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Phase-sensitive atom localization for closed-loop quantum systems
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A scheme of high-precision two- and three-dimensional (3D) atom localization is proposed and analyzed
by using a density matrix method for a five-level atom-light coupling scheme. In this system four strong laser
components (which could be standing waves) couple a pair of atomic internal states to another pair of states in all
possible ways to form a closed-loop diamond-shape configuration of the atom-light interaction. By systematically
solving the density matrix equations of the motion, we show that the imaginary part of the susceptibility for the
weak probe field is position dependent. As a result, one can obtain information about the position of the atom
by measuring the resulting absorption spectra. Focusing on the signatures of the relative phase of the applied
fields stemming from the closed- loop structure of the diamond- shape subsystem, we find out that there exists a
significant phase dependence of the eigenvalues required to have a maximum in the probe absorption spectra. It
is found that by properly selecting the controlling parameters of the system, a nearly perfect 2D atom localization
can be obtained. Finally, we numerically explore the phase control of 3D atom localization for the present scheme
and show the possibility to obtain 1/2 detecting probability of finding the atom at a particular volume in 3D
space within one period of standing waves.
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I. INTRODUCTION

It is known from the early days of quantum mechanics
that the Heisenberg microscope [1] imposes the limitation that
the atomic position cannot be detected more precisely than
the half wavelength of radiation used for the detection. In the
archetype of this measuring device, based on the uncertainty
principle �px�x ∼ �, the largest momentum kick transferred
from an optical photon to an atom �px = 2�k, indicates
the precision in the measurement of the atomic position in
terms of the optical wavelength λ = 2π/k as �x ∼ λ/2.
Following these arguments the atom cannot be localized within
distances beyond the optical half wavelength. However, novel
localization techniques have made it possible to overcome
this fundamental limit, and extremely high-precision spatial
resolutions have been achieved for measurement of the atomic
position. For instance, Gorshkov et al. [2] suggested a method
based on a dark state to localize an atomic excitation with
resolution that approaches a few nanometers. The Scully group
reported experimentally the first proof of dark-state-based
localization in a Rb vapor cell [3]. Recently, Miles and
coworkers have demonstrated an experiment in which the
atomic excitation is confined to a spatial width of 100 nm,
which is a factor of 8 smaller than the wavelength of the
laser beams used in their experiment [4]. Precision position
measurement of an atom is useful in neutral atom lithography
with ultrahigh resolution [5], measurement of the center-
of-mass wave function of moving atoms [6], and coherent
patterning of matter waves [7].

Earlier theoretical studies for the localization mostly con-
sider one-dimensional (1D) atom localization based on the
atomic coherence and quantum interference effects [8–12].
Note that the quantum coherence and interference play a
fundamental role in many other phenomena of atomic physics
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and quantum optics, such as an electromagnetically induced
transparency (EIT) [13–18], superluminal light propagation
[19–22], optical bistability [23,24], Kerr nonlinearity [25,26],
and others [27–29]. More recently, some schemes have been
put forward for two-dimensional (2D) atom localization
[30–42]. Ding et al. [31] investigated the atom localization by
monitoring the probe absorption in a microwave-driven four-
level atomic medium affected by two orthogonal standing-
wave fields. They found that the localization behavior is
significantly improved due to a joint quantum interference
induced by a standing-wave and microwave-driven fields. In
another work, an M-type atomic system was proposed by the
same group [32] to deal with the 2D atom localization in the
subwavelength domain via a controlled spontaneous emission.
Wan et al. [38] considered an atomic scheme based on the
controlled probe absorption and gain in a four-level double
� system. They showed both numerically and analytically
that the high-precision atom localization achieved in such
a scheme can be attributed to the interference between the
one- and three-photon excitations. A four-level tripod-type
atomic system is also proposed to achieve a high-precision
two-dimensional atom localization via measurement of the
excited state population [40]. Yet the three-dimensional (3D)
atom localization has been investigated only in few proposals
[43–45]. Compared to the 1D and 2D localization, the 3D
localization of an atom gives a more specific information about
the position of a moving atom.

In this paper we investigate the 2D and 3D localization of
an atom in a five-level configuration in which the laser beams
couple the ground level to a four-level closed-loop system.
Such a scheme was first proposed by Kobrak and Rice [46]
for establishing a complete population transfer [47,48] to a
single target of a degenerate pair of states. Subsequently it has
been employed to show the advantages of the measurement
in coherent control of atomic or molecular processes [49].
Moreover, by using intense laser fields a new quantum
measurement has been introduced in the Kobrak-Rice (KR5)
system [50]. Recently, this scheme has been employed by us
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to study the behavior of the third-order susceptibility [26]. It
has been shown that under the condition of the multiphoton
resonance, one can enhance the Kerr nonlinearity of such a
five-level medium by properly adjusting the amplitudes and
phases of the applied fields, so that the linear and nonlinear
absorption reduce considerably in a region with a positive
group velocity.

Here we make use of the KR5 scheme to localize atoms in
two and three dimensions. We employ three different situations
in which the atom could interact with the position-dependent
standing-wave fields. In the first two cases all four laser
fields represent the standing waves, whereas in the third
case only one of the fields is a standing wave, others being
propagating waves. It is shown that one can extract information
about the position of the atom through measuring the probe
absorption. Since the KR5 atomic scheme is phase sensitive,
the phase control of atom localization is also possible by
adjusting properly the relative phase. In particular, by properly
choosing the amplitudes and phases of the driving fields,
the atom-light Hamiltonian can have three, four, and two
eigenstates, resulting in different localization patterns in the
probe absorption spectrum. Subsequently it is demonstrated
that the first two atom-field coupling situations are not suitable
to achieve a unique atom localization peak. In order to obtain
the maximum detection probability of the atom at a certain
position in the 2D space, we consider the next situation of
coupling between atom and standing-wave fields, and illustrate
that the maximal probability of finding the atom in one period
of standing waves reaches the unity. Eventually, the phase
control of the 3D atom localization for this five-level scheme
is explored numerically in the 3D space. It is found that the
detection probability of finding the atom in a particular volume
in 3D space and within one period of standing waves can
become 50%.

II. MODEL AND EQUATIONS

The proposed KR5 five-level scheme is illustrated in
Fig. 1(a). The system consists of an excited state |1〉, two
nondegenerate metastable lower states |3〉 and |5〉, as well as
two intermediate degenerate states |4〉 and |2〉. Four coherent
laser driving components �43,�32,�41, and �21 are applied to
couple a pair of atomic internal states |1〉 and |3〉 to another pair
of states |4〉 and |2〉 in all possible ways to form a closed-loop
scheme of the atom-light interaction. The transition between
the states |3〉 and |5〉 is dipole allowed. Such a configuration
is equivalent to a cyclical coupling of four states |1〉, |2〉, |3〉,
and |4〉, making a diamond-shaped closed-loop system. By
applying a weak coherent probe field with a Rabi frequency
�p, the diamond-shaped system is coupled to a ground or
metastable state |5〉.

The atom moves along the z direction and interacts with
driving laser fields propagating in the x-y plane. The laser
radiation can be traveling or standing waves. In the latter
case the strength of the interaction between the atom and
the standing-wave fields is spatially dependent. The atom
is assumed to move with a high enough velocity so that
its interaction with the driving fields does not affect its
motion in the z direction. Thus, we may treat the atomic
motion classically characterized by a constant velocity in the z

FIG. 1. (a) Schematic diagram of the five-level quantum system.
(b), (c), (d), and (e) Different situations considered in which the atom
could interact with the position- dependent standing-wave fields.

direction. On the other hand, the center-of-mass position of the
atom along the directions of standing waves (in the x-y plane)
can experience only the minor changes and thus remains nearly
constant. In this case, one can neglect the kinetic energy term
of the atom in the interaction Hamiltonian via the Raman-
Nath approximation [51]. Then, applying the rotating-wave
approximation, the resulting interaction Hamiltonian for the
whole system can be written as

H5Levels = − �(�p|3〉〈5| + �41|1〉eiφ〈4|
+�21|2〉〈1| + �32|3〉〈2| + �43|4〉〈3|)
+ H.c., (1)

where φ = φ41 + φ43 − φ2 − φ21 is a relative phase accumu-
lated after completing a cyclic loop and φij represents the
initial phase of the laser field, which induces the transition
|i〉 ←→ |j 〉. The equation of the motion for the density
operator of the atomic system is given by:

ρ̇ = − i

�
[H5Levels,ρ] + Lρ, (2)

where the a damping operator Lρ represented the decay of
the system. Substituting (1) into (2), one arrives at the optical
Bloch equations for density matrix elements of the five-level
system [26].

Our aim is to acquire information about the position of
the atom passing through the standing-wave fields from the
absorption of the probe field

χ ′′ = Im(χ ), (3)
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where [52]

χ = 2Nμ2
53

ε0��p

ρ35. (4)

is a linear susceptibility of the system for the probe field,
and N is the atomic number density. Therefore the absorption
measurements allow us to determine the off-diagonal density-
matrix element ρ35 featured in Eq. (4).

For a weak intensity of the probe field, the atom populates
predominantly the initially populated ground state |5〉, so that
ρ55 ≈ 1. Under this condition, the density matrix equations
can be simplified by writing them in the matrix form

Ṙ = −MR + A, (5)

where R, A, and M are given by

R =

⎛
⎜⎝

ρ35

ρ45

ρ25

ρ15

⎞
⎟⎠, (6)

A =

⎛
⎜⎝

i�p

0
0
0

⎞
⎟⎠, (7)

and

M =

⎛
⎜⎝

S1 −i�43 −i�32 0
−i�43 S2 0 −i�41e

−iφ

−i�32 0 S3 −i�21

0 −i�41e
iφ −i�21 S4

⎞
⎟⎠, (8)

with S1=γ35−i�p, S2=i(�43+�p) − γ43, S3 = −[i(�23 −
� + �p) − γ23], and S4 = −[i(�14 + �43 + �p) − (γ14 +
γ12)]. Here the parameter � = �12 − �14 + �23 − �43 de-
scribes a multiphoton detuning. On the other hand, �p = ωp −
ω35, �43 = ω4 − ω43, �23 = ω2 − ω23, �14 = ω3 − ω14, and
�12 = ω1 − ω12 are, respectively, the frequencies of the one
photon detuning for the transitions |3〉 ←→ |5〉, 4 ←→ |3〉,
|2〉 ←→ |3〉, |1〉 ←→ |4〉, and |2〉 ←→ |1〉, with ωi being
the central frequency of the laser fields. The rates of the
spontaneous decay from upper level |i〉 to the lower level
|j 〉 is given by 2γij . Furthermore, we did not include the
spontaneous decay from the excited state |1〉 to the lower
levels |3〉 and |5〉 assuming that the corresponding transitions
are dipole forbidden.

The steady-state solution to Eq. (5) reads in the matrix form

R = M−1A. (9)

Using Eq. (9), the coherence term ρ35 can be expressed as

ρ35 = i�p

S2�
2
21 + S3�

2
41 + S2S3S4

Z
, (10)

where

Z = 2�41�32�43�21 cos φ

+S2S4�
2
32 − S3S4�

2
43

−S1S2�
2
21 + S1S3�

2
41

−�2
43�

2
21 − �2

41�
2
32 − S1S2S3S4, (11)

It is apparent that the phase factor enters the absorption through
the term 2�41�32�43�21 cos φ.

Equation (10) represents a main result of the paper allowing
one to measure the position of the atom via the absorption of
the atomic system given by the imaginary part of ρ35 featured
in Eqs. (3) and (4). Equation (10) shows that the absorption
depends on the parameters of the system, i.e., the amplitudes
of the standing-wave fields, relative phase of applied fields, as
well as the detunings of the probe and driving fields. We will
discuss this issue in more detail in the following section.

III. NUMERICAL RESULTS AND DISCUSSION

Now, we investigate the localization of the atom through
numerical results by considering different cases of interaction
of the atom with the laser fields. The simulations are displayed

in the units of 2Nμ2
53

ε0��p
. The selected parameters are γ14 = γ12 =

γ23 = γ43 = γ35 = γ , and all the parameters are scaled with
γ . Note that the wave number of optical waves are selected to
be the same and equal to k.

A. 2D atom localization

1. First case: All control fields are position dependent
in one dimension

Considering the case where the different atomic transitions
are coupled by different orthogonal standing-wave fields
[Fig. 1(b)], the resulting Rabi frequencies are

�43 = �43(x,y) = �43f11(x),

�41 = �41(x,y) = �41f11(x),
(12)

�32 = �32(x,y) = �32f12(y),

�21 = �21(x,y) = �21f12(y),

with

f11(x,y) = sin(kx),
(13)

f12(x,y) = sin(ky),

It can be seen from Eqs. (3), (4), (10), and (12) that
the probe absorption χ ′′ is position dependent. As a result,
by measuring probe absorption spectra χ ′′ one can obtain
information about the position of the atom in the x-y plane
as it passes through the standing wave fields. The position of
the peak in the probe absorption specifies the location of the
atom during its optical detection. Four different patterns of 2D
atom localization are illustrated in Fig. 2. As it can be seen from
Fig. 2(a), when �43 = �32 = �41 = �21 = 5γ and φ = 0, the
probe absorption maxima displays four craterlike patterns at
each quadrant, and the atom is localized at these circles. For
�32 = �21 = �1 	= �2 = �43 = �41 the craterlike patterns
gradually move closer to each other and change to the patterns
with a shape resembling the number 8. When �2 > �1

[Fig. 2(b)], the patterns are along the x direction, while as
shown in Fig. 2(c) for �2 < �1, they are along the y direction.
As illustrated in Fig. 2(d), for φ = π , the 2D atom localization
pattern changes totally with respect to Fig. 2(a). In all the cases,
the maximum probability of atom at a particular position is
1/4.
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FIG. 2. Plots of probe absorption χ ′′ versus (kx,ky). The selected parameters are (�43,�32,�41,�21,φ) = (a) (5γ,5γ,5γ,5γ,0), (b)
(4γ,6γ,4γ,6γ,0), (c) (6γ,4γ,6γ,4γ,0), (d) (5γ,5γ,5γ,5γ,π ). The other parameters are γ14 = γ12 = γ23 = γ43 = γ35 = γ , � = �12 = �14 =
�23 = �43 = 0, as well as �p = 8γ , �p = 0.01γ .

2. Second case: All control fields are position dependent
in two dimensions

Let us consider now a situation where each standing-wave
field is obtained from a superposition of two orthogonal
standing-wave fields with the same frequency along the
directions x and y [Fig. 1(c)]. As a result, the Rabi frequencies
of standing waves are position dependent and are given by

�43 = �43(x,y) = �43f2(x,y),

�41 = �41(x,y) = �41f2(x,y),
(14)

�32 = �32(x,y) = �32f2(x,y),

�21 = �21(x,y) = �21f2(x,y),

with

f2(x,y) = sin(kx) + sin(ky). (15)

In Fig. 3, we show our simulations for the 2D atom
localization by proper adjusting the four standing-wave fields.
As shown in Fig. 3(a), for the case where �43 = �32 = �41 =
�21 = 10γ , the probe-absorption maxima are distributed in
all quadrants of the x-y plane and with a latticelike structure.
Setting (�43,�32,�41,�21) = (8γ,γ,10γ,10γ ), the 2D spatial
distribution of the atom is almost the same as the one in

Fig. 3(a), but with two spikelike peaks located in quadrants
I and III [Fig. 3(b)]. We observe that for the condition �43 =
�32 = �41 = �21 = 25γ corresponding to Fig. 3(c), the
resulting absorption spectrum is similar to that in Fig. 3(a). For
all these cases [Figs. 3(a)–3(c)], the information on the position
of the atom in the x-y plane is ambiguous. A better spatial reso-
lution in the distribution of the probe absorption of the atom can
be obtained by adjusting the standing wave intensities to �43 =
�32 = �41 = �21 = 2.5γ . In this case, as it can be observed
from Fig. 3(d), the probe absorption shows two spikelike atom
localization peaks in the first and third quadrants. Therefore,
the uncertainty in position measurement of the atom is reduced
compared to the previous cases shown in Figs. 3(a)–3(c), and
the detection probability of the atom in one period of the
standing-wave fields becomes approximately 1/2.

Next, we intend to investigate the influence of relative phase
φ on precision in the position measurement of the atom in
the x-y plane. Equations (10) and (11) show that the probe
absorption is sensitive to the relative phase of the applied fields
φ through the term cos φ. Here, we present an analytical model
to elucidate such a phase-sensitive property. Four driving fields
acting on the atom provide a closed-loop (ring coupling) level
scheme in which the relative phase between driving fields
affects the probe absorption χ ′′. Excluding the ground (or
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FIG. 3. Plots of probe absorption χ ′′ versus (kx,ky). The selected parameters are (�43,�32,�41,�21) = (a) (10γ,10γ,10γ,10γ ), (b)
(8γ,γ,10γ,10γ ), (c) (25γ,25γ,25γ,25γ ), (d) (2.5γ,2.5γ,2.5γ,2.5γ ). Here, �p = 10γ , φ = 0. The other parameters are the same as Fig. 2.

metastable) state |5〉 in Eq. (1), one can rewrite the Hamiltonian
of the atom-light interaction for the remain atomic four-level
closed-loop level structure of the diamond shape as:

H4Levels = −��(x,y)

⎡
⎣|1〉eiφ〈4| +

3∑
j=1

|j + 1〉〈j | + H.c.

⎤
⎦,

(16)

where we have taken � = 1. Note that in this equation all
the position-dependent Rabi frequencies are chosen to be the
same; i.e. �43(x,y) = �23(x,y) = �41(x,y) = �21(x,y) =
�(x,y) = �[sin(kx) + sin(ky)].

The Hamiltonian Eq. (16) is equivalent to an infinite
translationally symmetric Hamiltonian

H4Levels = −�(x,y)
∞∑

j=−∞
|j + 1〉〈j | + H.c., (17)

as long as the coefficients cj entering any state vector |...〉 =∑
j cj |j 〉 obey the boundary conditions

cj+4 = eiφcj . (18)

When φ = 0, Eq. (18) reduces to the usual periodic boundary
conditions. On the other hand, for φ = ±π Eq. (18) represents
the twisted boundary conditions.

The Hamiltonian given by Eq. (16) can be easily diagonal-
ized [53], and its eigenstates and corresponding eigenenergies
read:

|n(r)〉 = 1

2

4∑
j=1

|j 〉eiqnj , (19)

and

En = −2� cos qn[sin(kx) + sin(ky)], (20)

where n = 1,2,3,4. The dimensionless parameter qn takes a
set of values, which depend on the relative phase φ due to the
boundary condition Eq. (18):

qn = (n − 1)π

2
− φ

4
, (21)

with (n = 1,2,3,4). It can be seen through Eqs. (20) and (21)
that the position-dependent eigenenergies depend strongly on
the relative phase φ.

Let now analyze the eigenenergies for different phase φ.
For condition φ = 0, Eq. (20) changes to

En = −2� sin

(
nπ

2

)
[sin(kx) + sin(ky)]. (22)

Equation (22) results in three eigenenergies E3 = −E1 =
2�[sin(kx) + sin(ky)], and E2 = E4 = 0. When φ = π/2, we

013842-5
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FIG. 4. Plots of probe absorption χ ′′ versus (kx,ky). The selected parameters are (a) φ = 0, (b) φ = π/3, (c) φ = π/2, (d) φ = π . Here,
(�43,�32,�41,�21) = (5γ,5γ,5γ,5γ ), �p = 5γ . The other parameters are the same as Fig. 4.

obtain

En = −2� sin

(
nπ

2
− π

8

)
[sin(kx) + sin(ky)]. (23)

Equation (23) gives the following four eigenenergies:
E3 = −E1 = 4�[sin(kx) + sin(ky)] cos π

8 , and E4 = −E2 =
4�[sin(kx) + sin(ky)] sin π

8 . Finally, for φ = π , Eq. (20)
reduces to

En = −2� sin

(
nπ

2
− π

4

)
[sin(kx) + sin(ky)]. (24)

In such a case one arrives at two pairs of degenerate eigenener-
gies E1 = E2 = −√

2�[sin(kx) + sin(ky)], and E3 = E4 =√
2�[sin(kx) + sin(ky)].
Equations (22)–(24) imply that there is a strong phase

dependence of the eigenvalues required to achieve maximum
in the probe absorption. It can be seen that the number of
absorption peaks varies by changing φ. Obviously, three, four,
and two absorption peaks appear for φ = 0, φ = π/2, and
φ = π , respectively.

Another interesting illustration of our results can be de-
scribed using the right-hand side of Eqs. (22)–(24). For a given
probe detuning, the maximum conditions would be satisfied
just when the curves of the probe detuning intersect with the
curves obtained from the solutions of Eqs. (22)–(24). There
are certain positions in the x-y plane at which probe absorption

maxima take place. The position of intersections depend
strongly on the value of the arbitrary selected detunings, as
well as on the relative phase φ of the applied fields. In this
case, the positions of intersections correspond to the probe
absorption maxima in the 2D localization patterns illustrated
in Fig. 4.

The above discussion implies the dependence of probe
absorption χ

′′
on the relative phase φ resulting in different pat-

terns in the 2D localization profile of an atom as demonstrated
in Fig. 4. It is found from Figs. 4(a) and 4(b) that for φ = 0 and
φ = π/3, the behavior of the 2D atom localization is pretty
much similar to that presented in Figs. 3(a) and 3(b). For φ =
π/2, two craterlike patterns are formed within the half-crater
patterns in the first and third quadrants [Fig. 4(c)]. For these
cases, the absorption measurement provide little information
of the atomic position in the x-y plane. Adjusting φ = π ,
the radii of the craters and half craters are reduced and merge
together in the absorption profile so that two craterlike patterns
appear in the first and third quadrants, and the atom is localized
at the circular edges of the two craters [Fig. 4(d)]. In this
case, the uncertainty of the position probability distribution is
significantly reduced and the detecting probability of the atom
is increased compared to the cases illustrated in Figs. 4(a)–4(c).
Yet the spatial resolution of the atom position is still not good
enough, so this atom-light coupling condition is not suitable
for detecting with high probability in the 2D atom localization.
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In the following, we shall analyze another situation aimed
at reducing the number of localization peaks in the x-y plane
and achieving a unique detecting probability of the atom in the
x-y plane. For this purpose, we study interaction of the atom
with standing waves.

3. Third case: Only one control field is position dependent

Let us next consider a case where only one of the control
fields �21 = �21(x,y) is position dependent. This field is a
combination of two orthogonal standing-wave fields with the
same frequency, other laser fields being the traveling waves
[Fig. 1(d)]:

�21 = �21(x,y) = �21[sin(kx) + sin(ky)],

�43 = �43,
(25)

�41 = �41,

�32 = �32.

where no phase factors are contained in the Rabi frequencies
�43, �41, and �32 by assuming that these fields propagate
perpendicular to the x-y plane positioned at z = 0.

Let us first explore an impact of the driving fields �ij on
the position-dependent probe absorption. For �43 = �32 =
�41 = �21 = 10γ , the maxima of the probe absorption are
situated mainly in the first quadrant, but with a low precision
[Fig. 5(a)], i.e., the absorption peak is blurred. The next plots
of χ ′′ are presented for different values of �ij . The plots
are for �41 = 20γ and �43 = �32 = �21 = 10γ [Fig. 5(b)],
for �32 = 20γ and �43 = �41 = �21 = 10γ [Fig. 5(c)], for
�43 = 18γ and �32 = �41 = �21 = 10γ [Fig. 5(d)], as well
as for �21 = 14.8γ and �43 = �32 = �41 = 10γ [Fig. 5(e)].
It is clear that by increasing each of �ij , different spatial
distribution and localization patterns are obtained. As one can
see in Fig. 5(b), the probe-absorption maxima are distributed
on the diagonal in the second and fourth quadrants, with
a latticelike pattern showing a uniform position probability
distribution across diagonals corresponding to kx + ky =
2mπ [or kx − ky = (2n + 1)π ] (m,n are integers). When
the intensity of driving field �32 is increased to �32 = 20γ ,
the maxima of all absorption peaks are located in the third
quadrant with a craterlike pattern, and the atom is localized at
the circular edge of the crater [Fig. 5(c)]. Increasing the Rabi
frequency �43 to 18γ results in localization of the atom in
the first quadrant with a spikelike pattern, whereas in the third
quadrant there is a very weak craterlike pattern. Therefore the
localization precision of the first quadrant is much higher than
that of the third quadrant [Fig. 5(d)]. Although compared to
Figs. 5(a)–5(c), in the current situation there is an improvement
of the information of the atomic position in the x-y plane,
but there is still not a perfect atom localization. A best
result appears in Fig. 5(e) in which one can observe that by
increasing the intensity of standing-wave field �21 to 14.8γ

the probability of finding the atom is significantly increased
and the atom is localized nearly at a certain position [i.e.,
(kx.ky) ≈ (π/2,π/2)]. Therefore, the detection probability of
finding the atom in one period of the standing-wave fields
reaches almost 100%.

Finally, we discuss the phase dependence of atom local-
ization in the KR5 quantum system for the third situation

described above. Figure 6 displays the atom localization
patterns of the probe absorption as a function of the positions
(kx,ky) for different values of the relative phase φ. When φ =
0, one spikelike localization peak appears in the first quadrant
providing the high-precision atom localization [Fig. 6(a)]. In
this case, the probability of finding the atom within one period
of the standing-wave fields reaches the unity. Adjusting the
phase parameter to φ = π/4, as it can be seen in Fig. 6(b),
the spatial distribution of the probe absorption has a craterlike
pattern located in the first quadrant. As we further increase the
relative phase to φ = π/2, it can be observed from Fig. 6(c)
that another craterlike localization peak appears in the third
quadrant, so that the peak maxima of the probe absorption
exhibits two symmetric craterlike patterns, and the uncertainty
of finding an atom in one period increases accordingly.
Thus, we can find atom at circular edges around (kx,ky) ≈
(π/2,π/2) or (kx,ky) ≈ (−π/2, − π/2) in quadrants I or
III, respectively. For the case φ = 3π/4, it can be found
from Fig. 6(d) that the localization peak in the first quadrant
has completely vanished, and the detection uncertainty is
reduced correspondingly. As can be seen in Fig. 6(e), for φ =
π the localization peak shifts to the third quadrant and thus,
the pattern of the probe absorption becomes a mirror image
of the localization pattern for φ = 0 [illustrated in Fig. 6(a)]
with respect to the line y = −x in the x-y plane. Therefore,
it is quite obvious that the relative phase plays an important
role to achieve the perfect detection probability of an atom at a
particular position within one period of standing-wave fields.

The origin of such an efficient localization stems from
the quantum interference induced by two possible ways of
going from the ground level |5〉 to upper level |1〉, involving

|5〉 �p�−→ |3〉 �32�−→ |2〉 �21�−→ |1〉 and |5〉 �p�−→ |3〉 �43�−→ |4〉 �41�−→ |1〉
pathways. This affects the absorption of the probe field
for such a closed-loop quantum system and results in a
perfect atom localization. In Eqs. (10) and (11) for the
susceptibility, the quantum interference is represented by the
term 2�41�32�43�21 cos φ playing the main role in formation
of the atom localization patterns.

In the first case where the atom-light coupling is de-
scribed by Eqs. (12) and (13), the interference term re-
duces 2�41�32�43�21 cos φ sin2(kx) sin2(ky). The position-
dependent absorption spectrum remains then unchanged under
the transformations (x,y) ↔ (−x, − y), (x,y) ↔ (x, − y),
(−x,y) ↔ (x, − y), and (−x,y) ↔ (−x, − y). Thus, for a
given probe detuning the imaginary part of the suscepti-
bility reads χ ′′(x,y) = χ ′′(−x, − y), χ ′′(x,y) = χ ′′(x, − y),
χ ′′(−x,y) = χ ′′(x, − y), and χ ′′(−x,y) = χ ′′(−x, − y). In
such a situation the probe absorption is the same in each of
four quadrants, so the localization is not perfect.

In the second case described by Eqs. (14) and (15), the quan-
tum interference term reads 2�41�32�43�21 cos φ[sin(kx) +
sin(ky)]4. The resulting probe absorption spectrum is invariant
only with respect to the transformations (x,y) ↔ (−x, −
y), and (−x,y) ↔ (x, − y), giving χ ′′(x,y) = χ ′′(−x, − y),
and χ ′′(−x,y) = χ ′′(x, − y). Consequently the probability
distribution is the same in quadrants I and III, as well as in
quadrants II and IV, leading to a higher detection probability
than in the first case. Finally, in the third case of the atom-
light coupling corresponding to Eq. (25), the interference
term reads 2�41�32�43�21 cos φ[sin(kx) + sin(ky)]. In such
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FIG. 5. Plots of probe absorption χ ′′ versus (kx,ky). The selected parameters are (�43,�32,�41,�21) = (a) (10γ,10γ,10γ,10γ ), (b)
(10γ,10γ,20γ,10γ ), (c) (10γ,20γ,10γ,10γ ), (d) (18γ,10γ,10γ,10γ ), and (e) (10γ,10γ,10γ,14.8γ ). Here, �12 = �14 = �23 = �43 = 10γ ,
�p = 0, and the other parameters are the same as Fig. 4.

a situation there is no symmetry under which the interference
term (and hence the position-dependent absorption spectrum)
could remain unchanged. The probability distribution of the
absorption peaks is then not equal in all four quadrants, so
one arrives at a nearly perfect atom localization by properly
adjusting the system parameters, as one can see in Figs. 5(d),
6(a), and 6(e).

Let us now discuss the phase effects. When the relative
phase of applied fields is φ = π/2, the interference term

vanishes in Eqs. (10) and (11). In the third case the probe
absorption spectrum then does not alter under the trans-
formation (x,y) ↔ (−x, − y), giving χ ′′(x,y; φ = π/2) =
χ ′′(−x, − y; φ = π/2). Therefore, one should observe two
absorption maxima with the same probability distribution in
the quadrants I and III [see Fig. 6(c)]. On the other hand, for
φ = 0 and φ = π the interference term becomes maximum.
Thus the absorption spectrum remains again unchanged under
the transformation (x,y,φ = 0) ↔ (−x, − y,φ = π ). That is
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FIG. 6. Plots of probe absorption χ ′′ versus (kx,ky). The selected parameters are (a) φ = 0, (b) φ = π/4, (c) φ = π/2, (d) φ = 3π/4, (e)
φ = π . Here, (�43,�32,�41,�21) = (10γ,10γ,10γ,14.8γ ). The other selected parameters are the same as Fig. 5.

why for φ = π the probe absorption becomes a mirror image
of the localization pattern for φ = 0, as one can see in Figs. 6(a)
and 6(e).

B. 3D atom localization

Let us now investigate the phase control of atom localization
in three dimensions for our proposed scheme. For this
situation, each standing-wave field is obtained from a superpo-
sition of three orthogonal standing-wave fields with the same

frequency [Fig. 1(e)]. The Rabi- frequencies corresponding to
such standing waves read

�43 = �43(x,y,z) = �43f3(x,y,z),

�41 = �41(x,y,z) = �41f3(x,y,z),
(26)

�32 = �32(x,y,z) = �32f3(x,y,z),

�21 = �21(x,y,z) = �21f3(x,y,z),

with

f3(x,y,z) = sin(kx) + sin(ky) + sin(kz). (27)
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FIG. 7. Isosurface plots of probe absorption χ ′′ versus (kx,ky,kz). The selected parameters are (a) φ = 0, (b) φ = π/3, (c) φ = π/2, and
(d) φ = π . Here, (�43,�32,�41,�21) = (10γ,10γ,10γ,10γ ),�12 = �14 = �23 = �43 = �p = 10γ . The other selected parameters are the
same as Fig. 3.

One can see from Eqs. (10) and (11) that the atom
localization in 3D space depends crucially on the atom-field
coupling featured in Eq. (26) via the relative phase factor φ.
Figure 7 illustrates the isosurface plot of the probe absorption
as a function of the position (kx,ky,kz) for different values
of the relative phase φ. It can be observed that the effect of
the relative phase φ leads to different absorptions structures
in 3D space. When φ = 0, the probe absorption is distributed
in eight different subspaces of the 3D space [Fig. 7(a)]. In
particular, we observe that for φ = π/3, two spheres appear
in the subspaces 0 � kx,ky,kz � π and −π � kx,ky,kz � 0
with maximum detecting probability of the atom in one of
these regions being approximately 1/2 [Fig. 7(b)]. By setting
the relative phase φ to π/2, the volume of two spheres in
each subspace becomes larger as can be seen in Fig. 7(c) so
that the uncertainty in position measurement of the atom is
increased. Finally for φ = π , the probe absorption spectrum
is mostly located in the subspaces 0 � kx,ky,kz � π and
−π � kx,ky,kz � 0 with little in the other regions. Therefore,
we could show that different 3D localization patterns can
be obtained in 3D space through manipulating the relative
phase φ. However, the maximum detection probability of
finding the atom in the particular region is around 1/2 for the
atom-field coupling described by Eq. (26). Note that in this 3D

scheme, the probe field �p is assumed to propagate along the
z direction allowing us to monitor the 3D localization of an
atom [44].

IV. CONCLUDING REMARKS

In conclusion, we have proposed a scheme of high-precision
2D and 3D atom localization in a five-level atom-light coupling
configuration. A pair of atomic internal states are coupled to
another pair of states via four strong laser components in all
possible pathways in a closed-loop (ring coupling) configura-
tion of the atom-light coupling. We are considering situations
where one or more radiation field is position dependent, so
the imaginary part of the probe susceptibility is also position
dependent. Therefore, it is possible to acquire information
about the position of atom through measuring the resulting
absorption spectra. Specifically, the effect of the relative phase
of the applied fields due to the closed-loop structure of the
diamond-shaped subsystem has been explored. An analytical
solution is presented to elucidate such a phase sensitivity. It is
found that there exists a significant phase dependence of the
eigenvalues required to obtain maxima in the probe absorption
spectrum. Through appropriate adjusting of the amplitudes
and phases of the driving fields, the atom-light Hamiltonian
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can experience three, four, and two eigenstates, leading to
different localization patterns for the atom. The situations for
the optimum atom localization have been identified.

The proposed scheme involving the five-level KR5 structure
can be experimentally implemented using the 87Rb atoms. The
ground level |5〉 can be assigned to the state 5S1/2. The level
|3〉 can be attributed to the 5P3/2. Two intermediate levels |2〉
and |4〉 can be assigned to either the fine structure of the 4D3/2

substate or the 4D5/2 substate, as long as the dipole transition

selection rules on the F quantum number is satisfied (the same
F quantum number for the intermediate states). The top level
|1〉 can be chosen to the 6P3/2 state.
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