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Superluminal two-color light in a multiple Raman gain medium
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We investigate theoretically the formation of two-component light with superluminal group velocity in a
medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of
the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination
is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations
demonstrate that this superluminal component experiences an envelope advancement in the medium with respect
to the propagation in vacuum.
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I. INTRODUCTION

The concepts of light velocity and speed of information
transfer have been debated by many outstanding scientists
in the past [1–3]. It is commonly accepted that the ultimate
limitation for the speed of information transfer is imposed by
the causality principle. According to it, no information can be
transferred at the speed exceeding the speed of light in vacuum
c. Particularly, for light pulses it means that the motion of the
front of a light pulse or the energy transport cannot occur at
velocities greater than c [2,4,5].

The phase and group velocities of a light pulse have no such
strict limitations. They may take arbitrary values depending on
the material properties and be significantly different from the
vacuum speed of light [6]. Group velocity defines the speed of
propagation of the envelope of the pulse

vg = c

ng

= c

n + ω(dn/dω)
, (1)

where n and ng are refractive and group velocity indices,
respectively. The group velocity can be managed through the
dispersion control of the medium dn/dω. Under the normal
dispersion conditions dn/dω > 0, the group velocity is always
less than the phase velocity in the medium, c/n. It is possible
to reach extremely small values of vg (called “slow light”) in
the case of electromagnetically induced transparency [7–11],
where a steep dispersive profile over a short wavelength range
is achieved [12]. On the contrary, in the case of anomalous
dispersion when dn/dω < 0, the group velocity becomes
higher than c if

n + ω(dn/dω) < 1. (2)

Moreover, the group velocity changes its sign to a negative
value in the case

n + ω(dn/dω) < 0. (3)
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Both these conditions correspond to a superluminal (fast) light
propagation regime. In this regime the pulse traverses the
medium at the speed exceeding that in the vacuum.

There have been plenty of remarkable works devoted to
the topic of superluminal propagation (see, e.g., [13], and
references therein). The conditions of anomalous dispersion
can be naturally achieved within the medium’s absorption
band [14] or inside a tunnel barrier [15]. Although possible,
superluminal propagation in this case is hardly observed due
to significant loss [14] or pulse deformations [16]. To avoid
that, some novel approaches have been suggested to use
transparent spectral regions for superluminal light [17–21].
Particularly, it was demonstrated that in the case of Raman gain
doublet almost linear anomalous dispersion can be created and
therefore distorsionless pulse propagation is possible [19].

Theoretical considerations predict rather striking and coun-
terintuitive features of superluminal light. Among the most
exciting is a propagation in the backward direction (backward
light) or the appearance of a pulse peak at the exit of the
medium prior to entering (negative transit time) [14,19].
Recent experimental observations confirmed both of these
predictions [19,20]. Although being apparently extraordinary,
these phenomena arise, in fact, due to the rephasing of pulse
spectral components favored by the anomalous dispersion [19].
The associated energy transport always occurs in the forward
direction [20] and its speed is strictly limited by the vacuum
speed of light [4].

Most schemes employ only a single frequency probe pulse
to produce superluminal light or demonstrate simultaneous
formation of slow and fast light [22–25]. The propagation of
a single frequency probe beam in an N -type atomic system
using double Raman gain process is investigated in Ref.
[26]. In this work we consider a different concept where
superluminal light is achieved for the superposition of probe
fields at different frequencies. The formation of such coupled
optical fields (spinor light) was first analyzed in [27,28].
Here, we demonstrate that similar spinor properties can also
be achieved in the case of fast light. In the following we
analyze the propagation of two probe fields amplified by
the Raman process pumped by four strong time-independent
fields. Such a scheme may be viewed as consisting of two
Raman gain doublets each providing the amplification for
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the corresponding spectral components of the probe pulse.
We begin with the well-known Raman amplification schemes
where single probe and either single or double pump beams
are used. Based on these results we derive the propagation
equations for the two probe fields in the presence of one Raman
gain doublet (two pump frequencies) and two Raman gain
doublets (four pump frequencies). Our study demonstrates that
the latter scheme supports the uncoupled and coupled states
where the coupled state exhibits superluminal propagation.
Mathematically the coupled state is represented as a linear
superposition of the probe field envelopes which has a definite
group velocity (exceeding c). In this scheme the superluminal
propagation is possible only for specific superpositions of the
field envelopes, and the individual probe fields do not have
definite group velocities. This is a novel aspect of the wave
mixing in Raman media which may be interesting for optical
signal control or interferometric applications.

The paper is organized as follows: In Sec. II we derive
the equations of the propagation of the two monochromatic
probe fields in the presence of multiple Raman resonances.
We use the monochromatic solutions of the field equations
further in Sec. III to investigate the superluminal propagation
of the two-component wave packets of light. Section IV sum-
marizes our findings and discusses some possible experimental
implementations of the superluminal light.

II. EQUATIONS FOR THE PROPAGATION
OF THE PROBE FIELDS

In this section we derive the equations describing the prop-
agation of the probe field(s) in the Raman gain configuration.
In order to present the physical situation more transparently
we start with a simplest scheme containing only one probe
field and one pump field. After describing the propagation
of the probe field in this simplest scheme we consider more
complicated schemes with additional pump and probe fields.

A. Single probe field

1. Single pump field

First we consider the simplest Raman amplification scheme
shown in Fig. 1(a). Suppose there is an ensemble of atoms
characterized by two hyperfine ground levels g and s, and an
electronic excited level e. The state of the atoms is described
by atomic amplitudes �g(r,t), �s(r,t), and �e(r,t). The atoms
interact with two light fields: a strong pump laser and a weaker
probe field. Initially the atoms are in the ground level g and
we assume the Rabi frequency and duration of the probe pulse
are small enough so that we can neglect the depletion of

(a) (b)

FIG. 1. (Color online) Raman amplification schemes with a sin-
gle probe field: Raman singlet (a) and Raman doublet (b).

the ground level g. The propagation of the probe field inside
of the atomic cloud we describe similarly as in Ref. [27]. We
write the electric field of the probe beam in the form of a plane
wave with modulated amplitude propagating along the z axis:

E(r,t) = ê

√
�ω

2ε0
E(r,t)eikz−iωt + H.c. (4)

Here ω is the central frequency of the probe beam, k = ω/c

is the corresponding wave vector, and ê⊥ẑ is the unit
polarization vector. The probe field E(r,t) obeys the following
wave equation:

c2∇2E − ∂2

∂t2
E = 1

ε0

∂2

∂t2
P, (5)

where

P = êμ�∗
s �e + H.c. (6)

is the polarization field of atoms, μ being the dipole
moment for the atomic transition s → e. The atomic
amplitudes are normalized according to the equation
|�g|2 + |�s |2 + |�e|2 = n, where n is the atomic density. We
introduce the slowly varying polarization P as

P = êPeikz−iωt + H.c. (7)

Using Eq. (6) we get

P = μ�∗
s �ee

iωt−ikz. (8)

In the case when the amplitude E varies slowly during the
wavelength and optical cycle we can approximate Eq. (5) as
[29]

(∂t + c∂z)E = ig̃P, (9)

where

g̃ =
√

ω

2ε0�
. (10)

Let us introduce the slowly varying atomic amplitudes

�g = �ge
iωgt , (11)

�s = �se
i(ωg+ωp−ω)t+ikz, (12)

�e = �ee
i(ωg+ωp)t , (13)

where �ωg is the energy of the atomic ground state g and ωp

is the frequency of the pump field. Using the slowly varying
atomic amplitudes and Eq. (8) the slowly varying polarization
P can be written as

P = μ�∗
s �e. (14)

The equations for the slowly varying atomic amplitudes are

i∂t�e = �0�e − gE�s − ��g, (15)

i∂t�s = (δ − iγ )�s − gE∗�e, (16)

where � is the Rabi frequency of the pump field,

�0 = ωe − ωg − ωp (17)

is one-photon detuning, and

δ = ω − ωp + ωs − ωg (18)
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is two-photon detuning. Here �ωe and �ωs are energies of the
atomic states e and s. The parameter γ characterizes the decay
rate of the level s and the parameter g = μg̃ characterizes the
strength of coupling of the probe field with the atoms.

Let us consider a monochromatic probe field for which
the amplitude E is time independent. We search for time-
independent atomic amplitudes �g , �s , and �e, so that

c∂zE − ig�∗
s �e = 0, (19)

�0�e − gE�s − ��g = 0, (20)

(δ − iγ )�s − gE∗�e = 0. (21)

When one-photon detuning �0 is large, �0|δ − iγ | � g2|E |2,
Eq. (20) yields

�e = �

�0
�g. (22)

Substituting Eq. (22) into Eq. (21) we get

�s = g�g�

�0(δ − iγ )
E∗. (23)

Finally, using Eqs. (22), (23), and (19) we get the propagation
equation for the electric field

c∂zE − i
g2n|�|2

�2
0(δ + iγ )

E = 0. (24)

Here we have taken into account that |�g|2 = n in accordance
with the adopted normalization. Plane waves

E(z) = E(0)eiκz (25)

with

κ = g2n|�|2
c�2

0(δ + iγ )
(26)

are the solutions of Eq. (24). Note that κ depends on the
frequency ω of the probe field via the two-photon detuning
δ. The group velocity of the probe field in the medium can
be determined from κ(ω). Since the fast-varying amplitude
is proportional to E(z,t) ∼ E(0) exp{i[ω/c + κ(ω)]z − iωt},
the maximum of the wave packet made from such plane waves
moves with the group velocity

vg = c

{
d [ω + c Reκ(ω)]

dω

}−1

= c

1 + ∂
∂ω

Re {cκ(ω)} . (27)

Using Eq. (26) we get

vg = c

1 + g2n|�|2
�2

0

γ 2−δ2

(δ2+γ 2)2

. (28)

One can see that in the case γ < δ the group velocity
exceeds c. This situation corresponds to the wings of the gain
profile where the dispersion is anomalous. However, when
two-photon detuning δ is close to zero, vg < c. In order to
improve this situation and have group velocity larger than c in
Ref. [18] it was suggested to use two pump fields with different
frequencies.

The amplitude of the probe field propagating through an
atomic cloud is changed. If the monochromatic probe field is

incident on the atomic cloud, the amplitude of the transmitted
field at the end of the atomic cloud becomes

E(L) ∼ exp(iκL) = exp

(
i

g2n|�|2L
c�2

0(δ + iγ )

)
. (29)

By separating real and imaginary parts we obtain the transmis-
sion coefficient

R = exp

( |�|2
�2

0

γg2nL

c(δ2 + γ 2)

)
= exp

( |�|2
�2

0

L

Ldec

γ 2

δ2 + γ 2

)
,

(30)

where

Ldec = γ c

g2n
(31)

is the characteristic length related to the decay of the level
s. Since the expression in the exponent is positive, the
transmission coefficient R > 1, so there is an amplification
of the probe beam.

2. Two pump fields (Raman doublet)

Now let us consider a situation where two strong pump
beams (with frequencies ωp1 and ωp2 ) act on the atomic en-
semble instead of one pump beam. This situation corresponds
to a Raman gain doublet [Fig. 1(b)] and was investigated in
Refs. [18,19,30,31]. The consistent mathematical description
of this case can be obtained using Floquet theory [32].
However, here we make use of a simpler approach. To
describe the propagation of the probe beam in this scheme
we separate the atomic amplitudes into two parts oscillating
with different frequencies: �e = �e1 + �e2 , �s = �s1 + �s2

with corresponding slowly changing amplitudes

�e1 = �e1e
i(ωg+ωp1 )t , �e2 = �e2e

i(ωg+ωp2 )t ,

�s1 = �s1e
i(ωg+ωp1 −ω)t+ikz, �s2 = �s2e

i(ωg+ωp2 −ω)t+ikz.

After separating the atomic amplitudes into two parts,
Eq. (8) yields the following relation for the slowly varying
polarization:

P = μ(�∗
s1
�e1 + �∗

s2
�e2 + �∗

s1
�e2e

−2i�t + �∗
s2
�e1e

2i�t ),

(32)

where

2� = ωp2 − ωp1 . (33)

Neglecting the terms oscillating with a large frequency 2�

which is still small compared to the one-photon detuning
�0, one can write equations for the probe field and atomic
amplitudes as

(∂t + c∂z)E = ig�∗
s1
�e1 + ig�∗

s2
�e2 , (34)

i∂t�e1 = (�0 − �)�e1 − gE�s1 − �1�g, (35)

i∂t�e2 = (�0 + �)�e2 − gE�s2 − �2�g, (36)

i∂t�s1 = (δ + � − iγ )�s1 − gE∗�e1 , (37)

i∂t�s2 = (δ − � − iγ )�s2 − gE∗�e2 . (38)
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Here

�0 = ωe − ωg − 1
2 (ωp1 + ωp2 ) (39)

is an average one-photon detuning and

δ = ω − 1
2

(
ωp1 + ωp2

) + ωs − ωg (40)

is an average two-photon detuning. Proceeding similarly as
in the case of one pump field we obtain the following set of
equations for the time-independent complex amplitudes in the
case of large �0:

c∂zE = ig�∗
s1

�1

�0
�g + ig�∗

s2

�1

�0
�g, (41)

�s1 = g�1

�0(δ + � − iγ )
�gE∗, (42)

�s2 = g�2

�0(δ − � − iγ )
�gE∗. (43)

From Eqs. (41)–(43) follows the equation for the probe field

c∂zE − i
g2n

�2
0

[ |�1|2
δ + � + iγ

+ |�2|2
δ − � + iγ

]
E = 0. (44)

Searching for the plane-wave solution we find

κ = g2n

c�2
0

[ |�1|2
δ + � + iγ

+ |�2|2
δ − � + iγ

]
. (45)

In a particular case where |�1| = |�2| and δ = 0 one finds

∂

∂ω
Re {cκ(ω)} = −2g2n

|�1|2
�2

0

�2 − γ 2

(�2 + γ 2)2
. (46)

Thus for � > γ the group velocity is larger than c. We see that,
in contrast to the scheme with a single pump field, we have
superluminal propagation even for zero two-photon detuning
δ.

B. Two probe fields

1. Two pump fields

Now we shall turn to the main goal of this paper by studying
the propagation of two probe fields in a Raman gain situation.
Thus we consider an ensemble of atoms characterized by two
hyperfine ground levels g and s and two electronic excited
levels e1 and e2. The state of the atoms is described by the
atomic amplitudes �g(r,t), �s(r,t), �e1 (r,t), and �e2 (r,t).
Similarly to the single probe field we first investigate a simpler
scheme where the atoms interact with four light fields: two
strong pump lasers and two weaker probe fields [Fig. 2(a)].
We assume the four-photon resonance condition

ω1 − ωp1 = ω2 − ωp2 , (47)

where ω1 and ω2 are frequencies of the probe beams, and ωp1

and ωp2 are frequencies of the pump beams.
For each probe beam we introduce slowly varying ampli-

tudes E1 and E2 of the electric field according to Eq. (4). Wave
vectors of the probe fields are k1 = ω1/c and k2 = ω2/c . The
wave equations and the corresponding polarization fields are
written separately for each of the probe fields similarly to
Eqs. (5) and (6). In the following, the strength of coupling
of probe fields with the atoms is assumed to be the same for

(a) (b)

FIG. 2. (Color online) Raman amplification schemes with two
probe fields: double Raman singlet (a) and double Raman doublet
(b).

both probe fields: g = μ1
√

ω1/2ε0� = μ2
√

ω2/2ε0�, where
μ1 and μ2 denote the dipole momenta for the atomic transitions
s → e1 and s → e2, respectively. After introducing the slowly
varying atomic amplitudes we obtain the following equations
for slowly varying probe field amplitudes E1 and E2:

(∂t + c∂z)E1 = ig�∗
s �e1 , (48)

(∂t + c∂z)E2 = ig�∗
s �e2 . (49)

On the other hand, the equations for the atomic amplitudes are

i∂t�e1 = �0�e1 − gE1�s − �1�g, (50)

i∂t�e2 = �0�e2 − gE2�s − �2�g, (51)

i∂t�s = (δ − iγ )�s − gE∗
1 �e1 − gE∗

2 �e2 , (52)

where

�0 = ωe1 − ωg − ωp1 = ωe2 − ωg − ωp2 (53)

is one-photon detuning and

δ = ω1 − ωp1 + ωs − ωg = ω2 − ωp2 + ωs − ωg (54)

is two-photon detuning. Here �ωe1 , �ωe2 , and �ωs are energies
of the atomic states e1, e2, and s, respectively.

As before, we consider the case of monochromatic probe
beams with time-independent amplitudes E1 and E2 and the
constant atomic amplitudes �g , �s , �e1 , and �e2 . Assuming
a large detuning, �0|δ − iγ | � g2|E |2, the corresponding
equations for the atomic amplitudes reduce to

�e1 = �1

�0
�g, (55)

�e2 = �2

�0
�g, (56)

and

�s = g�g

�0(δ − iγ )
(�1E∗

1 + �2E∗
2 ). (57)

Substituting these relations into the equations for the fields E1

and E2, we get

c∂zE1 − i
g2n�1

�2
0(δ + iγ )

(�∗
1E1 + �∗

2E2) = 0, (58)

c∂zE2 − i
g2n�2

�2
0(δ + iγ )

(�∗
1E1 + �∗

2E2) = 0. (59)
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Introducing new fields representing superpositions of the
original probe fields

ψ = 1

�
(�∗

1E1 + �∗
2E2), (60)

φ = 1

�
(�2E1 − �1E2), (61)

Eqs. (58) and (59) take the form

c∂zψ − i
g2n�2

�2
0(δ + iγ )

ψ = 0, (62)

c∂zφ = 0, (63)

where

� =
√

|�1|2 + |�2|2 (64)

is the total Rabi frequency. One can see that the field φ

propagates like in free space without interacting with the
atoms. The other field ψ does interact with the atoms. The
solutions of Eq. (62) are plane waves:

ψ(z) = ψ(0)eiκz, (65)

with

κ = g2n�2

c�2
0(δ + iγ )

. (66)

This result coincides with Eq. (26), implying that the group
velocity has the form of Eq. (28). For γ < δ the group velocity
exceeds the vacuum speed of light.

2. Four pump fields (double Raman doublet)

Let us now consider a situation where four strong pump
beams act on the atomic ensemble. This situation corresponds
to a Raman gain doublet for each of the probe beams
[Fig. 2(b)]. We assume four-photon resonances

ωp1,1 − ω1 = ωp2,1 − ω2, (67)

ωp1,2 − ω1 = ωp2,2 − ω2, (68)

where ωp1,1 , ωp1,2 , ωp2,1 , and ωp2,2 are the frequencies of the
pump beams. Similarly as in the scheme with the single probe
beam we write the atomic amplitudes as a sum of two parts:
�e1 = �e1,1 + �e1,2 , �e2 = �e2,1 + �e2,2 , and �s = �s1 + �s2 .
Introducing the slowly changing amplitudes and neglecting the
terms oscillating with the frequency

2� = ωp1,2 − ωp1,1 = ωp2,2 − ωp2,1 (69)

we find the following set of equations:

c∂zE1 = ig�∗
s1

�1,1

�0
�g + ig�∗

s2

�1,2

�0
�g, (70)

c∂zE2 = ig�∗
s1

�2,1

�0
�g + ig�∗

s2

�2,2

�0
�g, (71)

�s1 = g�g

(δ + � − iγ )�0
(�1,1E∗

1 + �2,1E∗
2 ), (72)

�s2 = g�g

(δ − � − iγ )�0
(�1,2E∗

1 + �2,2E∗
2 ) (73)

for the amplitudes of the monochromatic probe fields and the
time-independent atomic amplitudes. Here

�0 = ωe1 − ωg − 1
2

(
ωp1,1 + ωp1,2

)
= ωe2 − ωg − 1

2

(
ωp2,1 + ωp2,2

)
(74)

is an average two-photon detuning and

δ = ω1 − 1
2

(
ωp1,1 + ωp1,2

) + ωs − ωg

= ω2 − 1
2

(
ωp2,1 + ωp2,2

) + ωs − ωg (75)

is an average two-photon detuning. From Eqs. (70)–(73) we
obtain the equations of propagation of the probe fields

c∂zE1 = i
g2n

�2
0

[
�1,1(�∗

1,1E1 + �∗
2,1E2)

(δ + � + iγ )

+ �1,2(�∗
1,2E1 + �∗

2,2E2)

(δ − � + iγ )

]
, (76)

c∂zE2 = i
g2n

�2
0

[
�2,1(�∗

1,1E1 + �∗
2,1E2)

(δ + � + iγ )

+ �2,2(�∗
1,2E1 + �∗

2,2E2)

(δ − � + iγ )

]
. (77)

Let us consider a particular situation in which

�1,2

�1,1
= �2,2

�2,1
. (78)

Introducing new fields

ψ = 1

�1
(�∗

1,1E1 + �∗
2,1E2), (79)

φ = 1

�1
(�2,1E1 − �1,1E2) (80)

we get the equations for the fields ψ and φ:

c∂zψ − i
g2n

�2
0

[
�2

1

δ + � + iγ
+ �2

2

δ − � + iγ

]
ψ = 0, (81)

c∂zφ = 0, (82)

where

�1 =
√

|�1,1|2 + |�2,1|2, (83)

�2 =
√

|�1,2|2 + |�2,2|2. (84)

The field φ propagates without interaction with atoms. The
plane-wave solution of Eq. (81) gives

κ = g2n

c�2
0

[ |�1|2
δ + � + iγ

+ |�2|2
δ − � + iγ

]
. (85)

This quantity corresponds to Eq. (45) providing a superluminal
propagation.

III. PROPAGATION OF PROBE BEAM WAVE PACKETS

To illustrate the superluminal behavior of the probe pulses,
in this section we will consider the propagation of a Gaussian
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wave packet through the atomic cloud. The wave packet is
formed by taking a superposition of monochromatic solutions
of the propagation equations. The length of the atomic cloud
is L. For simplicity we will measure all frequencies in units
of γ and time in units of γ −1 and set γ = 1. Furthermore, by
measuring the length in the units of c/γ , we set c = 1.

A. Single probe field

At first we will consider the propagation of the incident
Gaussian wave packet for a scheme with a single probe beam
and a Raman gain doublet, as shown in Fig. 1(b). The fast-
varying amplitude of the monochromatic probe field is

Eδ(z,t) =

⎧⎪⎨
⎪⎩
Eδe

iδz−iδt , z ≤ 0

Eδe
i(δ+κ(δ))z−iδt , 0 < z < L

Eδe
iκ(δ)L+iδz−iδt , L ≤ z.

(86)

Here we have used the two-photon detuning δ (40) instead of
the frequency ω. The change of the wave number κ(δ) is given
by Eq. (45). When �1 = �2 we can write

κ = M

[
1

δ + � + i
+ 1

δ − � + i

]
, (87)

with

M = 1

Ldec

|�1|2
�2

0

. (88)

Here Ldec is the length defined by Eq. (31). At the central
frequency δ = 0 the group velocity is

vg = 1

1 + κ ′(0)
= 1

1 − 2M �2−1
(�2+1)2

. (89)

In order to get the group velocity larger than 1 (i.e., larger
than c = 1), the dimensionless one-photon detuning should be
� > 1. The group velocity is maximum when � = √

3. For
this value of � it is vg = (1 − M/4)−1. If M > 4, we have a
negative group velocity. For δ = 0 the transmission coefficient
is

R = exp [iκ(0)L] = exp

(
ML

2

�2 + 1

)
. (90)

In particular, for � = √
3, the transmission coefficient is R =

exp(ML/2).
The Gaussian wave packet can be formed by taking a

superposition of monochromatic waves (86)

E(z,t) =
∫ +∞

−∞
Eδ(z,t)dδ, (91)

with

Eδ = 1√
πσ

exp

(
− δ2

σ 2
− iδz0

)
, (92)

where z0 is a location of the initial wave-packet peak, and σ is
the width of the packet in the frequency domain. To be in the
dispersion region with a negative slope, the width σ should be
smaller than approximately 0.8. Using Eq. (92) the incident
probe field reads

E(z,t) = exp

[
−σ 2

4
(z − z0 − t)2

]
. (93)

From this equation we see that the width of the wave packet
in the coordinate space is

σz = 2

σ
. (94)

To avoid tails of the initial wave packet in the atomic cloud,
we need to have |z0| � σz.

For a Gaussian packet narrow in the frequency space, we
can obtain approximate expressions for the electric field by
expanding κ(δ) in power series and taking the first three terms:

κ(δ) ≈ κ(0) + κ ′(0)δ + κ ′′δ2/2, (95)

with

κ(0) = −2i
M

�2 + 1
, (96)

κ ′(0) = −2M
�2 − 1

(�2 + 1)2
, (97)

κ ′′(0) = −4iM
3�2 − 1

(�2 + 1)3
. (98)

Nonlinear terms in the expansion are associated with group ve-
locity dispersion and cause pulse distortion. After performing
the integration we get approximate expressions for the probe
field. The probe field is

Einside(z,t) ≈ 1√
1 − i 1

2κ ′′(0)σ 2z

exp

(
−σ 2{[1 + κ ′(0)]z − z0 − t}2

4
[
1 − i 1

2κ ′′(0)σ 2z
] + iκ(0)z

)
(99)

inside the atomic medium and

Eoutside(z,t) ≈ 1√
1 − i 1

2κ ′′(0)σ 2L

exp

(
−σ 2[z + κ ′(0)L − z0 − t]2

4
[
1 − i 1

2κ ′′(0)σ 2L
] + iκ(0)L

)
(100)

outside the atomic cloud. From Eq. (100) it follows that the
distortion of the pulse is determined by the parameter [1 −
iκ ′′(0)σ 2L/2]−1/2 [19].

Propagation of the Gaussian wave packet, described by
Eq. (93), through atomic cloud is shown in Fig. 3. As one can
see in Fig. 3(a), the front tail of the wave packet, entering the
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FIG. 3. (Color online) Propagation of the incoming Gaussian wave packet, described by Eq. (93) through an atomic cloud, calculated
using Eqs. (86), (91), and (92). All the quantities shown are dimensionless. (a) Time evolution of the probe field. Dashed blue lines show the
location of the atomic cloud. (b) Comparison of the transmitted wave packet (solid blue line) with the wave packet propagating in the vacuum
(dashed red line) at the same time moment t = 90. In order to make the amplitudes of the wave packets similar, the amplitude of the Gaussian
packet propagating in the vacuum is increased by the factor R given by Eq. (90). The parameters used in calculation are σ = 0.1, z0 = −75,
� = √

3, and M = 1; the length of the atomic cloud is L = 10. At these parameters the group velocity is vg = 1.33 and transmission coefficient
R = 148.4.

atomic cloud gets amplified and develops a maximum at the
other end of the atomic cloud. Comparison of the transmitted
wave packet with the wave packet propagating in the vacuum
at the same time moment is shown in Fig. 3(b). In order to make
the amplitudes of the wave packets similar, the amplitude of
the wave packet propagating in the vacuum is increased by the
factor R given by Eq. (90). One can see that the maximum of
the wave packet after the atomic cloud is located at larger
value of the coordinate z than the maximum of the wave
packet propagating in the vacuum. This is a signature of the
superluminal group velocity, vg > 1.

B. Two probe fields

Next let us consider the propagation of the incident
Gaussian wave packet for the scheme with four pump beams
(two Raman gain doublets), shown in Fig. 2(b). At first we will
consider propagation of monochromatic probe fields. Let us
assume that only one probe field E1 is incident on the atomic
cloud. The amplitude of this probe field at the beginning of the
atomic cloud is E1(z = 0) ≡ Eδ . Here we use the two-photon
detuning

δ = ω1 − 1
2

(
ωp1,1 + ωp1,2

) + ωs − ωg

= ω2 − 1
2

(
ωp2,1 + ωp2,2

) + ωs − ωg (101)

instead of the frequencies ω1 and ω2. The fields ψ and φ,
introduced by Eqs. (79) and (80), at the beginning of the atomic
cloud are

ψ(z = 0) = �∗
1,1

�
Eδ, (102)

φ(z = 0) = �2,1

�
Eδ. (103)

Inside the atomic cloud the fields ψ and φ depend on the
coordinate z according to φ(z) = φ(0) and ψ(z) = ψ(0)eiκz,

with κ given by Eq. (85). Thus, at the end of the cloud the
fields ψ and φ are φ(L) = φ(0) and ψ(L) = eiκLψ(0). We will
consider only the case when �1 = �2. Then the expression for
the wave number κ(δ) is the same as in the scheme with the
single probe beam and is given by Eq. (87). The electric fields
of the probe beams inside the atomic cloud can be obtained
from the fields ψ and φ:

E1(z) = 1

�1
[�1,1ψ(z) + �∗

2,1φ(z)]

=
(

1 + |�1,1|2
�2

1

(eiκz − 1)

)
Eδ, (104)

E2(z) = 1

�1

[
�2,1ψ(z) − �∗

1,1φ(z)
] = �2,1�

∗
1,1

�2
1

(eiκz − 1)Eδ.

(105)

Using Eqs. (104) and (105), the fast-varying amplitude of the
monochromatic probe fields are

E1,δ(z,t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Eδe

iδz−iδt , z ≤ 0[
1 + |�1,1|2

�2
1

(eiκ(δ)z − 1)
]
Eδe

iδz−iδt , 0 < z < L[
1 + |�1,1|2

�2
1

(eiκ(δ)L − 1)
]
Eδe

iδz−iδt , L ≤ z,

(106)

E2,δ(z,t) =

⎧⎪⎪⎨
⎪⎪⎩

0, z ≤ 0
�2,1�

∗
1,1

�2
1

(eiκ(δ)z − 1)Eδe
iδz−iδt , 0 < z < L

�2,1�
∗
1,1

�2
1

(eiκ(δ)L − 1)Eδe
iδz−iδt , L ≤ z.

(107)

The amplitude of the second probe field E2 at the other side of
the atomic cloud is maximal when |�1,1|/�1 = |�2,1|/�1 =
1/

√
2.
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FIG. 4. (Color online) Propagation through the atomic cloud of the incoming Gaussian wave packet (93) in the first probe field E1 and the
creation of the second probe field E2 for the scheme with two Raman gain doublets, calculated using Eqs. (106), (107), (108), (109), and (92).
All the quantities shown are dimensionless. (a) Evolution of the probe fields with time. Solid black line shows the first probe field; dotted red
line shows the second probe field. Dashed blue lines indicate the location of the atomic cloud. (b) Comparison of the wave packet of the first
probe beam (solid blue line) and the second probe beam (dotted red line) with the incident wave packet of the first beam propagating in the
vacuum (dashed green line) at the same time moment t = 90. In order to make the amplitudes of the wave packets similar, the amplitude of the
Gaussian packet propagating in the vacuum is increased by the factor 0.5R, with R given by Eq. (90). The parameters used in calculation are
�1,1/�1 = �2,1/�1 = 1/

√
2; all other parameters are the same as in Fig. 3.

The Gaussian wave packet can be formed by taking
superpositions of monochromatic waves (106) and (107)

E1(z,t) =
∫ +∞

−∞
E1,δ(z,t) dδ, (108)

E2(z,t) =
∫ +∞

−∞
E2,δ(z,t) dδ (109)

with Eδ given by Eq. (92). In this case the electric field of the
first probe beam in the free space before the atomic cloud is
given by Eq. (93). After performing the integration we obtain

E1(z,t) = |�2,1|2
�2

1

exp

(
−σ 2

4
(z − z0 − t)2

)

+ |�1,1|2
�2

1

Einside(z,t), (110)

E2(z,t) = �2,1�
∗
1,1

�2
1

[
Einside(z,t)

− exp

(
−σ 2

4
(z − z0 − t)2

)]
(111)

for the probe fields inside of the atomic cloud and

E1(z,t) = |�2,1|2
�2

1

exp

(
−σ 2

4
(z − z0 − t)2

)

+ |�1,1|2
�2

1

Eoutside(z,t), (112)

E2(z,t) = �2,1�
∗
1,1

�2
1

[
Eoutside(z,t)

− exp

(
−σ 2

4
(z − z0 − t)2

)]
(113)

for the probe fields at the other side of the atomic cloud.
Here Einside(z,t) and Eoutside(z,t) are, respectively, the probe
field inside of the atomic cloud and after passing the atomic

cloud in the scheme with the single Raman gain doublet.
For the incident Gaussian packet narrow in the frequency
space we can obtain approximate expressions for the electric
fields by expanding κ(δ) in power series. Then Einside(z,t) and
Eoutside(z,t) are given by Eqs. (99) and (100).

Figure 4 illustrates the evolution of the probe fields in the
scheme with two Raman gain doublets when the first probe
field representing the Gaussian wave packet (93) is incident
on the atomic cloud. As one can see in Fig. 4(a), the front tail
of the wave packet, entering the atomic cloud gets amplified
and develops a maximum at the other end of the atomic cloud.
In addition, the second probe field is created and also gets
amplified, reaching the maximum at the other end of the atomic
cloud. Figure 4(b) compares the wave packets of the probe
beams after exiting the atomic cloud with the incoming wave
packet of the first probe beam propagating in the vacuum. In
order to make the amplitudes of the wave packets similar, the
amplitude of the wave packet propagating in the vacuum is
increased by the factor 0.5R given by Eq. (90). The factor 0.5
is needed because the energy in the scheme with two Raman
gain doublets is transferred to two probe beams, instead of one
beam in the scheme with single Raman gain doublet. After
exiting the atomic cloud, the maximum of the wave packet
of the first probe beam is seen to be located at larger value
of the coordinate z than the maximum of the wave packet
propagating in the vacuum, indicating the superluminal group
velocity vg > 1. The maximum of the second probe beam after
the atomic cloud is almost at the same location as the maximum
of the first probe beam.

IV. CONCLUDING REMARKS

We have demonstrated a possibility of producing superlu-
minal light composed of two probe waves characterized by
different frequencies and propagating in a medium with two
Raman gain doublets. Although individual probe fields exhibit
Raman gain, a strong connection is established between two
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probe fields due to the resonance between real and virtual states
in the coupling scheme. This leads to the formation of a specific
combination (superposition) of the probe field envelopes
propagating with a definite group velocity determined by the
pump power and the detunings. Such a regime corresponds
to the pulse propagation with a superluminal velocity and
mathematically is described by a particular solution of the
wave equation. It is shown that a peak of the superluminal wave
packet is advanced with respect to the corresponding pulse
propagating in the vacuum. Additionally, it is demonstrated
that if only one probe field is incident on the medium,
both frequencies are produced at the end of the medium
as a result of the coupling between the individual probe
fields. Two-frequency superluminal light extends possibilities
to control light pulses and their interactions in optical media.

The scheme for creating a two-component superluminal
light, shown in Fig. 2(b), can be experimentally implemented
using an atomic cesium vapor cell at the room temperature, as
in the experiment by Wang et al. [30] on the single-component
superluminal light. All cesium atoms are to be prepared in the
ground-state hyperfine magnetic sublevel 6S1/2, |F = 4, m =
−4〉 serving as the level g in our scheme. The magnetic
sublevel 6S1/2, |F = 4, m = −2〉 corresponds to the level s.

On the other hand, the states 6P3/2, |F = 4, m = −3〉 and
6P1/2, |F = 4, m = −3〉 can be chosen to be the excited levels
e1 and e2, respectively. The strong Raman pump beams should
be right-hand polarized (σ+) and two weak Raman probe
beams should be left-hand polarized (σ−) to properly couple
the atomic levels. To create the two-component superluminal
light, one can also make use of other atoms, such as the ru-
bidium 87Rb with the following hyperfine magnetic sublevels
involved: 5S1/2, |F = 2, m = −2〉 as the ground level g; 5S1/2,
|F = 2, m = 0〉 as the level s; 5P1/2, |F = 2, m = −1〉; and
5P3/2, |F = 2, m = −1〉 as the excited levels e1 and e2.
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