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Supersolid is a long-sought exotic phase of matter, which is characterized by the coexistence of a diagonal
long-range order of solid and an off-diagonal long-range order of superfluid. Possible candidates to realize such
a phase have been previously considered, including hard-core bosons with long-range interaction and soft-core
bosons. Here we demonstrate that an ultracold atomic condensate of hard-core bosons with contact interaction
can establish a supersolid phase when simultaneously subjected to spin-orbit coupling and a spin-dependent
periodic potential. This supersolid phase is accompanied by topologically nontrivial spin textures, and is signaled
by the separation of momentum distribution peaks, which can be detected via time-of-flight measurements. We
also discuss possibilities to produce and observe the supersolid phase for realistic experimental situations.
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I. INTRODUCTION

The search for supersolid phase has a long history since
1969 [1–6], and has been recently intensified during the debate
of its possible observation in 4He [7–13]. From the theoretical
aspect, it has been suggested that supersolid can exist in
condensates of soft-core bosons [14–16] and hard-core bosons
with long-range interactions [17–19]. However, the realization
of supersolid in hard-core bosons with short-range interactions
is usually considered unlikely [20].

Thanks to the high controllability, ultracold atomic gases
provide us an excellent platform to emulate various quantum
phenomena originally considered in the context of condensed
matter physics [21,22]. Recent experimental realizations of
artificial spin-orbit (SO) coupling [23–29] introduce another
degree of freedom for the manipulation of atomic gases, and
give opportunities for the search of novel quantum states
[30–38]. Theoretical investigations reveal that the interplay
among the SO coupling, interatomic interaction, and external
potential can lead to diverse phase diagrams for Bose gases,
containing the plane wave, density stripe, composite soliton,
vortex lattice, as well as quantum quasicrystal [39–47].
The SO-coupled ultracold atomic gas is also opening new
perspectives in the supersolid phenomena [48,49].

In this article we investigate a hard-core Bose gas in-
teracting via a contact (zero-range) potential. The atoms
experience a spin-dependent periodic potential [50,51] and are
subjected to two-dimensional (2D) SO coupling of the Rashba-
Dresselhaus type Vso = −i�(κxσx∂x + κyσy∂y) [52]. Here,
σx,y are the Pauli matrices and κx,y represent the corresponding
SO-coupling strengths. We demonstrate that a supersolid
phase characterized by the coexistence of periodic density
modulation and superfluidity can be stabilized by strong SO
coupling. Comparing to a continuous system affected by SO
coupling discussed in Ref. [49], the supersolid phase in the
present system involving a spin-dependent periodic potential
is accompanied by the spontaneous generation of a lattice
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composed of meron pairs and antimeron pairs, hence featuring
a topologically nontrivial spin configuration. With decreasing
the SO-coupling strength, this supersolid phase gives way to
a state consisting of alternating spin domains separated by
chiral Bloch walls. Depending on the sign of SO coupling,
the chirality of the Bloch walls can be either right-handed
or left-handed. We also discuss the influence of asymmetric
interatomic interaction and SO-coupling anisotropy (κx �= κy)
on the properties of the supersolid phase.

II. SPIN-ORBIT-COUPLING INDUCED SUPERSOLID

We consider SO-coupled two-component Bose-Einstein
condensates in a spin-dependent periodic potential. The SO
coupling is of the Rashba-Dresselhaus type, which can be
realized by using a periodic pulsed magnetic field [53,54].
The spin-dependent periodic potential is usually produced
by means of the counterpropagating cross-polarized laser
beams [50,51]. Simultaneous creation of the SO coupling
and the spin-dependent periodic potential is discussed in
Appendix A. The Hamiltonian reads in the Gross-Pitaevskii
mean-field approximation as

H =
∫

dr�†
(

−�
2∇2

2m
+ Vso

)
� +

∫
dr

∑
α=↑,↓

Vα�∗
α�α

+ 1

2

∫
dr

∑
α,β=↑,↓

gαβ�∗
α(r)�∗

β(r)�β(r)�α(r), (1)

where the complex-valued order parameter � =
[�↑(r),�↓(r)]� is normalized to the total particle number
N as

∫
dr�†� = N . The strength of the atom-atom

interaction gαβ = 4π�
2aαβ/m is characterized by the s-wave

scattering length aαβ . The SO-coupling term can be written
as Vso = −i�(κxσx∂x + κyσy∂y), where σx,y are the Pauli
matrices and κx,y denote the SO-coupling strengths. In the
isotropic case when κx = κy , the SO coupling belongs to the
Rashba type. The spin-up and spin-down atoms are subjected
to the spin-dependent periodic potentials V↑ = V0 sin2(πx/a)
and V↓ = V0 cos2(πx/a), respectively.
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FIG. 1. (Color online) Spin-orbit-coupling induced transition from superfluid to supersolid. Various ground-state properties of Rashba
SO-coupled Bose gases loaded in a 1D spin-dependent periodic potential are shown, with the SO-coupling strengths κ = 3π�/ma (top),
4π�/ma (middle), and 5π�/ma (bottom). With increasing SO-coupling strength, the system undergoes a phase transition from the superfluid
phase (top) to a supersolid phase (middle and bottom) characterized by density modulation along the y direction (first and second columns).
The supersolid phase features a triangular lattice (middle) and a rectangular lattice (bottom) at intermediate and high SO-coupling strengths,
respectively. The supersolid is accompanied by a spontaneous generation of vortex and antivortex chains in the spin-up and spin-down domains,
respectively, as can be seen from the condensate phase modulation (third column). The occurrence of the supersolid phase is signaled by the
separation of the momentum distribution peaks (fourth column), and can be readily observed via time-of-flight measurements. Other parameters
used in these plots are V0 = 20π 2

�
2/ma2 and g̃ = 6000.

The many-body ground state can be obtained by nu-
merically minimizing the Hamiltonian functional given by
Eq. (1), as outlined in Appendix B. In our calculation, we
additionally introduce a weak harmonic trap VH = m[ω2

⊥(x2 +
y2) + ω2

zz
2]/2 with ω⊥ = π2

�/ma2 to simulate realistic con-
figurations of cold atom experiments. When λ = ωz/ω⊥ � 1,
the condensates can be regarded as quasi-2D, and the effective
interaction parameter in a 2D dimensionless form is g̃αβ =
2
√

2πNaαβ/ahz, where ahz = √
�/mωz. Considering that the

differences in a↑↑, a↓↓, and a↑↓ are within 1% in typical
experiments involving the magnetic sublevels of alkali atoms,
first we focus on the case of SU(2) symmetric interactions with
g̃ = g̃↑↑ = g̃↓↓ = g̃↑↓.

For a fixed value of atom-atom interaction, we observe
a transition from the superfluid phase to a supersolid phase
with increasing Rashba SO-coupling strength κ , as one can
see in Fig. 1. Specifically, when the SO coupling is weak,
the ground state of the system consists of alternating spin
domains, where stripes filled with spin-up and spin-down
atoms are segregated [see Figs. 1(a) and 1(b)]. While the

translational symmetry along the x direction is explicitly
broken by the spin-dependent periodic potential, the system
preserves its translational symmetry along the y direction. If
the strength of the SO coupling is increased beyond a critical
value, the translational symmetry along the y direction is
spontaneously broken. As a result, a new phase with periodic
density modulation along the y direction is stabilized [see
Figs. 1(e)–1(f) and 1(i)–1(j)], and hence can be considered as a
supersolid state. The emergence of such a density modulation
can be understood as a stripe phase along the y direction
induced by SO coupling. However, this supersolid phase also
exhibits exotic spin textures, which will be discussed below.
The momentum distribution of the supersolid phase features
a qualitative difference from the superfluid phase. In the
superfluid phase, the atoms are condensed at a set of discrete
points on the edge of Brillouin zones with finite momenta
(kx ∈ K,ky = 0), where K = {±π/a, ± 3π/a, ± 5π/a, . . .}
[see Fig. 1(d)]. In the supersolid phase, the momentum
distribution peaks are separated from ky = 0 to ky = ±δ. The
separation distance δ ∈ (0,mκ/�) depends on the SO-coupling
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FIG. 2. (Color online) Line density of vortices as a function of
periodic potential depth. With increasing the depth V0 of the periodic
potential, the line density nv of the vortices decreases gradually,
and drops to zero suddenly at the transition point V0 = 35π 2

�
2/ma2

between the supersolid and superfluid phases. The insets depict the
change of vortex density and atomic momentum distributions. The
line density nv of the vortices is proportional to the separation δ of
the momentum distribution peaks, and can be expressed as nv = δ/π .
The Rashba SO-coupling strength is fixed at κ = 4π�/ma, and the
dimensionless interaction parameter is taken as g̃ = 6000.

strength [see Figs. 1(h) and 1(l)] and the periodic potential
depth [see Fig. 2]. This qualitative difference can be detected
using conventional time-of-flight imaging technique.

In addition to the density modulation along the y direction,
the supersolid phase is also characterized by a vortex lattice
structure consisting of vortex and antivortex chains in the spin-
up and spin-down domains, respectively [see Figs. 1(e)–1(g)
and 1(i)–1(k)]. Depending on the competition between the SO-
coupling strength and periodic potential depth, two different
arrangements of vortices can be stabilized. In one case, the
vortices of the neighboring chains are staggered, forming a
triangular lattice [Fig. 1(e)]. In the other case, the vortices of the
neighboring chains are parallel, forming a rectangular lattice
[Fig. 1(i)]. As shown in Figs. 1(h) and 1(l), these two different
vortex lattices correspond to qualitatively different momentum
distributions, and hence can be distinguished by experiments.
In Fig. 3, we present the ground-state phase diagram spanned
by the SO-coupling strength κ and the periodic potential
depth V0, with the effective interaction parameter being
g̃ = 6000.

We stress that a vortex lattice is not directly associated with
the supersolid phase, as it is absent in the supersolid droplet
crystals [15]. In the present system, the generation of vortices
is a direct consequence of the interplay between the SO-
coupling, spin-dependent periodic potential, and interatomic
interactions. This is very different from the usual manner
of creating supersolid vortices by rotation [16] or artificial
magnetic fields [19].

The alternating arrangement of vortex and antivortex chains
can be viewed as alternating plane waves propagating on
opposite directions along the y axis, as shown in Figs. 1(g)

0 2 4 6
0

10

20

30

40

SF

RSS

TSS

κ [units of πh̄/ma]

V
0

[u
ni

ts
of

π
2
h̄

2
/
m

a
2
]

FIG. 3. (Color online) The ground-state phase diagram spanned
by the Rashba SO-coupling strength κ and the periodic potential depth
V0. Three phases can be identified on this phase diagram, including the
superfluid (SF) phase, the triangular supersolid (TSS) phase, and the
rectangular supersolid (RSS) phase. The dimensionless interaction
parameter is taken as g̃ = 6000.

and 1(k). According to the Onsager-Feynman quantization
condition [55]

∮
C vs · dl = 2π�Nv/m, we can express the

line density of the vortices as nv = ky/π , where ky = δ is
the wave number of the plane waves. Numerical simulations
show that for a given SO-coupling strength κ the line density
of vortices decreases from mκ/π� to 0 with increasing the
periodic potential depth V0, as one can see in Fig. 2.

III. TOPOLOGICAL SPIN TEXTURES

The two-component Bose gas can be considered as a
magnetic system. Thus one might naturally think that the
supersolid transition would be associated with some magnetic
ordering. We next demonstrate that the supersolid indeed
features topologically nontrivial spin textures. To see this,
we define a spin density vector S = �†σ�/|�|2 in the
pseudospin representation, where σ is the Pauli matrix vector.
Vectorial plots of S (under a pseudospin rotation σx → σz and
σz → −σx) are shown in Figs. 4(a) and 4(b) for the triangular
and rectangular lattices, respectively, where the parameters
are the same as in Figs. 1(e) and 1(i). In both Figs. 4(a)
and 4(b), the spin texture represents a spontaneous magnetic
ordering in the form of crystals of meron pairs and antimeron
pairs [56]. The meron pairs reside in the spin-up domains,
while the antimeron pairs reside in the spin-down ones. We
note that a meron is a topological configuration in which the
spin points up or down at the meron core and rotates away
from the core. Both a meron pair and an antimeron pair have a
“circular-hyperbolic” structure, and the only difference is that
they have exactly opposite spin orientations [see Figs. 4(e)
and 4(f)].

The topological nature of the spin textures can be charac-
terized by the topological charge Q (Chern number), which
is defined as a spatial integral of the topological charge
density q(r) = (1/8π )εij S · ∂iS × ∂j S. In Figs. 4(c) and 4(d),
we present the topological charge density distribution for
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HAN, JUZELIŪNAS, ZHANG, AND LIU PHYSICAL REVIEW A 91, 013607 (2015)

FIG. 4. (Color online) Topological spin textures. (a), (b) Spin configurations of the triangular and rectangular supersolid phases showing
the spontaneous emergence of meron pairs and antimeron pairs. In these plots, the arrows represent the directions of spin vector (Sz,Sy) and
the colors ranging from blue to red describe the values of Sx from −1 to 1. (c), (d) Density distributions q(r) of topological charge for the
spin textures shown in (a) and (b). The pink and green bubbles indicate that the meron pairs and antimeron pairs carry positive and negative
topological charges, respectively. (e), (f) Schematic spin configurations of a meron pair (e) and an antimeron pair (f). Both the meron pairs and
antimeron pairs have the same “circular-hyperbolic” structure, but with opposite spin orientations. Parameters used in these plots are identical
to those used in Figs. 1(e)–1(h) and 1(i)–1(l).

the triangular and rectangular lattices, respectively. Notice
that both meron pairs and antimeron pairs are topologically
nontrivial. A meron pair carries a topological charge 1, while
an antimeron pair carries a topological charge −1. As a
comparison, the topological charge density is zero everywhere
in the topologically trivial superfluid phase.

Topological spin texture lattices, such as meron-pair and
skyrmion lattices, are usually stabilized by bulk rotation [57–
59]. Recently, it has been also suggested that skyrmion lattices
can be realized by the combined effects of SO coupling and
harmonic trap [43], provided that the trapping potential energy
�ω⊥ is higher than the characteristic interaction energy g̃�ω⊥
(i.e., g̃ < 1) [44]. Our results demonstrate that meron-pair
lattices can also be stabilized by the combined effects of
SO coupling and spin-dependent periodic potential, within a
large regime of interatomic interaction strength. For example,
the meron-pair lattices in Figs. 4(a) and 4(b) are obtained
at the large effective interaction strength with g̃ = 6000 �
1. This interaction strength can be naturally realized in
experiments under realistic conditions without resort to the
Feshbach resonance. This observation hence provides a way to
create and manipulate topological spin textures in SO-coupled
systems.

IV. CHIRAL DOMAIN WALLS

After discussing the novel properties of the supersolid state
in the previous sections, here we investigate the superfluid
phase appearing at weak SO coupling. In this phase, the
translational symmetry along the y axis (orthogonal to the
direction of the 1D periodic potential) is preserved, such
that the system does not support density modulation along
this axis. However, the presence of SO coupling breaks the
spin-rotational symmetry in the Sx-Sy plane, and leads to
spontaneous chiral domain walls.

In order to give a clear description of this phenomenon,
we first consider the effect of SO coupling on the relative
phase θ↑-θ↓ of the two-component condensates, where θ↑ and
θ↓ represent the phases of the spin-up and spin-down wave
functions, respectively. In the absence of SO coupling, the
Hamiltonian of Eq. (1) does not depend on the relative phase
between the two spin components. In the presence of SO
coupling, for the superfluid phase illustrated in Figs. 1(a)–1(d),
the phase of the components does not alter except periodic
jumps in the x direction [see Fig. 1(c)], thus we have ∇θ↑ =
∇θ↓ = 0. Due to the translational symmetry, the gradient of the
density along the y direction can be approximately considered
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(a)

(b)

(c)

FIG. 5. (Color online) Domain wall chirality. (a) Section view of
the relative phase θ↑-θ↓ along the x axis. The presence of Rashba SO
coupling locks the relative phase at ±π/2, and the periodic change
of the densities along the x direction induces a periodic modulation
of the relative phase between π/2 and −π/2. By tuning the sign of
the Rashba SO coupling from positive (κ > 0) to negative (κ < 0),
the relative phase will be changed from ±π/2 (red thick line) to
∓π/2 (blue thick dashed line). (b) An illustration of right-handed
chiral Bloch walls stabilized by positive Rashba SO coupling with
κ > 0. (c) An illustration of left-handed chiral Bloch walls stabilized
by negative Rashba SO coupling with κ < 0. By crossing a right-
handed (left-handed) chiral Bloch wall, the spin vector flips like a
right-rotating (left-rotating) spiral.

as ∂y |�↑|2 � ∂y |�↓|2 � 0, so the SO-coupling term in Eq. (1)
can be represented as

∫
�†Vso�dr = 2κ

∫
|�↓|∂x |�↑| sin(θ↑ − θ↓)dr. (2)

One can easily see that in the presence of SO coupling,
the Hamiltonian depends on the relative phase θ↑ − θ↓. By
minimizing the energy functional, the relative phase of the
ground-state wave functions has to be locked at ±π/2, where
the sign ± is determined by the sign of ∂x |�↑|. As a result,
the periodic density modulation along the x direction leads

to a relative phase alternating between π/2 and −π/2 [see
Fig. 5(a)].

The relative phase plays an important role in determining
the type of the domain walls, which separate the spin-up
and spin-down domains [60]. From the definition of the spin
density vector S, one finds that Sz is uniquely determined
by the relative density, while the direction of the spin
projection on the Sx-Sy plane is determined by the relative
phase and can be represented by an azimuthal angle α =
arctan(Sy/Sx) = θ↓ − θ↑. In the absence of SO coupling, the
two-component condensates have an arbitrary relative phase,
such that the spin projection on the Sx-Sy plane within the
domain wall can take arbitrary directions. In the presence of
SO coupling, the relative phase is locked at ±π/2, thus the
spin-rotational symmetry in the Sx-Sy plane is broken. As
Sx = 2|�↑||�↓| cos(θ↑ − θ↓)/(|�↑|2 + |�↓|2), obviously we
have Sx = 0. This implies that the spins on the domain wall
are confined within the Sy-Sz plane and form a Bloch wall,
crossing which the spin vector rotates like a spiral [61].

One important feature of a domain wall is its chirality, which
distinguishes the right-handed rotation from the left-handed
rotation as moving between domains. Domain wall chirality
has been recently investigated in ultrathin ferromagnetic
films [61–63]. As a new controllable degree of freedom, do-
main wall chirality opens up new opportunities for spintronics
device designs, and has potential application in information
processing and storage. In the present system, we find that the
chirality of the Bloch walls can be manipulated by changing
the sign of the Rashba SO coupling. According to Eq. (2),
if one changes the sign of the Rashba SO-coupling constant,
the relative phase will jump between ±π/2 [see Fig. 5(a)].
As Sy = −2|�↑||�↓| sin(θ↑ − θ↓)/(|�↑|2 + |�↓|2), changing
the sign of the relative phase will change the sign of Sy ,
and hence the chirality of the Bloch walls. Typical examples
of the spin configurations are given in Figs. 5(b) and 5(c),
where the right-handed and left-handed chiral Bloch walls
correspond to positive and negative Rashba SO-coupling
constants, respectively. In a realistic experiment, the sign of
the Rashba SO coupling can be varied by tuning the phase of
the rf field [53] in the proposal described in Appendix A.

V. EFFECTS OF ASYMMETRIC INTERACTION AND
ANISOTROPIC SPIN-ORBIT COUPLING

In the discussion above, we have focused on the case
of SU(2) symmetric interaction with g↑↑ = g↓↓ = g↑↓. It is
important to consider also the non-SU(2) symmetric inter-
action with g↑↑ = g↓↓ �= g↑↓. We find that if a supersolid
phase can be stabilized with a proper combination of SO-
coupling strength κ and periodic potential depth V0 with a
SU(2) symmetric interaction, an asymmetric interaction with
g↑↑ > g↑↓ always favors the supersolid phase, as shown in
Fig. 6(a). The supersolid phase is also stable for g↑↑ < g↑↓
provided that the difference in g↑↓ and g↑↑ is sufficiently small,
g↑↓ − g↑↑ � g↑↓. Such a situation corresponds to Fig. 6(b).
As one further increases the asymmetry such that g↑↑ � g↑↓,
the supersolid phase becomes unfavorable and is replaced by
the superfluid phase [Figs. 6(c) and 6(d)].

Additionally we have also considered the anisotropy effects
of the SO coupling. By decreasing κx we find that the
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FIG. 6. (Color online) Effects of asymmetric interaction and anisotropic spin-orbit coupling. (a)–(c) Density distributions of Bose
condensates with Rashba SO coupling and asymmetric interaction. While the intracomponent interaction is fixed with g̃↑↑ = g̃↓↓ = 6000,
the intercomponent interactions are varied to be (a) g̃↑↓ = 3000, (b) g̃↑↓ = 7000, and (c) g̃↑↓ = 18 000. The Rashba SO-coupling strength is
taken as κ = 4π�/ma in these plots. Notice that a sufficiently strong intercomponent interaction can drive the system from the supersolid phase
to the superfluid phase. (e), (f) Density distributions of Bose condensates in the presence of anisotropic SO interaction with κx �= κy . Parameters
used in these two plots are (e) κx = 3π�/ma, κy = 4π�/ma and (f) κx = 2π�/ma, κy = 4π�/ma. Here, the interatomic interactions are
considered to be SU(2) symmetric with g̃ = 6000. By increasing the SO-coupling anisotropy beyond a certain value, the system will undergo
a phase transition and become a superfluid which can be regarded as a plane-wave state characterized by phase modulation shown in (g). We
emphasize that the superfluid phases driven by asymmetric interaction (c) and by anisotropic SO coupling (f) acquire different properties, as
can be easily distinguished from the momentum distribution depicted in (d) and (h), respectively. In this figure, the periodic potential depth is
taken as V0 = 20π 2

�
2/ma2.

supersolid phase, if it exists in the Rashba case, remains stable
for a certain range of κx < κy , as shown in Fig. 6(e). By
further increasing the anisotropy, the system undergoes a phase
transition and becomes a superfluid, as shown in Fig. 6(f).
This superfluid phase can be regarded as a plane-wave state
characterized by a phase modulation in the y direction, as
shown in Fig. 6(g). The momentum distribution for this case
is illustrated in Fig. 6(h). In particular, when κx = 0, the SO
coupling becomes unidirectional and reduces to that of the
National Institute of Standards and Technology scheme [23–
25], and the supersolid phase with nontrivial topological spin
texture is no longer formed.

VI. DISCUSSION

The system considered can be realized experimentally in
87Rb condensates using two magnetic states |F = 1,mF = 1〉
and |F = 1,mF = −1〉 of the F = 1 ground-state manifold.
The Rashba SO coupling and spin-dependent periodic po-
tential can be implemented by a combination of magnetic
pulses [53,54], and a pair of cross-linear polarized coun-
terpropagating laser beams [50,51]. The detail proposal is
given in Appendix A. Considering a typical experimental
situation in which a total of N = 1.7 × 105 atoms with the
s-wave scattering length aαβ ≈ 100aB (aB is the Bohr radius)
are confined in a harmonic trap with the frequencies ω⊥ ≈

2π × 40 Hz and ωz ≈ 2π × 200 Hz, we obtain the effective
interaction parameter g̃ ≈ 6000. By using a CO2 laser operated
at a wavelength of 10.6 μm, one can produce a lattice constant
a coinciding with π

√
�/mω⊥. These are consistent with the

parameters used in our calculations.
The supersolid phase can be identified either by a direct

observation of the lattice structure via in situ measure-
ments [64,65] or by momentum distribution measurements
using the time-of-fight imaging technique [66]. The topolog-
ical spin configurations of the meron-pair textures, as well
as the chiral domain walls, can be imaged nondestructively
with a high spatial resolution by the magnetization-sensitive
phase-contrast imaging technique [67]. The domain wall
chirality can also be determined by extracting the relative phase
from the dual state imaging technique [68].

To summarize, we have studied the spin-orbit-coupled
Bose-Einstein condensates in a spin-dependent periodic poten-
tial. We have demonstrated that the interplay between the spin-
orbit coupling and the spin-dependent periodic potential leads
to the emergence of a supersolid phase, which features a con-
comitant magnetic ordering with topologically nontrivial spin
textures. We have explored the phase diagram of the system
upon changing the spin-orbit-coupling strength and the peri-
odic potential depth, and investigated the effects of asymmetric
interatomic interaction and anisotropic spin-orbit coupling.
Proposals to realize and observe the supersolid phase within
realistic experimental situations have also been discussed.
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APPENDIX A: CREATING SPIN-ORBIT-COUPLED BOSE
GASES IN A SPIN-DEPENDENT PERIODIC POTENTIAL

We consider a two-component Bose gas of ultacold alkali
atoms, such as 87Rb, with two internal states chosen to be the
hyperfine states |F = 1,mF = 1〉 and |F = 1,mF = −1〉 of
the F = 1 ground-state manifold. The protocol for implement-
ing the SO coupling and the spin-dependent periodic potential
is illustrated in Fig. 7. It relies on the ability to switch between
magnetic pulses and laser pulses [see Fig. 7(b)].

The first two stages of the scheme represent a modified
version of a recent proposal [53] to produce SO coupling
by means of magnetic pulses. Originally it was proposed to
create the SO coupling using a strong time-independent bias
magnetic field along the quantization axis z and infrared (IR)
magnetic field in the x-y plane with a frequency ω in resonance
with splitting between the magnetic sublevels induced by the
bias field [53]. Yet now we are dealing with the hyperfine
states |F = 1,mF = 1〉 and |F = 1,mF = −1〉, which cannot
be directly coupled by such magnetic pulses. To bypass the
problem, we propose to use simultaneously two IR magnetic
fields in the x-y plane with different frequencies ω1 �= ω2,
where frequency sum ω1 + ω2 is equal to the magnetic splitting
between the two sublevels. This provides a two-photon
coupling between the hyperfine states |F = 1,mF = 1〉 and
|F = 1,mF = −1〉. The corresponding second-order coupling
Hamiltonian can be made proportional to σx or σy depending
on the phases of the IR fields, like in Ref. [53], where σx and
σy are the quasispin operators for the selected pair of states.

The magnetic field B1 with frequency ω1 is taken to be
uniform and oriented along the x axis. Another magnetic field
B2 with frequency ω2 is produced by a pair of wires along
the y or x axis for the first (0 � t < τ ) and the second (τ �
t < 2τ ) stages, respectively [53]. By going to the rotating
frame to eliminate the bias field along the z direction, choosing
the proper phases of the IR magnetic fields, and making the
rotating-wave approximation neglect the fast oscillating terms,
the second-order coupling induced by the IR fields can yield
the SO-coupling terms −i�κxσx∂x and −i�κyσy∂y for the first
and second stages, respectively. The SO-coupling parameters
κx and κy depend on the strength of the magnetic pulses and the
detuning from the single photon resonance, and also require
some quadratic Zeeman shift in order to be nonzero [69].
The first two stages provide a 2D SO coupling [53,54] Vso =
−i�(κxσx∂x + κyσy∂y) in the first-order approximation, which
is valid for a sufficiently short duration τ . In particular, for
κx = κy , one arrives at the isotropic Rashba-type SO coupling.

In the third stage, 2τ � t < 3τ , the magnetic field is
turned off, and two counterpropagating laser beams are applied
with the same frequency but perpendicular linear polarization
vectors [see Fig. 7(a)]. In this case, a standing wave light field
is formed. It can be decomposed into a superposition of σ+ and

FIG. 7. (Color online) Experimental setup for creating spin-
orbit-coupled Bose gases in a spin-dependent periodic potential.
(a) The cloud of atoms is situated tens of micrometers above the
surface of an atom chip. Two pairs of parallel microwires with
amplitude modulated rf current are embedded in the chip, and
produce periodic pulsed magnetic field gradients along perpendicular
directions. Another pulsed uniform magnetic field oriented along
the x axis is added, with the sum frequency of the two magnetic
fields equal to the magnetic splitting induced by a strong bias field
B0ez between the sublevels mF = ±1. This provides a two-photon
coupling between the hyperfine states, and induces an effective 2D
SO coupling in the first-order approximation to the pulse duration
τ . Two counterpropagating linearly polarized laser beams with
the same frequency but perpendicular polarization vectors create a
spin-dependent periodic potential. (b) The pulse sequence used to
implement SO coupling and spin-dependent periodic potential. The
parameters γx and γy characterize the strength of the magnetic field
gradient, and β1(t) and β2(t) define the temporal shape of the magnetic
fields. (c) Two polarized standing wave laser fields σ+ (purple) and
σ− (cyan) are produced by the counterpropagating linearly polarized
lasers in (a). Due to the polarization-dependent ac Stark shift, the
internal state |1,1〉 is affected by the standing wave laser field σ+,
while the internal state |1,−1〉 experiences the standing wave laser
field σ−.

σ− polarized standing waves, giving rise to periodic potentials
V+ = V0 sin2(πx/a) and V− = V0 cos2(πx/a) [51]. Due to
the polarization-dependent ac Stark shift, atoms in different
hyperfine states will feel significantly different potentials [70].
For the F = 1 ground-state manifold chosen above, the
internal state |F = 1,mF = 1〉 experiences the V+ potential
and the internal state |F = 1,mF = −1〉 is affected by the V−
potential. This leads to the formation of the spin-dependent
periodic potential [71], as shown in Fig. 7(c).

APPENDIX B: CALCULATING THE MANY-BODY
GROUND STATES

We investigate the many-body effects based on the Gross-
Pitaevskii mean-field theory. It is well expected that a mean-
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FIG. 8. (Color online) Quantum depletion as a function of the
spin-orbit-coupling strength (a) and the periodic potential depth (b).
The periodic potential depth is fixed at V0 = 20π 2

�
2/ma2 in (a),

and the spin-orbit-coupling strength is fixed at κ = 4π�/ma in (b).
The dimensionless interaction parameter is taken as g̃ = 6000. The
quantum depletion is always less than 0.1%, thereby confirming the
validity of the mean-field approach.

field approach is valid provided that the system is far away
from a quantum critical point such that the quantum fluctuation
effects are not significant. In the case of one-dimensional

optical lattice where each lattice site is essentially a one-
dimensional tube containing a large number of particles, the
Wannier function can be drastically altered from the single-
particle form by the interaction effect. As a consequence, the
critical value of lattice depth is dependent on the atom number
on each lattice site [72]. For the parameters considered in this
article, the particle number in each tube is as high as several
thousand, which ensures that the critical value of lattice depth
is above 90 recoil energy. Thus, we expect the mean-field
approach to give a satisfactory description of the system for
V0 � 90 recoils.

The validity of the Gross-Pitaevskii mean-field approxima-
tion used above can be checked by evaluating the quantum
depletion caused by quantum fluctuations [55]. According to
the Bogoliubov theory, the fluctuation part δ�̂α(r,t) around
the condensate can be subjected to a canonical transformation
resulting in the expansion δ�̂α(r,t) = ∑

j [uαj (r)e−iωj t γ̂j +
v∗

αj (r)eiωj t γ̂
†
j ], where γ̂j and γ̂

†
j are the quasiparticle creation

and annihilation operators associated with the j th collective
mode. The mode functions uαi(r),vαi(r) and collective fre-
quencies ωj are determined by the Bogoliubov–de Gennes
(BdG) equations

⎡
⎢⎢⎣

Hs↑ + g↑↑|�↑|2 Vso + g↑↓�↑�∗
↓ g↑↑�2

↑ g↑↓�↑�↓
−V ∗

so + g↓↑�↓�∗
↑ Hs↓ + g↓↓|�↓|2 g↓↑�↓�↑ g↓↓�2

↓
g↑↑�∗2

↑ g↑↓�∗
↑�∗

↓ Hs↑ + g↑↑|�↑|2 V ∗
so + g↑↓�∗

↑�↓
g↓↑�∗

↓�∗
↑ g↓↓�∗2

↓ −Vso + g↓↑�∗
↓�↑ Hs↓ + g↓↓|�↓|2

⎤
⎥⎥⎦

⎡
⎢⎣

u↑i(r)
u↓i(r)
v↑i(r)
v↓i(r)

⎤
⎥⎦ = �ωi

⎡
⎢⎣

u↑i(r)
u↓i(r)

−v↑i(r)
−v↓i(r)

⎤
⎥⎦ , (B1)

under the normalization
∫

(|u↑i |2 + |u↓i |2 − |v↑i |2 −
|v↓i |2)dr = 1. Here, Hs↑ = Hosc + V↑ + g↑↑|�↑|2 +
g↑↓|�↓|2 − μ, Hs↓ = Hosc + V↓ + g↓↓|�↓|2 + g↓↑|�↑|2 − μ

with Hosc = − �
2

2m
∇2 + VH and μ the chemical potential,

and Vso = −�(iκx∂x + κy∂y). At zero temperature, the
number of noncondensate particles can be calculated by
δN = ∫ ∑

j (|v↑i |2 + |v↓i |2)dr, where j is restricted by the
non-negative mode frequencies ωj > 0.

By numerically solving the BdG equations (B1) in two
dimensions, we find that the quantum depletion is small not
only in the superfluid phase but also in the supersolid phase,
thus the quantum fluctuations can be neglected. In Figs. 8(a)
and 8(b), we present the quantum depletion δN/(N + δN)
as a function of the SO-coupling strength κ and the periodic
potential depth V0, respectively. One can see that, the quantum

depletion is always less than 0.1%, thereby confirming the
validity of the Gross-Pitaevskii approach.

By numerically minimizing the energy functional, we
can obtain the many-body ground-state wave functions. A
valid and widely used method for the minimization is the
imaginary time algorithm [73,74]. In solving the imaginary
time evolution equations, we develop a backward-forward
Euler Fourier-pseudospectral discretization. For the time
discretization, we use the backward or forward Euler scheme
for linear or nonlinear terms in time derivatives. For the
spatial discretization, we take fast Fourier transform in spatial
derivatives. A similar discretization scheme, named backward-
forward Euler sine-pseudospectral discretization, has been
proposed and demonstrated for Bose systems without SO
coupling [75].
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