dynamical. In other words we must be allowed to construct
a Lagrangian which also describes the propagation of the
gauge field in vacuum. Solving the full quantum dynamics
of such systems is a formidable task [2]. The solution could
be to design a special purpose quantum simulator [3].

Very recently, the first few theoretical proposals in this
direction have appeared [4–7], where it was shown that it is
in principle possible to simulate a dynamical gauge theory
using cold atoms trapped in optical lattices. Also smaller
steps towards the ambitious goal of simulating aspects of
the standard model using possibly less demanding experi-
mental techniques may provide some important insights
(see, for instance, Refs. [8–10]). A more modest problem
that generated intense interest in the late 1990s was the
quest for finding a pure gauge theory with solutions given
by the one-dimensional analog of the well-known two-
dimensional anyons [11]. The first attempt in this direction
[12] failed to describe one-dimensional anyon solutions
[13], but the associated semiclassical, nonlinear model of
the interacting gauge theory supported chiral solitons, as
shown by Aglietti, Griguolo, Jackiw, Pi, and Seminara
(AGJPS) in Ref. [14]. The generation of chiral solitons is
clearly also an interesting goal to pursue in its own right
due to the unconventional coherent transport mechanisms
in the superfluid regime.

In this Letter, we show that under proper conditions
conveniently engineered laser fields similar to those
employed in Refs. [15–17] can induce an effective
density-dependent vector potential in a weakly interacting
ultracold Bose gas, which constitutes the semiclassical
limit of an interacting gauge theory for bosons. When the
system is tightly confined such that it forms a quasi-one-
dimensional gas, it is described, in a one-to-one fashion,
by the AGJPS gauge theory [14]. We show that the density-
dependent gauge field leads to remarkable consequences,
including density-dependent persistent currents in ring
geometries, drifts in the free expansion dynamics, and
chiral solitons in a Bose-Einstein condensate (BEC).
An effective interacting gauge theory.—There are a

number of ways to induce artificial magnetic fields in
ultracold atomic gases ranging from stirring the cloud by
a laser spoon or using asymmetric external traps [18] to
laser assisted tunneling in optical lattices which induce the
required phases for the tunneling amplitudes between the
different lattice sites [19,20]. For ultracold atoms, optically
induced gauge potentials can also be created based on dark
state dynamics [21–23] or Raman transitions [15–17].
These gauge potentials all have in common that they are
static and given by the external rotation frequency or laser
parameters; there is no dependence on the density of the
atomic cloud in the gauge potential using these techniques.
Here, we show how a density-dependent vector potential
can arise in a weakly interacting Bose-Einstein condensate
based on collisionally induced meanfield shifts of the
electronic levels in the atoms, which also constitutes the
semiclassical limit of an interacting bosonic gauge theory.
This can be done by considering a gas of optically
addressed two-level atoms forming a BEC with internal
state space given by j1i, j2i. Alkali atoms are usually good
candidates for this, but fast spontaneous decay from
these states might render them unusable, although a setup
relying on dark states [24] could circumvent this problem.
Alternatively, good candidates for experimentally realizing
the effects discussed here would be for instance strontium,
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calcium or ytterbium, which can have radiative lifetimes of
several seconds [25].

The microscopic N-body Hamiltonian is given by

Ĥ ¼ XN
q¼1

�
p2
q

2m
þ Ûq þ V̂q

�
� 1̂q þ

XN
q<l¼1

V̂ q;l � 1̂q;l; (1)

where

Ûq ¼ @�

2

0 e�i�q

ei�q 0

 !
(2)

is the Hamiltonian for the light-matter interaction and V̂q is

a single-particle external potential which we will in
the following derivation put equal to zero for simplicity.
It can readily be added to the resulting equation of motion

if needed. The 1̂q;... is the identity operator acting on

the subspace excluding particles q; . . . , whereas V̂ q;l ¼
diag½g11; g12; g12; g22��ðrq � rlÞ is a 4� 4 diagonal matrix

describing the two-body interaction with coupling
strengths gij ¼ 4�@2aij=m, with aij the s-wave scattering

length between the components i and j. In Eq. (2),� is the
two-photon Rabi frequency characterizing the light-matter
coupling, �q � �ðrqÞ is the laser phase at particle q’s

position, and the laser detuning from the atomic resonance
is chosen to be zero for simplicity. However, the mean-

field terms stemming from V̂ q;l will introduce an effective

detuning. The corresponding Hamiltonian which takes
into account collisional meanfield effects is then given by

ĤGP¼p̂2=2m�1̂þV̂þÛ, where V̂¼ð1=2Þdiag½g11�1þ
g12�2;g22�2þg12�1�, with �i ¼ j�ij2 (i ¼ 1, 2) the
density of population in the atomic state i, such that

hĤi�GP
¼ h�jĤGPj�i, where j�GPi ¼ �N

k¼1j�ki.
For weakly interacting atoms, the coupling strength @�

is typically much larger than the mean-field energies.
The zeroth order approximation to the state of the system
is chosen as the usual starting point in Bogoliubov’s theory

of the Bose gas. In this regime, to diagonalize Ûþ V̂ we

treat V̂ as a small perturbation to Û. If we define the
densities in the dressed states as �� ¼ j��j2, the corre-

sponding eigenstates of Ûþ V̂ are given by the perturbed

dressed states j��i ¼ j�ð0Þ
� i þ j�ð1Þ

� i, where
j�ð1Þ

� i ¼ � g11 � g22
8@�

��j�ð0Þ
� i; (3)

with eigenvalues g�� � @�=2, g ¼ ðg11 þ g22 þ 2g12Þ=4
and j�ð0Þ

� i ¼ ðj1i � ei�j2iÞ= ffiffiffi
2

p
, together with the adiabatic

approximation such that either ��ðr;tÞ�0 or �þðr; tÞ � 0.
A general state can consequently be written like j’i ¼P

i¼fþ;�g�iðr; tÞj�ii. By projecting onto one of the dressed
states, j��i, we obtain the effective Hamiltonian [24]

Ĥ� ¼ 1

2m
ðp�A�½r;��ðr; tÞ�Þ2þW� @�

2
þg

2
��; (4)

whereW ¼ @
2

2m jh��jr�þij2 is a scalar potential andA� ¼
i@h��jr��i is a geometric vector potential that arises
from the projection of the full system onto one of the
dressed states. In order for the adiabatic approximation to
hold we must ensure that any induced detuning is small
compared to the Rabi frequency �. The resulting vector
potential is then given, to leading order, by

A� ¼ Að0Þ � a1��ðrÞ; (5)

where Að0Þ ¼ � @

2r� is the single particle contribution

and a1 ¼ ðr�Þðg11 � g22Þ=ð8�Þ controls the effective
strength of the density-dependent vector potential.
In order to derive a meanfield Gross-Pitaevskii type

equation we apply the variational principle �L=��	 ¼ 0
to the actionL ¼ h�jði@@t �H�Þj�i, with respect to�	.
We consider in the following the þ branch in Ĥ� without
loss of generality and, consequently, drop the � index in
��,��, and A�. The resulting equation of motion is then

�ðp�AÞ2
2m

þ a1 
 jþW þ g�

�
� ¼ i@@t�; (6)

where A is given by Eq. (5) together with a nonlinearity in
the form of a current,

j ¼ @

2mi

�
�

�
rþ i

@
A

�
�	 ��	

�
r� i

@
A

�
�

�
: (7)

The meanfield scalar potential W is given to leading order

by W ¼ jAð0Þj2=2m.
One-dimensional physics.—The density-dependent vec-

tor potential gives rise to a number of interesting and
counterintuitive scenarios. To illustrate this we will in the
following assume that the cloud of atoms is tightly con-
fined such that any motion in the transversal direction
is frozen out and the dynamics is well described by an
effectively one dimensional meanfield description. We
choose � ¼ kx as the phase of the incident laser, together

with the transformation�ðxÞ ¼ e�ikx=2c ðxÞ, which results
in the equation

i@@tc ¼
�
1

2m
ðp̂� a1�Þ2 þ a1jþ ~W þ g�

�
c ; (8)

where ~W ¼ @
2k2=8m, and a1 ¼ kðg11 � g22Þ=8�St char-

acterizes the strength of the current nonlinearity. The
effective transversal area of the 1D cloud is given by St.
Our model is found to be equivalent to the AGJPS model
[14], with the additional nonlinear interaction term g�.
The current a1jðxÞ can be made influential provided

that the meanfield shift is relatively large. The combination
of the three parameters �, �, and g11 � g22 in a1 allows
for great flexibility in tuning the strength of the gauge
field. For instance, with a density of 6:0� 1014 cm�3, a
difference in scattering lengths a11 � a22 ¼ 5:0 nm using,
for instance, optical Feshbach resonances [26–29], and
a Rabi frequency of 185 kHz, one obtains the ratio
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ðg11 � g22Þ�=@� ¼ 0:01 which can affect the dynamics
(see also Figs. 1 and 2). It should be noted that for standard
BEC setups such as 87Rb, this parameter would be vanish-
ingly small due to the small difference between the
scattering lengths. However, by carefully tuning the pa-
rameters one can circumvent such problems, as illustrated
above. In the following wewill study three scenarios which
illustrate the role of the density-dependent gauge field.

Density dependent persistent currents.—We consider
at this point a 1D ringlike geometry in the x-y plane and
an additional laser beam propagating in the z direction
which carries an orbital angular momentum with � ¼ ‘�,
where ‘ is an integer. This configuration gives rise to a gauge
potential in the azimuthal � direction; hence, the situation is
similar to the linear 1D case, but now with periodic bound-
ary conditions. The time-independent Gross-Pitaevskii
equation on the ring of radius R is obtained from Eq. (8)
by setting x ¼ R� and c ðx; tÞ ¼ c ðxÞ exp ½�iEt=@�.
The solutions are given by c ð�Þ ¼

ffiffiffiffiffiffiffi
N

2�R

q
eiq� with normal-

ization condition R
R
2�
0 d�j�ð�Þj2 ¼ N, where N is the

number of particles in the ring. The energy difference
between two different angular momentum states can readily
be calculated,

Eqþ1 � Eq ¼ 1

2m

�
2@

R

�
@q

R
� a1�

�
þ @

2

R2

�
; (9)

where q is an integer number which labels the quantized
rotation of the cloud. We see from Eq. (9) that the ground
state configuration becomes a function of the number
of particles. Interestingly, this implies that at a certain
critical density,

�cðqÞ ¼ 8@�

‘ðg11 � g22Þ ðqþ 1=2Þ; (10)

the ground state changes from one rotational state to another
with q ! qþ 1. This is in contrast to the standard situation
for a ring BEC under rotation, where the onset of a current is
given by the rotation frequency.
Free expansion drift.—A numerical solution of Eq. (8)

shows that the free expansion is no longer symmetric (see
Fig. 1). In addition the current term induces a drift which is
proportional to a1 times the density of the BEC. The onset
of a drift can be explained using as variational ansatz the
solution of a freely expanding wave packet where we allow
for a drift velocity _x0 of the center of mass,

�ðx; tÞ ¼
�

N2

��xðtÞ2
�
1=4

exp

�
�ðx� x0ðtÞÞ2

2�xðtÞ2
�
eiS : (11)

The spatially varying phase is given by S¼m _x0ðx�x0Þ=@,
�xðtÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2=	2

p
with 	 ¼ 2m=k2@ is the time de-

pendent width of the Gaussian and N is the number of
particles. From Eq. (11) and the corresponding Lagrangian
density we obtain an equation of motion for the position
x0ðtÞ of the wave packet,

m €x0 ¼
ffiffiffi
2

p
a1N _�xðtÞffiffiffiffi
�

p
�xðtÞ2

: (12)

Equation (12) and its solution

x0ðtÞ ¼
� ffiffiffi

2
p

a1N	

�0

ffiffiffiffi
�

p
m

��
t

	
� arcsinhðt=	Þ

�
; (13)

FIG. 1 (color online). Snapshots of the free expansion of a
harmonically trapped BEC with ðgN=StÞð2m=@2kÞ ¼ 30 and
trap frequency !t ¼ @k2=2m. The expansion is asymmetric
where a change of sign in a1 changes the direction of the
drift. The coupling strength for the gauge field was ðg11 �
g22ÞkN=ðSt@�Þ ¼ 5. Length is in units of 1=k and time in units
of 2m=@k2.

FIG. 2 (color online). The normalized width �ðtÞ=�ð0Þ of
the bright soliton. The blue solid line shows �ðtÞ=�ð0Þ with
current strength ðg11 � g22ÞkN=ðSt@�Þ ¼ 0:125 and ðgN=StÞ�
ð2m=@2kÞ ¼ �0:5, while the red dashed line indicates the width
of an initially identical soliton without the current nonlinearity
(a1 ¼ 0). After reflection the soliton starts expanding due to the
change in nonlinear strength. The inset shows snapshots of the
density of the soliton prior to (solid blue) and after reflection
(dashed black) at times t ¼ 0, 2.0, 3.5, and 5.0. All lengths are in
units of 1=k and time in units of 2m=@k2.
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gives us a way to understand the effect of the dynamical
gauge potential on the condensate as it expands. The
increasing width as a function of time drives the drift of
the center of mass coordinate x0.

Figure 1 shows that the presence of the current term in
(8) causes the free expansion of the condensate to experi-
ence a drift that depends on both the sign and magnitude of
the strength of the dynamical gauge field captured by the
parameter a1. The onset of a drift can also be understood as
an effect of the asymmetric coupling of the different mo-
mentum components in the initial wave packet with the
density of the cloud.

Chiral solitons.—Our semiclassical gauge theory, whose
equation of motion is given by Eq. (8), supports chiral
solitons. The existence of chiral soliton solutions is also
ultimately a consequence of the breakdown of Galilean
relativity in the corresponding microscopic version of our
gauge theory.

We begin by using the gauge transformation,

c ðx; tÞ ¼ exp

�
ia1
@

Z x

�1
dx0�ðx0; tÞ� i ~Wt=@

�
�ðx; tÞ: (14)

Eq. (8) then simplifies to

i@@t� ¼
�
� @

2

2m
@2x � 2a1jðxÞ þ gj�j2

�
�; (15)

where the gauge-transformed current becomes

jðxÞ ¼ @

2mi

�
�	ðxÞ@x�ðxÞ ��ðxÞ@x�	ðxÞ

�
: (16)

Equation (15) can be solved by first writing the wave
function in the form [30]

�ðx; tÞ ¼ �ðx� utÞei½umx�ðmu2=2þ
tÞ�=@; (17)

where �ðx� utÞ is a real valued function and 
 is the
chemical potential. The current consequently transforms
into jðxÞ ¼ u�2 where u is the speed of the soliton. The
resulting differential equation for �ðx� utÞ is


� ¼ � @
2

2m
@2x�þ ðg� 2a1uÞ�3: (18)

For ~g ¼ g� 2a1u > 0 we find in particular the dark soli-
ton solution

�ðx; tÞffiffiffiffiffiffi
�0

p ¼ exp ½iðmuðx� utÞ � ð12mu2 þ
ÞtÞ=@�
coth ½ðx� utÞ=ð ffiffiffi

2
p

l0Þ�
; (19)

where �0 is the background density, 
 ¼ ~g�0 and l0 ¼
@=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m~g�0

p
. For ~g < 0 we obtain a bright soliton

�ðx; tÞffiffiffiffiffiffi
�0

p ¼ exp ½iðmuðx� utÞ � ð12mu2 �
ÞtÞ=@�
cosh ððx� utÞ=ð ffiffiffi

2
p

l0Þ�
(20)

with 
 ¼ j~gj�0=2. The solutions in equation (19) and (20)
are chiral, which means that the solitons can only
propagate in a specific direction for a chosen velocity.

Interestingly, if g ¼ 2a1u we are in a situation where the
current nonlinearity cancels the mean field interactions
between particles, with no soliton solutions present.
Depending on the precise physical setup this particular
situation may or may not be possible to reach due to a
breakdown of the adiabatic assumption or a violation of the
perturbative assumption.
The concept of a chiral soliton can be illustrated by

considering the reflection of a BEC from a hard wall. In
Fig. 2 we show how a bright soliton initially moving in the
positive x direction is destroyed after reflection. A standard

bright soliton would retain its width �ðtÞ ¼ ffiffiffiffiffiffiffiffihx2ip
after

reflection whereas the chiral soliton is found to start to
expand after reflection. The change in the nonlinear
strength due to the change in momentum after the reflec-
tion results in a state which is not the soliton solution any
more; hence, the solution is no longer confined.
Conclusions.—In this Letter we have shown how an

interacting gauge theory for a BEC can be generated.
The resulting gauge field is not fully dynamical, in the
sense that it is always zero if no matter field is present.
The emerging gauge field does however depend on the
density of the BEC, and therefore constitutes an interacting
field with a back-action between the BEC dynamics
and the gauge field. The equation of motion includes a
current non-linearity and in the quasi-one-dimensional
regime our model is identical to the Aglietti-Griguolo-
Jackiw-Pi-Seminara gauge theory [14]. The coupling of
the BEC to its current gives rise to a number of exotic
types of dynamics. We have shown how the presence of
topological states corresponding to persistent currents in a
ring geometry depend on the number of particles. Also
soliton solutions can be identified which are chiral in
nature. It is certainly tempting to draw analogies between
the atomic system considered here and models of field
theories describing the fundamental forces between
elementary particles. From a quantum simulator point of
view, perhaps the most intriguing aspect would be a gen-
eralisation of the mechanisms discussed here to a pseudo-
spin situation which can also support non-Abelian gauge
potentials [31,32].
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