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Creation of two-photon states via interactions between Rydberg atoms during light storage
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1Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Avenue 3, LT-10222 Vilnius, Lithuania
2Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters,

National Tsing Hua University, Hsinchu 30013, Taiwan
(Received 6 June 2016; published 3 February 2017)

We propose a method to create two-photon states in a controllable way using interaction between the Rydberg
atoms during the storage and retrieval of slow light. A distinctive feature of the suggested procedure is that
the slow light is stored into a superposition of two atomic coherences under conditions of electromagnetically
induced transparency. Interaction between the atoms during the storage period creates entangled pairs of atoms
in a superposition state that is orthogonal to the initially stored state. Restoring the slow light from this new
atomic state one can produce a two-photon state with a second-order correlation function determined by the
atom-atom interaction and the storage time. Therefore the measurement of the restored light allows one to probe
the atom-atom coupling by optical means with a sensitivity that can be increased by extending the storage time.
As a realization of this idea we consider a many-body Ramsey-type technique which involves π/2 pulses creating
a superposition of Rydberg states at the beginning and the end of the storage period. In that case the regenerated
light is due to the resonance dipole-dipole interaction between the atoms in the Rydberg states.
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I. INTRODUCTION

Generation of photon pairs has a fundamental and tech-
nological significance [1], and can be used in quantum mea-
surement and quantum information transfer [2]. Production of
nonclassical photon pairs via the electromagnetically induced
transparency (EIT) has been first demonstrated a decade
ago [3,4]. Subsequently photon pairs with a controllable profile
have been created [5,6] by employing the slow light in a
double-� system. In related recent developments, nonlinear
quantum optics has been investigated for slow light using
Rydberg atoms [7–17]. Since the van der Waals interaction
between the atoms increases with the principal quantum
number as n11, the interaction between the Rydberg atoms
is enhanced by many orders of magnitude compared to the
interaction between atoms in the ground state [18–21]. The
interaction brings neighboring Rydberg atoms out of the
resonance destroying the EIT. Consequently the close-by
Rydberg atoms absorb the slow light, so photons become
antibunched during propagation of light through the atomic
medium [7–12,14,16]. Nonclassical photon or atomic states
using Rydberg interactions have also been investigated in
Refs. [22–24].

Here we propose another way of generation of correlated
two-photon states via storage and retrieval of the slow light in
the atomic medium. Unlike conventional light storage [25–33],
the probe pulse is now stored in a superposition of two atomic
states involving the Rydberg levels. During a subsequent evo-
lution the atom-atom interaction produces entangled pairs of
atoms in a superposition state that is orthogonal to the initially
stored state. Restoring the slow light from this new atomic
state one can produce two-photon states with the second-order
correlation function determined by the atom-atom interaction
and the storage time. Furthermore, measurement of the second-
order correlation function of the restored light allows one
to probe the interaction potential by optical means, with a
sensitivity that can be enhanced by increasing the storage
time. Note that the creation of an atomic superposition and a

subsequent retrieval of light form the orthogonal superposition
represents a Ramsey interferometry [34–38].

Previously regeneration of light from an initially unpopu-
lated coherence was implemented using an external detuning
in a tripod atom-light coupling scheme [39] (see also a related
work [40]). In that case the regenerated light remains classical
by storing a classical light. On the other hand, in the current
proposal the detuning is caused by the interaction between
close-by Rydberg atoms leading to regeneration of correlated
photon pairs.

As a specific realization of the proposed idea we consider
in this paper a light-matter interaction in an ensemble of atoms
characterized by a ladder scheme of energy levels shown in
Fig. 1(a). After switching off the control beam, the probe
beam is stored in a coherence between the ground state g and
the Rydberg state s. In order to create a superposition of two
Rydberg states and to restore the slow light from an orthogonal
superposition we propose to apply at the beginning and at the
end of the storage the π/2 optical pulses coupling the Rydberg
s and p states.

The paper is organized as follows. In Sec. II we present the
proposed setup. In Sec. III we investigate how the stored atomic
state is changed by the atom-atom interactions. In Sec. IV
we analyze the probe pulse restored from this atomic state.
Section V summarizes our findings and discusses possible
experimental implementation.

II. FORMULATION

We consider a light-matter interaction in an ensemble of
atoms characterized by a ladder scheme of energy levels shown
in Fig. 1(a). We assume that the size of the atomic medium
is much larger than the optical wavelength. We include the
atomic ground s and excited p states labeled, respectively, by
|g〉 and |e〉, as well as Rydberg s and p states denoted by
|s〉 and |p〉. The corresponding energies are h̄ωg , h̄ωe, h̄ωs ,
and h̄ωp. The atoms, initially in the ground state |g〉, are
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FIG. 1. (a) The atomic ground state |g〉 is coupled to the excited
state |e〉 by the probe field �p. The latter |e〉 is coupled to the Rydberg
state |s〉 by the control laser �c. (b) Changes of the atomic states due
to the action of the first π/2 pulse, the RDDI potential V , and the
second π/2 pulse. (c) The RDDI V = V (|rj − rj ′ |) exchanges of the
s and p Rydberg states between nearby atoms j and j ′.

illuminated by a probe laser field with a central frequency
ωp. Additionally there is a more intense classical control field
with a frequency ωc. The probe (control) field resonantly drives
the atomic transition g → e (e → s) with a coupling strength
characterized by a Rabi frequency �p (�c).

The incident probe field �p represents a long and flat pulse
of a classical light, such that, except for a short transient period,
it can be considered to be time independent. The second-order
correlation function g(2)

in (τ ) of such an incident light is constant.
We are interested in times τ corresponding to interatomic
distances r = vg0τ much larger than the Rydberg blockade
radius, so that the interaction between atoms can be neglected
during the propagation of light with a velocity vg0 � c in
the medium. In the previous studies on the nonclassical slow
light [7,8,11,12,41] the strong Rydberg blockade during the
propagation of slow light provides photons antibunched over a
length exceeding the blockade radius. In contrast, the present
approach does not rely on the Rydberg blockade, so one can
neglect its effects during the propagation of the slow light.

After switching off the control beam, the probe beam is
stored in a coherence between the ground state g and the
Rydberg state s. Subsequently a π/2 optical pulse is applied
that couples the Rydberg s and p states, as shown in Fig. 1(b).
This converts the Rydberg s state into a superposition of
the s and p Rydberg states |+〉 = (|s〉 + |p〉)/√2. A similar
procedure has been employed in Ref. [13], where a single
microwave pulse has been used during the light storage to
couple the initial Rydberg state to a neighboring internal state.
The medium is then left to evolve freely for a duration T .
As we shall see later on, during the storage the resonance
dipole-dipole interaction (RDDI) between the atoms in the
s and p Rydberg states creates correlated pairs of atoms j

and j ′ in an initially unpopulated state |−〉 = (|s〉 − |p〉)/√2
with correlations determined by the RDDI potential V (|rj −
rj ′ |). Note that high fidelity π/2 microwave pulses should
be of a sufficiently large Rabi frequency which exceeds
the corresponding strength of the dipole-dipole interaction
�rf > V (r) at relevant interatomic distances r .

Just before the retrieval one applies another π/2 optical
pulse coupling the Rydberg s and p states. This converts the
state |+〉 into the Rydberg state |p〉, whereas the state |−〉 is
transferred back into the Rydberg state |s〉; see Fig. 1(b). Such a
procedure represents a Ramsey-type interferometry involving
atom-atom interaction [35–38]. For atoms in the Rydberg state
|p〉 there is no allowed optical transition to the excited state
|e〉. Therefore, when restoring the light, atomic excitations in
the s state are converted into probe photons, and the p state
excitations remain in the medium. Hence no slow light would
be regenerated without the RDDI which converts the internal
state |+〉 into |−〉 for neighboring atoms. Restoring the probe
beam one produces correlated pairs of probe photons, like in
the parametric downconversion [42].

Applying the rotating wave approximation [43], a Hamil-
tonian for the atoms coupled with the laser fields reads in the
interaction representation

H = Hat−light + HSP + Hat−at. (1)

Here

Hat−light = −1

2

∑
j

(
�pσ

j
eg + �cσ

j
es + H.c.

)
(2)

is a Hamiltonian for the atom-light coupling, σ
j

ab = |aj 〉〈bj |
are (quasi)-spin-flip operators transferring the j th atom from
state b to state a [31], with a and b standing for the atomic
internal states g, e, s, and p. We have assumed an exact EIT
resonance with zero two- and single-photon detunings: ωg +
ωp + ωc − ωs = 0 and ωg + ωp − ωe = 0. The term

HSP =
∑

j

�SP(t)
(
σ j

ps + σ j
sp

)
(3)

describes the coupling between the Rydberg s and p states due
to an external electromagnetic field characterized by a Rabi
frequency �SP(t). The latter �SP(t) is composed of two π/2
pulses, one applied at the beginning of the storage, another one
at the end of the storage. At the remaining stages (propagation,
storage, and release of light) �SP(t) is off and hence is to be
omitted. Finally

Hat−at =
∑
j �=j ′

V (|rj − rj ′ |)σ j
psσ

j ′
sp (4)

is the RDDI Hamiltonian leading to exchange of Rydberg
states between pairs of atoms, one of which being in the s

state and another in the p state. The action of RDDI during
the light storage is schematically shown in Fig. 1(c). The
strong RDDI between pairs of Rydberg atoms is described
by a position-dependent strength V (|rj − rj ′ |), chosen to be
real, where rj is a position vector of the j th atom. The
condition j �= j ′ excludes self-interactions in Eq. (4). Note that
a double summation over j and j ′ ensures that both forward
and backward resonance transfer between the states s and p are
included in the interaction Hamiltonian (4) which is therefore
Hermitian.
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III. TIME EVOLUTION OF ATOMIC STATE DURING THE
STORAGE OF PROBE PULSE

A. Stored atomic state

When the control field �c is on, the slow light made of
dark-state polaritons propagates in the medium with a group
velocity vg0 = �2

cL/�α [25,28,44,45]. Here α and L are,
respectively, an optical density and a length of the medium,
whereas � is a decay rate of the excited state e. Since the
initial probe field is classical, one can replace atomic spin-flip
operators σ

j

ab by the corresponding density matrix elements
ρ

j

ba = 〈σ j

ab〉. A duration T of the subsequent light storage
is assumed to be much larger than the propagation time of
slow light in the medium. Hence the atom-atom interaction
has a significant accumulative effect only during the light
storage, and one can neglect the interaction effects during
the light propagation. Under the EIT condition, the induced
coherence between the atomic ground and Rydberg s state
ρ

j
sg = −�p0/�c is proportional to the Rabi frequency of the

initial probe field �p0 [25,28,30,31,44–46].
During the propagation of the slow light pulse the probe

and control beams drive the j th atom to the dark state [28]

|�j 〉 = A

(
|gj 〉 − �p0

�c
|sj 〉

)
= A

(
1 − �p0

�c
σ j

sg

)
|gj 〉, (5)

where

A = (
1 + �2

p0

/
�2

c

)−1/2
(6)

is a normalization factor. Initially atoms are uncorrelated, thus
the full quantum state of the atomic ensemble is

|�〉 =
∏
j

|�j 〉 = AN
∏
j

(
1 − �p0

�c
σ j

sg

)
|g〉, (7)

where N is a total number of atoms in the sample and |g〉 =∏
j |gj 〉 is a complete atomic ground state. Note, that one can

rewrite Eq. (7) in terms of spin-wave excitations:

|�〉 = AN |g〉 + AN

N∑
n=1

(
−�p0

�c

)n

|�n〉, (8)

where

|�n〉 =
∑

j1,...,jn

σ j1
sg . . . σ jn

sg |g〉 (9)

describes the state with n spin excitations. Since the incident
probe field �p represents a pulse of a classical light, the full
state of the atoms |�〉 is separable.

By switching off the control field, the probe field is stored
in the atomic coherences ρ

j
sg [25–27]. A quantum state of

the atomic ensemble is then given by Eq. (7). Immediately
after switching off the control laser, the π/2 optical pulse is
applied that couples the Rydberg s and p states and converts the
Rydberg s state to a superposition of the s and p Rydberg states
|+〉 = (|s〉 + |p〉)/√2, as shown in Fig. 1(b). Consequently,
the state vector of the stored dark-state polariton is converted
to

|�+〉 = AN
∏
j

(
1 − �p0

�c
σ

j
+g

)
|g〉. (10)

Here the symmetric an antisymmetric creation operators are
defined as

σ
j
±g = 1√

2

(
σ j

sg ± σ j
pg

)
. (11)

Note that the inverse transform reads

σ j
sg = 1√

2

(
σ

j
+g + σ

j
−g

)
, (12)

σ j
pg = 1√

2

(
σ

j
+g − σ

j
−g

)
. (13)

Calling on Eq. (11), it is convenient to represent the initial
state given by Eq. (10) in terms of the bare atomic states

|�+〉 = AN
∏
j

(
1 − �p0√

2�c

(
σ j

sg + σ j
pg

))|g〉. (14)

B. Atomic state affected by the atom-atom interaction

During the storage the atoms undergo a free evolution
without influence of the optical fields, yet affected by the
atom-atom interaction Hat−at given by Eq. (4). During such
an evolution the atomic state vector |�+〉 given by Eq. (10)
transforms to

|�(T )〉 = e−iHat−atT |�+〉, (15)

where T is the storage time. By collecting the terms containing
double sums as is detailed in Appendix A and using Eq. (10),
the action of the evolution operator on the atomic state can be
written as

|�(T )〉 = |�+〉 +
∑
j �=j ′

[e−iV (|rj −rj ′ |)T − 1]σ j
psσ

j ′
sp|�+〉

+ nonpair terms. (16)

The terms that are not written explicitly in Eq. (16) contain
triple and higher sums. In Eq. (16) we used the fact that the
operators σ

j
sg and σ

j
pg enter symmetrically the initial state

vector |�+〉 given by Eq. (14). Consequently, the action of
the operator σ

j
psσ

j ′
sp on the initial state vector |�+〉 gives the

same result as the action of the operator σ
j
ppσ

j ′
ss on |�+〉. This

allows us to combine cos[V (|rj − rj ′ |)T ] and −i sin[V (|rj −
rj ′ |)T ] entering Eq. (A10) into a single exponential function
when acting on the initial state vector |�+〉.

From now on we will omit the terms due to the interaction
involving three and more atoms. Such an assumption is
legitimate if the density of Rydberg atoms is small enough
and the duration of the storage time T is sufficiently short, so
that it is unlikely to have more than a single pair of strongly
interacting close-by Rydberg atoms. This is the case if a
characteristic distance rc, at which the RDDI potential V (rc)
becomes equal to the inverse storage time T −1, is smaller than
a mean distance rRy = n

−1/3
Ry between the atoms excited to the

Rydberg state, i.e., rc � rRy. Here

nRy = A2
�2

p0

�2
c

n (17)

is a density of Rydberg atoms, n is a total density of atoms,
and �2

p0/�2
c � 1 is a probability for an individual atom to be
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excited to the Rydberg s state during the initial propagation
of slow light. The RDDI potential depends on the distance
between atoms as V (r) = C3/r3, giving a characteristic
distance

rc = (C3T )1/3. (18)

The condition rc � rRy then leads to an upper limit for the
storage time Tmax = (C3nRy)−1. A more detailed discussion of
the validity is given in Appendix B.

In writing Eq. (16) we have included multiple RDDI
transitions within the same pair of atoms providing an
oscillating term exp[−iV (|rj − rj ′ |)T ] which regularizes a
divergent behavior of individual terms in the expansion of
the evolution operator in the powers of T . This is important
at interatomic distances |rj − rj ′ | < rc for which the RDDI
energy V (|rj − rj ′ |) exceeds T −1.

Taking into account Eq. (14) for the initial state vector |�+〉,
Eq. (16) yields the following state vector of the atomic system
at the end of the free evolution:

|�(T )〉 ≈ |�+〉 + AN
�2

p0

2�2
c

∑
j �=j ′

[e−iV (|rj −rj ′ |)T − 1]σ j
sgσ

j ′
pg

×
∏

j ′′ �=j,j ′

(
1 − �p0

�c
σ

j ′′
+g

)
|g〉. (19)

Using Eqs. (12) and (13), a pair of operators σ
j
sgσ

j ′
pg entering

the above equation can be cast in terms of the operators σ
j
±g

and σ
j ′
±g as

σ j
sgσ

j ′
pg = (

σ
j
+g + σ

j
−g

)(
σ

j ′
+g − σ

j ′
−g

)
/2. (20)

Since the summation indices can be interchanged, the mixed
terms containing the operators −σ

j
+gσ

j ′
−g and σ

j
−gσ

j ′
+g cancel

each other in Eq. (19), so σ
j
sgσ

j ′
pg can be replaced by

(σ j
+gσ

j ′
+g − σ

j
−gσ

j ′
−g)/2, giving

|�(T )〉 ≈ |�+〉 + AN
�2

p0

4�2
c

∑
j �=j ′

[e−iV (|rj −rj ′ |)T − 1]

× (
σ

j
+gσ

j ′
+g − σ

j
−gσ

j ′
−g

) ∏
j ′′ �=j,j ′

(
1 − �p0

�c
σ

j ′′
+g

)
|g〉.

(21)

The states of the atoms at the end of the free evolution are
schematically shown in Fig. 2.

FIG. 2. Schematic depiction of the state of atoms at the end of
storage period.

Just before the retrieval one applies another π/2 optical
pulse that couples the Rydberg states s and p. This converts
the state |+〉 = (|s〉 + |p〉)/√2 into the Rydberg state |p〉,
whereas the state |−〉 = (|s〉 − |p〉)/√2 is converted back into
the Rydberg state |s〉 [see Fig. 1(b)]. As a result the state
vector (21) reduces to

|�fin〉 ≈ |�p〉 + AN
�2

p0

4�2
c

∑
j �=j ′

[e−iV (|rj −rj ′ |)T − 1]

× (
σ j

pgσ
j ′
pg − σ j

sgσ
j ′
sg

) ∏
j ′′ �=j,j ′

(
1 − �p0

�c
σ j ′′

pg

)
|g〉, (22)

where |�p〉 is obtained from Eq. (10) with σ
j
+g replaced by

σ
j
pg:

|�p〉 = AN
∏
j

(
1 − �p0

�c
σ j

pg

)
|g〉. (23)

The second term in Eq. (22) represents the correlated pairs
of atoms in the Rydberg s and p states created due to
the atom-atom interaction. As we shall see in Sec. IV, the
Rydberg s excitations are converted into pairs of correlated
photons during the restoring of the slow light. The first term
in Eq. (22) does not contain the Rydberg s state and thus will
not contribute to the restored slow light.

C. Atomic correlation functions

The spectral density of the restored light is related to the
atomic first-order correlation at different sites j and j ′,

G
(1)
at (rj ,rj ′ ) = 〈

�fin

∣∣σ j†
gs σ j ′

gs

∣∣�fin
〉
. (24)

Using the approximate expression (22) for the final state we
get

G
(1)
at (rj ,rj ′ ) ≈ A4

�4
p0

4�4
c

∑
j ′′ �=j,j ′

[eiV (|rj −rj ′′ |)T − 1]

× [e−iV (|rj ′−rj ′′ |)T − 1]. (25)

The intensity of the restored light is related to the density of
atoms in the Rydberg state |s〉. The probability for an atom
to be in this state can be obtained from the atomic correlation
function at the same site j :

G
(1)
at (rj ) ≡ G

(1)
at (rj ,rj ) = 〈

�fin

∣∣σ j†
gs σ j

gs

∣∣�fin
〉
. (26)

Using Eq. (25) this probability reduces to

G
(1)
at (rj ) ≈ A4

�4
p0

2�4
c

∑
j ′ �=j

(1 − cos[V (|rj − rj ′ |)T ]). (27)

The atomic second-order correlation function

G
(2)
at (rj ,rj ′ ) = 〈

�fin

∣∣σ j†
gs σ j ′†

gs σ j ′
gsσ

j
gs

∣∣�fin
〉

(28)

using Eq. (22) for |�fin〉 can be expressed as

G
(2)
at (rj ,rj ′ ) ≈ (1 − δj,j ′ )A4

�4
p0

2�4
c

{1 − cos[V (|rj − rj ′ |)T ]}.

(29)
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The atomic second-order correlation function (29) is related
to the second-order correlation function of the restored light
G(2)(τ ) via Eq. (32) presented below.

IV. PROPERTIES OF RESTORED PROBE PULSE

After application of the second π/2 pulse the probe pulse of
light is restored by switching on the control beam characterized
by the Rabi frequency �c. The state of the atomic ensemble just
before the retrieval is given by Eq. (22). During the retrieval
only the atoms in the Rydberg state s contribute to the probe
beam. The p state excitations remain in the medium and thus
will no longer be considered [47]. The restored probe field

�p(rj ) = −�cσ
j
gs(T ) (30)

is generated from atomic coherences σ
j
gs(T ) involving the

Rydberg s state.
Note that the light restored from the atomic state (22) consist

of pairs of correlated photons corresponding to the second term
in Eq. (22), there being no contributions by single photons.
Single photons can appear only due to losses, when one of the
photons forming the pair is absorbed. Yet, as we will see later
in this section, the absorption does not significantly distort
the second-order correlation function for a sufficiently large
separation between the photons.

The second term of Eq. (22) describes a superposition
of all possible atomic pairs, so the restored light is in a
quantum superposition of all corresponding photon pairs. The
measurement of the second-order correlation function of the
restored light selects a photon pair in which the photons are
separated by a chosen distance.

A. Second-order correlation function of the restored light

The second-order correlation function of the retrieved light

G(2)(τ ) = 〈�†
p(t)�†

p(t + τ )�p(t + τ )�p(t)〉 (31)

is calculated by averaging the atomic second-order correla-
tion function G

(2)
at (rj ,rj ′ ) = 〈�fin|σ j†

gs σ
j ′†
gs σ

j ′
gsσ

j
gs |�fin〉 over the

atomic positions rj and rj ′ separated by |zj − zj ′ | = vg0τ

along the propagation direction z. Thus the correlation function
of the restored light reads

G(2)(τ ) = �4
c/Nr

∑
j,j ′

G
(2)
at (rj ,rj ′ ), (32)

where the summation extends over a narrow region, shown in
Fig. 3, in which the atomic second-order correlation function
is averaged. Here Nr is the number of atoms used in averaging.
If the width of the atomic medium is smaller than the
separation distance vg0τ , the averaging does not significantly
alter the atomic second-order correlation function G

(2)
at (rj ,rj ′ ).

By concentrating on the distances between the atoms |r − r′|
larger than the width of the atom cloud the problem becomes
essentially one-dimensional.

From Eq. (29) follows that the second-order correlation
function of the retrieved light is determined by the atom-atom
interaction:

G(2)(τ ) ∝ 1 − cos[V (vg0τ )T ]. (33)

FIG. 3. Regions (gray color) over which the atomic second-order
correlation function G

(2)
at is averaged in calculating the second-order

correlation function of the restored light.

One can see that the scale of the distances vg0τ probed by
the second-order correlation function depends on the storage
time T . For a sufficiently small storing time T and a large
delay time τ , V (vg0τ )T � π , the second-order correlation
function of the retrieved light is proportional to the square
of the interaction potential at the interatomic distance vg0τ ,
i.e., G(2)(τ ) ∝ [V (vg0τ )T ]2. In this way the restored pulse is
created exclusively due to the atom-atom interaction which
vanishes as interatomic distance increases. The probability to
find in the restored pulse a pair of photons separated by large
distances goes to zero, and the (unnormalized) second-order
correlation function G(2)(τ ) decays as τ increases.

B. Estimation of the intensity of the restored light

Let us estimate the intensity of the restored probe pulse.
The restored field is generated from atomic coherences σ

j
gs(T )

involving the Rydberg s state, according to the equation
�p(rj ) = −�cσ

j
gs(T ). Thus the intensity, proportional to

|�p|2, can be calculated using atomic first-order correlation
function G

(1)
at . Calling on Eq. (27) the ratio of the intensities of

the restored and the incoming probe pulses is given by

�2
p,out

�2
p0

= A4
�2

p0

2�2
c

∑
j

{1 − cos[V (|r − rj |)T ]}. (34)

The sum in Eq. (34) can be estimated as∑
j

{1 − cos[V (|r − rj |)T ]}

≈ n

∫
dr′{1 − cos[V (|r − r′|)T ]} ∼ nr3

c , (35)

where we have used Eq. (B4) for evaluating the integral. Using
Eq. (17) for the density of Rydberg atoms, we obtain that the
ratio of the intensities of the restored and the incoming probe
pulses is of the order of

�2
p,out

�2
p0

∼ nRyr
3
c . (36)

Note that in order to neglect the interaction involving three
or more Rydberg atoms we require that nRyr

3
c � 1. Thus the

intensity of the restored light is much smaller than that of the
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incident light. Consequently most of the probe pulse remains
in the medium in the form of excitations of the Rydberg p

state.

C. Spectral width of the restored light

The spectrum S(ω) is related to the first-order correlation
function of the light

G(1)(τ ) = 〈�†
p(t + τ )�p(t)〉 (37)

via the equation

S(ω) =
∫

e−iωτG(1)(τ )dτ. (38)

The restored probe field �p(rj ) = −�cσ
j
gs(T ) is generated

from atomic coherences σ
j
gs(T ) involving the Rydberg s state.

Therefore the spectral width can be calculated from the atomic
first-order correlation function G

(1)
at at different sites. Using

Eq. (25) we get

G(1)(τ ) ∼
∑

j

[eiV (|r−rj |)T − 1][e−iV (|r−rj +vg0τ êz|)T − 1]. (39)

We see that the restored light acquires a finite width of the
spectrum, even when the incident probe beam is monochro-
matic. From Eq. (39) one can estimate the characteristic width
of the function G(1)(τ ) to be of the order of rc/vg0, where rc

is defined as V (r)T = (rc/r)3. Thus the spectral width of the
restored light S(ω) is of the order of vg0/rc.

D. Influence of losses for the two-photon
correlation measurements

Since the restored light has a finite spectral width vg0/rc, it
experiences losses due to a finite transmittivity width of the EIT
window. To estimate the influence of losses occurring during
the propagation of the restored light in the atomic medium,
let us consider a part of the atomic state containing only pairs
of atoms in the Rydberg s state. According to Eq. (22), this
part is

|�ss〉 = �2
p0

4�2
c

∑
j �=j ′

[e−iV (|rj −rj ′ |)T − 1]σ j ′†
gs σ j†

gs |g〉. (40)

We are interested in the delay times τ entering the second-order
photon correlation function G(2)(τ ) = 〈�†

p(t)�†
p(t + τ )�p(t +

τ )�p(t)〉, such that vg0τ is larger than the width of the atom
cloud. Such delay times correspond to the distances between
atoms |r − r′| larger than the width of the medium. In this case
we can consider the state |�ss〉 written in terms of the spin-flip
operators averaged over the cross section of the medium:

|�ss〉 = C

∫
dz

∫
dz′I (|z − z′|)σ †

gs(z
′)σ †

gs(z)|g〉, (41)

where

I (z) ≡ i(e−iV (z)T − 1), C = �2
p0

4�2
c

n2S2. (42)

Introducing the spin-flip operators in the momentum represen-
tation

σgs,k = 1√
2π

∫
dz eikzσgs(z) (43)

and using Eq. (41) we get

|�ss〉 = C

2π

∫
dk

∫
dk′

∫
dz

∫
dz′I (|z − z′|)eikz+ik′z′

× σ
†
gs,kσ

†
gs,k′ |g〉. (44)

By separating the mean momentum k̄ = 1
2 (k + k′) and the

difference 
k = 1
2 (k − k′), the atomic state |�ss〉 can be

written as

|�ss〉 = C

2π

∫
d
k Ĩ (
k)σ †

gs,
kσ
†
gs,−
k|g〉, (45)

where

Ĩ (k) = i

∫
dz [e−iV (|z|)T − 1]eikz (46)

is the Fourier transform of I (z). After restoring the light, the
spin-flip operators σgs,k are replaced by operators for dark-state
polaritons PD,k = vg0

c

�p,k

�c
− σgs,k , giving the state

|�〉 = C

2π

∫
dk Ĩ (k)P†

D,kP
†
D,−k|vac〉. (47)

This state describes a pair of polaritons with the wave vectors
k and −k around the zero central wave vector: k̄ = 0.

The propagation duration of the restored polariton is of the
order of

τprop ∼ L

2vg0
, (48)

assuming that it propagates approximately half of a medium
length L. During the propagation the dark-state polaritons
decay due to nonadiabatic losses with the rate γpol =
2�(vg0k)2/�2

c [29]. Thus the polariton operator PD,k changes
to

PD,ke
−(L2/2α)k2 + ηkbk , where ηk =

√
1 − e−(L2/α)k2

.

(49)

The exponent L2k2/(2α) = γpolτprop describes the polariton
decay. Additional bosonic noise operators bk have been
included to preserve the commutation relations [43]. The final
state then becomes

|�′〉 ∼
∫

dk Ĩ (k)(P†
D,ke

−(L2/2α)k2 + ηkb
†
k)

× (P†
D,−ke

−(L2/2α)k2 + ηkb
†
−k)|vac〉. (50)

We are interested in the second-order correlation function

G(2)(z,z′) = 〈�′|P†
D(z)P†

D(z′)PD(z′)PD(z)|�′〉. (51)

It is noteworthy that only the component of the state vector
|�′〉 containing two polariton operators,∫

dk Ĩ (k)P†
D,kP

†
D,−ke

−(L2/α)k2 |vac〉, (52)
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contributes to G(2)(z,z′). Therefore, going back to the coordi-
nate representation we obtain∫

dz

∫
dz′ I ′(z − z′)P†

D(z)P†
D(z′)|vac〉, (53)

where

I ′(z) ≈ 1

2π

∫
dk Ĩ (k)e−ikz−(L2/α)k2

= i

√
α

2L
√

π

∫
dz̃ [e−iV (|z̃|)T − 1]e−(α/4L2)(z̃−z)2

. (54)

We see that losses modify the coefficient e−iV (z)T − 1 ap-
pearing in Eq. (22) by convolving it with a Gaussian
exp[−α(z/2L)2]. Combining Eqs. (51) and (53), we obtain that
the polariton losses change the second-order correlation func-
tion |I (z − z′)|2 to G(2)(z,z′) = |I ′(z − z′)|2. Consequently
the second-order correlation function of the restored light is
determined by a modified potential influenced by the losses,
rather than by an actual interaction potential V .

The second-order correlation function with and without
inclusion of losses is displayed in Fig. 4. In order to get a
dimensionless quantity, the second-order correlation function
shown in Fig. 4 is normalized using the intensity of the initial
probe pulse. As the dashed red curve in Fig. 4 indicates, the
losses during the propagation of light lead to the smoothening
of the second-order correlation function, in agreement with
Eq. (54). One can see that the the influence of losses diminishes
for distances z = vg0τ much larger than a characteristic loss
distance L/

√
α. This corresponds to a delay time τ greater than

�
√

α/�2
c . For smaller delay times τ the effects of the losses

become significant, reducing the number of photon pairs.
Note that the spectral width of the restored light, considered

in the Sec. IV C, is related to the first-order correlation function
rather than to the second-order correlation function shown
in Fig. 4. In general those two correlation functions are not
directly related; only for chaotic classical light sources is
the second-order correlation g(2) determined by the first-order
correlation g(1) [42,43]. Thus, in the absence of losses the
spectral width does not limit the structure of the second-order

FIG. 4. The second-order correlation function of the restored light
normalized to the intensity of the input pulse without including losses
(solid black line) and modified by polariton losses (dashed red line).
The distances are measured in units of rc, the characteristic distance
of losses is assumed to be L/

√
α = 1/2.

correlation function. This is not the case when losses are
present, as one can see from the red dashed curve in Fig. 4.

V. DISCUSSION AND CONCLUSIONS

The proposed ladder scheme can be experimentally imple-
mented using ultracold 87Rb atoms [11] by preparing the atoms
in a hyperfine ground state |5S1/2,F = 2〉 serving as the state
|g〉 in our scheme. A hyperfine excited state |5P3/2,F = 3〉
with a decay rate � = 2π × 6 MHz corresponds to the state
|e〉. The characteristic distance rc of the order rc ≈ 0.18 mm
can be achieved for the storage duration T of the order of
10 μs and a principal quantum number of the Rydberg levels
n = 100, the latter leading to the coefficient C3 of the order of
610 GHz μm3. The interaction potential V (rc) = 0.1 MHz can
be much smaller than the microwave Rabi frequency, which
has been created of the order of 100 MHz [13,48]. Note that
for such a large principal quantum number a strong Rydberg
blockade occurs, with the blockade radius of the order of
13 μm [11]. Yet here we are spectroscopically probing the
interatomic distances larger than the Rydberg blockade radius,
so the blockade effects are not important. On the other hand,
the polariton losses due to the finite spectral width of the
regenerated light can be neglected for distances between the
emitting atomic pairs vg0τ larger than 0.18 mm when using
the experimentally accessible length of the atomic medium
L = 1 mm and the optical density α = 30 [49,50]. The Rabi
frequency of the control beam �c = 2π × 2 MHz leads to
the group velocity of the polaritons vg0 = 140 m/s, thus these
distances correspond to the delay time τ ≈ 1.3 μs. In this way,
it is feasible to observe correlated photon pairs produced by
storing and regenerating the Rydberg slow light.

The proposed method can be applied not only to the res-
onant dipole-dipole interactions but also to the other types of
atom-atom interactions. The suggested Ramsey-type scheme
can be employed to generate narrow-linewidth biphotons with
correlation times of the order of the propagation delay time.
The scheme can also provide an efficient way for manipulation
of individual photons or operation of qubits, since two photons
can interact with each other effectively at relatively large
distances determined by the interaction between the Rydberg
atoms. With increasing the storage time (e.g., by using an
optical lattice to confine the atomic motion within a distance
smaller than the wavelength [51]), the scheme may be used
as a sensitive tool for probing the atom-atom interaction. In
this way our proposal offers possibilities and applications in
generation of nonclassical light, manipulation of quantum
information, and precision measurement of long-distance
interaction.
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APPENDIX A: INTERACTION OF A PAIR OF ATOMS

Let us consider the free evolution operator e−iHat−atT .
For further approximations it is convenient to represent the
operator e−iHat−atT as

e−iHat−atT = 1 + (e−iHat−atT − 1). (A1)

Since the duration of the evolution T is considered to be short
enough, the first term (the unit operator not changing the state)
represents a dominant contribution to the evolution, whereas
the remaining term in Eq. (A1) takes care of the changes in the
state vector due to the atom-atom interaction. Because of the
short storage time, the latter term mostly couples a pair of
atoms. Expanding the exponent e−iHat−atT into Taylor series
we have

e−iHat−atT − 1 = −iTHat−at + 1
2 (−iT )2H2

at−at + · · · . (A2)

Calling on Eq. (3) of the main text for the interaction
Hamiltonian Hat−at, the first term in the Taylor expansion (A2)
reads

−iTHat−at = −i
∑
j �=j ′

V (|rj − rj ′ |)T σ j
psσ

j ′
sp. (A3)

The term appearing in the second order of the expansion (A2)
is

(−iT )2H2
at−at =

∑
j �=j ′

∑
j ′′ �=j ′′′

V (|rj − rj ′ |)V (|rj ′′′ − rj ′′ |)

× σ j
psσ

j ′
spσ j ′′

ps σ
j ′′′
sp . (A4)

When j = j ′′, j ′ = j ′′′ or j = j ′′′, j ′ = j ′′, the summation in
this expression runs only over two indices. Since σ

j
psσ

j
ps = 0,

the second-order term can be separated into two parts, the first
part containing double summation, the second part containing
higher sums,

(−iT )2H2
at−at =

∑
j �=j ′

[−iV (|rj − rj ′ |)T ]2σ j
ppσ j ′

ss

+ nonpair terms. (A5)

In a similar manner, the third-order term can be represented as

(−iT )3H3
at−at =

∑
j �=j ′

[−iV (|rj − rj ′ |)T ]3σ j
psσ

j ′
sp

+ nonpair terms. (A6)

In this way, the pair summation in the cubic term contains the
same operators σ

j
psσ

j ′
sp as the first-order term. Repeating the

same procedure one arrives at the following general result for
the odd and even terms in the expansion (A2):

(−iT )2m+1H2m+1
at−at =

∑
j �=j ′

[−iV (|rj − rj ′ |)T ]2m+1σ j
psσ

j ′
sp

+ nonpair terms, (A7)

(−iT )2mH2m
at−at =

∑
j �=j ′

[−iV (|rj − rj ′ |)T ]2nσ j
ppσ j ′

ss

+ nonpair terms, (A8)

with m = 0,1, . . . . Thus, collecting in each power of the
Hamiltonian Hat−at only the terms containing double sums,

Eq. (A1) becomes

e−iHat−atT = 1 +
∞∑

m=0

1

(2m + 1)!

×
∑
j �=j ′

[−iV (|rj − rj ′ |)T ]2m+1σ j
psσ

j ′
sp

+
∞∑

m=1

1

(2m)!

∑
j �=j ′

[−iV (|rj − rj ′ |)T ]2mσ j
ppσ j ′

ss

+ nonpair terms, (A9)

where the terms that are not written explicitly contain triple
and higher sums. After summation we obtain

e−iHat−atT − 1 =
∑
j �=j ′

{cos[V (|rj − rj ′ |)T ] − 1}σ j
ppσ j ′

ss

− i
∑
j �=j ′

sin[V (|rj − rj ′ |)T ]σ j
psσ

j ′
sp

+ nonpair terms. (A10)

APPENDIX B: VALIDITY OF THE APPROXIMATION

Let us consider the necessary conditions when the ap-
proximate expression (21) for the atomic state is valid. The
conditions can be obtained by requiring the state |�(T )〉 to be
normalized, that is 〈�(T )|�(T )〉 ≈ 1.

Equation (21) can be separated into two parts, |�(T )〉 =
|�+〉 + |
�〉. Since the initial state is normalized,
〈�+|�+〉 = 1, the normalization condition for the final state
|�(T )〉 reads

2 Re〈�+|
�〉 + 〈
�|
�〉 = 0. (B1)

Using Eq. (21) we obtain

2 Re〈�+|
�〉 + 〈
�|
�〉

≈ A6
�6

p0

4�6
c

∑
j �=j ′ �=j ′′

[eiV (|rj −rj ′ |)T − 1][e−iV (|rj −rj ′′ |)T − 1]

+A8
�8

p0

16�8
c

∑
j �=j ′ �=j ′′ �=j ′′′

[eiV (|rj −rj′ |)T − 1]

× [e−iV (|rj ′′−rj ′′′ |)T − 1]. (B2)

We can estimate the expressions in Eq. (B2) replacing
summation by integration. Then we get

2 Re〈�+|
�〉 + 〈
�|
�〉

≈ A6
�6

p0

4�6
c

n3
∫

dr
∫

dr′[eiV (|r−r′|)T − 1]

×
∫

dr′′[e−iV (|r−r′′|)T − 1]

+A8
�8

p0

16�8
c

n4
∫

dr
∫

dr′[eiV (|r−r′|)T − 1]
∫

dr′′

×
∫

dr′′′[e−iV (|r′′−r′′′ |)T − 1], (B3)
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where n is the density of atoms. The integrals in Eq. (B3)
can be estimated as follows. Using the interaction potential
V (r) = C3/r3 we have

∫
dr′{1 − cos[V (|r − r′|)T ]}

= 4π

∫ ∞

0
r2{1 − cos[V (r)T ]}dr

= 2

3
π2C3T ≡ 2

3
π2r3

c , (B4)

where rc = (C3T )1/3 is a characteristic distance at which the
RDDI potential V (rc) becomes of the order of the inverse

storage time T −1. On the other hand, the integral∫
dr′ sin[V (|r − r′|)T ] = 4π

∫ ∞

0
r2 sin[V (r)T ]dr

does not converge at large values of r . To get a finite value
we should take into account a finite size of the atomic
cloud. Then this integral becomes proportional to r3

c . Thus
the two terms in Eq. (B3) are of the order of (nRyr

3
c )2(nRyV)

and (nRyr
3
c )2(nRyV)2, where V is the volume of the atomic

cloud.
We can conclude that Eq. (B3) is close to zero and the

approximation is valid when

nRyr
3
c � 1 (B5)

and the total number nRyV of Rydberg atoms in the atomic
cloud is not large.
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