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We present a new technique for producing two- and three-dimensional Rashba-type spin-orbit

couplings for ultracold atoms without involving light. The method relies on a sequence of pulsed

inhomogeneous magnetic fields imprinting suitable phase gradients on the atoms. For sufficiently short

pulse durations, the time-averaged Hamiltonian well approximates the Rashba Hamiltonian. Higher order

corrections to the energy spectrum are calculated exactly for spin-1=2 and perturbatively for higher spins.

The pulse sequence does not modify the form of rotationally symmetric atom-atom interactions. Finally,

we present a straightforward implementation of this pulse sequence on an atom chip.
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Proposals for creating Rashba-type spin-orbit coupling
(SOC) in cold atomic gases abound [1–14]. All of these
schemes rely (at least partially [12]) on the coupling of
atoms to laser beams. Unfortunately, the atom-light inter-
action is associated with spontaneous emission, leading to
heating or loss. To date, only the experimentally most
simple case—an equal mixture of Rashba and
Dresselhaus SOC—has been realized in the lab [15–18].
Implementation of Rashba SOC would allow for the study
of rich ground state physics proposed in systems of many-
body fermions [19–29] and bosons [6,30–39], of which
many properties have no condensed matter analogue.

Rashba SOC can be intuitively understood as a
momentum-dependent magnetic field that is symmetric
under simultaneous spin and momentum rotations.
Generically, realizing such behavior requires terms in the
atomic Hamiltonian which link spin to momentum. Laser
beams using two-photon Raman transitions are an obvious
choice for implementing such coupling, as they induce
transitions between two internal states while simulta-
neously imparting momentum.

Here we demonstrate that Rashba or Dresselhaus SOC
can be created in cold atoms without any optical fields by
imprinting phase gradients in different directions using a
properly chosen pulse sequence of inhomogeneous mag-
netic fields. This linearly varying magnetic field provides a
uniform spin-dependent force, imparting a desired momen-
tum. When the direction of the magnetic field and the
gradient of its magnitude are perpendicular to each other,
the form of the momentum boost represents a position
dependent rotation of the atomic spin. This suggests pulsed

magnetic field gradients have the necessary features to
produce Rashba or Dresselhaus SOCs.
The current scheme can be realized in a straightforward

manner on state-of-the-art atom chips [40,41] with SOC
strengths comparable with those in optical implementa-
tions. In contrast, the optical schemes rely on using many
laser beams that couple internal atomic states in a complex
way. The proposal is applicable to any atomic species
containing an arbitrary nonzero spin and does not alter
the form of SUð2Þ invariant atom-atom interactions
[42–44]. Our proposal allows for the study of spin-1 and
spin-2 SOC bosons, where the symmetry of the atom-atom
interactions strongly affects the symmetry of the many-
body ground state [34,36,37,39]. In optical setups, [10] the
adiabatic elimination of a number of atomic states makes
the atom-atom interactions position dependent and not
SUð2Þ invariant.
Time averaged descriptions of periodically driven sys-

tems can often acquire gauge fields, the most simple ex-
ample of which is the transformation into a rotating frame
[45–47]. One can also generate artificial magnetic fields by
combining lattice and time-dependent quadrupolar poten-
tials [48], or by shaking [49–56] or stirring [57] optical
lattices. Here we focus on a different scenario where a time
dependent magnetic field yields SOC (rather than an
Abelian magnetic flux) for atoms in the continuum (rather
than on a lattice). Unlike the case for conventional mag-
netic trapping where the atomic spin adiabatically follows
the local magnetic field [58], here the field pulses time
average to zero, provide no trapping potential, and lead to
dynamic spin evolution.
General formulation.—We focus on the atoms in a

spin-f hyperfine ground state manifold characterized by
the spin vector F with components obeying the commuta-
tion relations ½Fi; Fj� ¼ i@�ijkFk. The interaction of the

atom and the magnetic field B � Bðr; tÞ is given by the
Hamiltonian
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HBðr; tÞ ¼ �ðr; tÞ � F; (1)

with �ðr; tÞ ¼ gF�BB, where �B is the Bohr magneton
and gF is the Landé g factor. The Schrödinger equation
describing the combined internal and center of mass
evolution of the atom is

i@@tjc i ¼ ½H0 þ V þHBðr; tÞ�jc i; (2)

with H0 ¼ p2=2m, where r and p are, respectively, the
atomic center of mass coordinate and momentum operators
obeying ½ri; pj� ¼ i@�ij. In what follows, we will neglect

the state-independent trapping potential V.
1D SOC.—We first show a properly chosen pulsed mag-

netic field gradient can give rise to a 1D SOC. In the first
stage, 0 � t < �, an effective coupling vector �x ¼
��ðtÞkeffyex writes a spin-dependent phase gradient along
ey (where exyz denote the Cartesian unit vectors) in the

quantization basis of Fx, where the wave vector keff char-
acterizes the strength of the magnetic field gradient, and
�ðtÞ defines its temporal shape. While a magnetic field
B� yex, cannot exist in the region of zero electric currents,
in the experimental section we will show how to produce a
coupling Hamiltonian Eq. (1) corresponding to�x using a
strong bias magnetic field along ez, and a fast oscillating
magnetic field in the ex-ez plane, as shown in Fig. 1.

To elucidate the main idea, suppose that at times t ¼ 0
and t ¼ �, B is pulsed for a short enough duration that the
atoms hardly move, i.e., �ðtÞ ¼ �ðt� �Þ � �ðt� �þ �Þ
with � ! 0. The pulse at t ¼ 0 rotates the spin about ex
according to the operator Rx ¼ exp½ikeffyFx=@�. The par-
ticle then evolves freely for a time � before a second pulse

‘‘undoes’’ the rotation, described by Ry
x . The total evolu-

tion of the particle after both pulses is described by

Uxð�Þ¼Rxe
�ðiH0�=@ÞRy

x ¼ exp

�
�i

ðp�keffFxeyÞ2
2m@

�

�
; (3)

representing the evolution for a particle with SOC along ey.

The analysis leading Eq. (3) can be readily extended to
any pulse of finite width and zero average

R
�
0 �ðtÞdt ¼ 0.

This coupling can be eliminated from Eq. (2) by the
unitary transformation RxðtÞ ¼ exp½iFxkeffy

R
t
0 �ðt0Þdt0=@�

which also changes the momentum p to p0 ¼ p�
keffFxey

R
t
0 �ðt0Þdt0 in the transformed Hamiltonian

~H0ðtÞ ¼ RxðtÞH0R
y
x ðtÞ ¼ p02=2m. The latter ~H0ðtÞ com-

mutes with itself at different times. Thus, using R1ð�Þ ¼
1, where 1 is the identity operator in spin space, one can
exactly calculate the time evolution operator Uxð�Þ ¼
exp½�i

R
�
0
~H0ðtÞdt=@� after one pulse, giving:

Uxð�Þ¼ exp

�
�i�

@

�ðp�c1keffFxeyÞ2
2m

þs
k2eff
2m

F2
x

��
; (4)

where s ¼ c2 � c21, with cn ¼ ��1
R
�
0 dt

0½Rt0
0 �ðt00Þdt00�n.

For two delta pulses, �ðtÞ ¼ �ðt� �Þ � �ðt� �þ �Þ,
we have c1 ¼ 1 and s ¼ 0, so one arrives
at Eq. (3). For a smoothly alternating coupling,

�ðtÞ ¼ ð2�=�Þ sin½2�t=�þ ’�, where ’ sets the origin
of time, one has that c1 ¼ cos’ and s ¼ 1=2. If the pulse
is repeated many times, the choice of ’ cannot matter.
Indeed, the vector potential c1keffFxey in Eq. (4) can be

eliminated by a gauge transformation. In the next section, a
second pulse at times � < t < 2� breaks time translation
symmetry. The vector potential then cannot be gauged
away, and only signals �aðtÞ ¼ ½�ðtÞ � �ð�� tÞ�=2, anti-
symmetric over one period, will contribute to c1, with a
maximum of c1 ¼ 1 for ’ ¼ 0. Since the magnetic pulse
strength depends only on the product �ðtÞkeff , we will

FIG. 1 (color online). Proposed atom chip implementation of
2DRashba SOCusing pulsedmagnetic fields. (a) One full pulse of
period 2�. For 0 � t < � an effective coupling vector �x ¼
��ðtÞkeffyex (red) writes a spin-dependent phase gradient along
y in the quantization basis of Fx. In the second half of the pulse,
� � t < 2�, the coupling vector �y ¼ �ðt� �Þkeffxey (black)

writes a phase gradient along x in the quantization basis of Fy.

(b) The cloud of atoms sits 50 �m above the surface of an atom
chip. A strong bias field B0ez sets a quantization axis. Two sets of
microwires parallel to ex and ey are spaced 50 �m from the center

of the cloud in theex-ey plane and carry an amplitudemodulated rf

current. (c) The current configuration produces a magnetic field
gradient that is linear near the center of the atom chip.

PRL 111, 125301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

125301-2



henceforth set c1 ¼ 1, which can always be done through a
redefinition of keff .

2D SOC.—To add SOC in another direction, at � � t <
2�, we introduce a second stage during which � � �y ¼
�ðt� �Þkeffxey with the same temporal behavior as the

first stage. The unitary operatorUyð�Þ, evolving the system
from t ¼ � to t ¼ 2�, has the form of Eq. (4) with ey !
�ex and Fx ! Fy.

These two stages together, with Uxy � UyUx, describe a

single full cycle of our repeating pulse sequence. Thus the
Hamiltonian is time periodic with period 2�. For a suffi-
ciently short period, the combined evolution operator Uxy

can be well approximated using the Baker-Campbell-
Hausdorff formula, up to first order in �, giving Uxy �
exp½�iH2D2�=@�, where

H2D ¼ p2

2m
� keff

pyFx � pxFy

2m
þ c2k

2
eff

F2
x þ F2

y

4m
(5)

is the effective Hamiltonian describing the evolution of the
system under our repeated pulse sequence, observed at
integer multiples of 2�.

For the spin-1=2 case with F ¼ @�=2, Eq. (5) reduces to
the Rashba Hamiltonian,

H2D¼HR¼ p2

2m
�v� � ðez�pÞ; with v¼@keff

4m
; (6)

where an overall energy offset has been omitted. For higher
spins (f > 1=2) the last term in Eq. (5) is proportional to
@
2fðfþ 1Þ1� F2

z , introducing an effective quadratic
Zeeman (QZ) shift. Since c2 > 0, using the two-
dimensional setup it is thus impossible to completely elimi-
nate the QZ term in Eq. (5) for f � 1=2, and produce the
Rashba Hamiltonian in Eq. (6) with � replaced by 2F=@.
The QZ term preserves the conserved quantum number
Jz ¼ Lz þ Fz, where Lz ¼ xpy � ypx, so it is unlikely to

significantly affect the ground state phases explored in
systems with higher spin Rashba SOC [34,36,37].

We validated this approach by numerically simulating
the trapped, weakly interacting Gross-Pitaevskii equation
and noninteracting Schrödinger equation. We applied the
periodic pulse sequence described above to the ground
state without SOC, and slowly ramped on keff . When
measured at full periods, the system was similar to the
ground states found in Refs. [30,33]. We also used imagi-
nary time propagation to find the true Rashba ground state,
followed by the pulsed Rashba SOC described above,
where keff was matched to the minimum of the Rashba
ring. If viewed at complete periods, the system did not
significantly deviate from the many-body ground state.
These numerical tests suggest that the proposed SOC
system well approximates Rashba SOC.

3D spin-orbit coupling.—Pulsed magnetic fields can
provide not only the conventional two-dimensional
Rashba or Dresselhaus coupling, but also three-
dimensional (3D) SOC which is not encountered for

electrons in condensed matter structures. By adding an
additional pulse oriented along the ez direction, all three
spin matrices fFx; Fy; Fzg can be coupled to momentum.

For instance, using three magnetic coupling stages
� � �x ¼ ��ðtÞkeffxey for 0 � t < �, � � �y ¼
��ðt� �Þkeffyez for � � t < 2�, and� � �z ¼ ��ðt�
2�Þkeffzex for 2� � t < 3�, and using a procedure
analogous to the one presented above, one can simulate a
spin-orbit coupling

H3D ¼ p2

2m
� v

2

@
ðpxFy þ pyFz þ pzFxÞ; (7)

with v ¼ @keff=6m, describing the 3D SOC of the Rashba
type. This scheme has an additional advantage over 2D
Rashba spin-orbit coupling in that the quadratic term fea-
tured in Eq. (5) is proportional to F2 ¼ @

2fðfþ 1Þ1,
which is a constant and thus has been omitted in Eq. (7).
Therefore, the 3D setup simulates a pure spin-orbit cou-
pling without a quadratic Zeeman term for arbitrary spin
systems. The present proposal allows for creating 3D SOC
in a more simple manner without any use of optical fields.
Previous proposals to produce a 3D SOC involve complex
optical transitions between four or more internal atomic
states [13,59].
Corrections to the 2D single particle spectrum.—In the

derivation of Eq. (5), the product UyUx was expanded to

lowest order in the short time �. In practice, a finite pulse
time � will result in deviations from the ideal SOC form.
For a spin-1=2 system, the effective Hamiltonian for

the 2D system can be calculated exactly using UyUx¼
expð�ip2�=m@ÞSyðyxÞSðxyÞ, where SðuvÞ ¼ expði�u�vÞ¼
cos�uþ i�v sin�u is a rotation matrix and �u ¼ keffpu�=
2m is the corresponding momentum-dependent angle. The

product of two rotations is itself a rotation SyðyxÞSðxyÞ ¼
expði�n̂ � �Þ around an axis n̂ by an angle � � �ðpÞ,
implicitly defined by cos� ¼ cos�x cos�y and n̂ sin� ¼
þex cos�x sin�y � ey sin�x cos�y � ez sin�x sin�y. The

exact time-averaged Hamiltonian is then given by

HðexactÞ
2D ¼ p2=2m� ð@=2�Þ�n̂ � � þ const:
This allows for a straightforward calculation of the

deviations of the time-averaged eigenstates from the ideal
Rashba form. The lower band has energy given by EðpÞ ¼
p2=2m� ð@=2�Þ�ðpÞ. We plot this spectrum as a function
of momentum in Fig. 2. For long pulses, � 	 2m=@k2eff , the
structure resembles a periodic band structure with an over-
all p2=2m envelope. The periodicity of �ðpÞ in momentum
space is given by @kp ¼ 4�m=keff�. In the opposite limit

where � 
 2m=@k2eff , the periodicity of �ðpÞ becomes

much longer than the characteristic momentum @keff which
sets the momentum scale of the Rashba spin-orbit term.
Thus, for sufficiently short pulses and sufficiently small
momentum, the spectrum well approximates Rashba
spin-orbit coupling.
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For spin-f > 1=2 particles, the QZ terms F2
x and F2

y

featured in Ux and Uy do not allow for an exact solution.

For short pulses, @k2eff�=2m 
 1, higher order corrections
to the average Hamiltonian can be found perturbatively.

The first order correction � �Hð1Þ is

� �Hð1Þ ¼ �

4

�
k2eff
2m

�
2
�
�4

pxpy

k2eff
Fz � 2c2

py

keff
fFy; Fzg

þ 2c2
px

keff
fFx; Fzg þ c22fFx; fFy; Fzgg

�
; (8)

where we have assumed that px=@keff and py=@keff are both

Oð1Þ. At large momenta, jpj=@keff 	 1, the expansion will
break down. For a spin-1=2 system, the anticommutators
vanish, and only the first term proportional to pxpyFz

remains in Eq. (8). This term and higher order corrections
can also be obtained by expanding, for small pulse dura-
tions �, the angle �ðpÞ featured in the exact Hamiltonian

HðexactÞ
2D . For higher spin systems, the anticommutators

produce corrections that cannot be expressed using only
the original angular momentum algebra. In general, the nth
order correction will contain nested anticommutators
of the operators Fx, Fy, and Fz of order up to nþ 2.

Interactions.—We now consider the addition of the in-

teraction Hamiltonian H I ¼ gabcd=2
R
drc y

ac
y
bc cc d,

where c aðrÞðc y
a ðrÞÞ is a Bose or Fermi annihilation(crea-

tion) operator for a particle with spin a at position r, and
gabcd is a spin-dependent interaction constant. The full
Hamiltonian in the presence of interactions is H ¼
H 0 þH I, where H 0 ¼

R
drc y

a ½H0 þHBðr; tÞ�abc b.

In the absence of an external field to break rotational
symmetry, interactions must be SUð2Þ invariant, and will
be unaffected by the transformation to the rotating frame
which eliminated the magnetic field. It can be seen that for

a sufficiently short pulse, the effective many-body

Hamiltonian is given by H 2D ¼ R
drc y

a ðH2DÞabc b þ
H I. In other words, the effective spin-orbit coupling
does not modify the form or symmetry of the interactions.
Experimental implementation.—Quasi-dc magnetic

fields BðrÞ can be approximated with the series BjðrÞ �
Bð0Þ
j þ Bð1Þ

jk rk þ � � � . Since there are no electrical currents

inside the atomic cloud, the divergence and curl ofBðrÞ are
zero. This constrains Bð1Þ

jk to be a symmetric traceless

matrix. Hence the magnetic fields used in our previous
analysis, such as B / xey, cannot exist and are accompa-

nied by a counter term such as yex. The constraint can be

lifted by applying a combination of a strong bias fieldBð0Þez
and a rf field of frequency ! ¼ gF�BB

ð0Þ=@, such as

Bxðr;tÞ¼Bð0ÞezþBð1ÞðtÞcosð!tþ	xÞðxex�zezÞ, where

Bð1ÞðtÞ is an envelope function that is slowly varying com-
pared to 1=!. The bias field and the fast temporal depen-
dence of the rf field enteringHBðr; tÞ can be eliminated via a
position-independent rotation S ¼ exp½i!tFz=@� of the
spin around ez with frequency !. Terms oscillating at
frequencies ! and 2! are removed through the rotating
wave approximation in the transformed Hamiltonian
SHBðr; tÞSy � i@S@tS

y, giving Eq. (1) with

� xðr; tÞ ¼ gF�BB
ð1ÞðtÞ

2@
xðex cos	x þ ey sin	xÞ: (9)

The field �xðr; tÞ ¼ ��ðtÞkeffxey in the first stage of the

2D setup is obtained with the phase 	x ¼ ��=2, where

�ðtÞkeff ¼ gF�BB
ð1ÞðtÞ=2@. Thus the pulsed-gradient

magnetic field described in the preceding sections is repre-
sented by the envelope functions which shape the rf field.
In the second stage of a two-dimensional setup the

magnetic field Byðr; tÞ ¼ Bð0Þez þ Bð1Þðt� �Þ cosð!tþ
	yÞðyey � zezÞ leads to

�yðr;tÞ¼gF�BB
ð1Þðt��Þ
2@

yð�ex sin	yþey cos	yÞ: (10)

For 	y ¼ ��=2 we reproduce the second stage magnetic

field�yðr; tÞ ¼ �ðt� �Þkeffxey. Only the phase difference
	x �	y is relevant, the absolute phase reflects the choice

of the origin of time.
Figure 1 shows an atom-chip implementation of the 2D

SOC of the Rashba type. A constant bias field Bð0Þez is
applied out of plane, and two pairs of microwires parallel
to ex and ey provide the rf magnetic fields Bxðr; tÞ and

Byðr; tÞ, respectively. By properly timing the currents in

the pairs of wires, one arrives at the required effective
magnetic couplings �xðr; tÞ and �yðr; tÞ. Realistic values
[40] of Bð0Þ ¼ 20 G, Bð1Þ ¼ 0:06 G=�m, and �ðtÞ ¼
ð2�=�Þ sin½2�t=�� with � ¼ 50 �s give an estimate of
keff � 1 �m�1, compared to optically induced SOC in
rubidium where keff � 8 �m�1 [15,16]. The creation
of a 3D SOC would be a much more challenging

FIG. 2 (color online). The lower band of the exact time-
averaged Hamiltonian of a spin-1=2 particle under the influence
of the pulsed magnetic field scheme described in the main text.
(a) For long evolution times, @k2eff�=2m ¼ 0:25, the spectrum

has a Bloch structure of periodicity 4�m=keff� superposed on
the p2=2m dispersion of a free particle. (b) Short evolution times,
@k2eff�=2m ¼ :025 well approximate the Rashba ring. The green

dashed line represents the minimum energy ‘‘Rashba ring’’ of
H2D in Eq. (6).
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experimental task. In that case one not only needs to use
several rf pulses with the magnetic field oriented along
different planes, but also periodically alter the direction of
the bias field.

Summary.—We proposed a scheme to simulate Rashba
spin-orbit coupling in an arbitrary spin-f gas of ultracold
atoms. The scheme used pulsed magnetic field gradients
along perpendicular directions to impart a spin-dependent
momentum boost to the atoms. For sufficiently short evo-
lution time, the time-averaged Hamiltonian well approxi-
mated the Rashba Hamiltonian. Higher order corrections to
the energy spectrum were calculated exactly for spin-1=2
and perturbatively for higher spins. We then considered
interactions, and found that for short pulses, the form of
the interactions is not modified. Finally, we proposed an
experimental implementation of such a scheme on atom
chips.
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Note added.—After submission of this Letter, an article
by Xu et al. [60] appeared that also considers Rashba SOC
using pulsed magnetic field gradients.
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