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Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates
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We explore a way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a
two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC
of the Rashba type is created if the atoms pick up a π phase after completing a cyclic transition between four
combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer
states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling.
We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the
atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse
ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of
half-skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC
of the Rashba type is formed, the ground state represents plane-wave or standing-wave phases depending on
the interaction between the atoms. A variational analysis is shown to be in good agreement with the numerical
results.
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I. INTRODUCTION

Following the first realization of artificial (synthetic)
magnetic field for ultracold neutral atoms [1], quantum
degenerate gases have provided a highly controllable test bed
for studying the dynamics of quantum systems subjected to
gauge potentials [2–5]. A possible way of creating synthetic
gauge potentials for electrically neutral atoms relies on the
adiabatic following of one of the atomic states “dressed” by the
atom-light interaction [1,6–11]. Such atoms can experience a
light-induced Lorentz-like force, thus mimicking the dynamics
of charged particles in a magnetic field [1,8–12]. Likewise,
non-Abelian gauge potentials can be created when a manifold
of degenerate dressed states of atom-light interaction is
involved [10–14].

An important implication of the synthetic non-Abelian
gauge potentials is that they provide a coupling between the
center-of-mass motion and the internal (spin or quasispin)
degrees of freedom, forming an effective spin-orbit coupling
(SOC). A variety of novel phenomena has been predicted
for such systems, for example, the stripe phase and vortex
structure in the ground states of spin-orbit-coupled Bose-
Einstein condensates (BECs) [15–26], the Rashba pairing
bound states (Rashbons) [27,28] and topological superfluid-
ity [29–31] in fermionic gases, as well as the superfluidity and
Mott-insulating phases of spin-orbit-coupled quantum gases
in optical lattice [32–36].

The synthetic SOC has been experimentally implemented
for boson [37,38] and fermion [39,40] ultracold atomic gases
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by Raman coupling of a pair of atomic hyperfine ground
states. This opens up possibilities of simulating exotic quantum
matter featuring magnetic and spin-orbit effects for ultracold
atoms. Despite an unprecedented controllability of ultracold
atoms, the experimentally realized SOC [37–44] couples the
atomic motion to its spin just in a single spatial direction.
Such a one-dimensional (1D) SOC corresponds to an equally
weighted combination of the Rashba- and Dresselhaus-type of
coupling [37,45–47].

Realization of the synthetic SOC in two or more dimensions
is highly desirable. The two-dimensional SOC of the Rashba
type has a nontrivial dispersion. It contains a Dirac cone
at an intersection point of two dispersion branches, as well
as a highly degenerate ground state (the Rashba ring), the
latter leading to an unusual Bose-Einstein condensation [15–
23,25,26]. Recently a number of elaborate schemes has been
suggested to create an effective two- and three-dimensional
(2D and 3D) SOC [11,48–58]. In particular, Campbell et al.
proposed a way to generate the Rashba-type SOC by cyclically
coupling N atomic internal states via the Raman transitions
leading to a closed-loop (ring coupling) scheme [53].

A variant of such a scheme has been very recently experi-
mentally implemented [59,60] using a far detuned tripod setup
corresponding to N = 3 in the ring coupling scheme [61].
A Dirac cone [59] and its opening [60] have been observed
in the dispersion. However, it does not seem realistic to
observe the ground-state phases associated with the Rashba
ring using the far detuning tripod setup which involves short-
lived higher hyperfine ground states [59,60]. Furthermore, the
N = 3 scheme used in the experiments [59,60] converges
slower to the Rashba ring than the N = 4 ring coupling
scheme [53].

Recently Sun et al. [58] put forward a scheme for generating
a 2D SOC in a bilayer two-component BEC subjected to the
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Raman transitions and laser-assisted interlayer tunneling. In
such a geometry the layer index provides an auxiliary degree
of freedom to form a basis of four spin-layer states. It is
noteworthy that the 2D SOC provided by such a bilayer setup
does not represent the Rashba SOC [58]. Furthermore, in such
a setup the Raman transitions should be accompanied by a
recoil in different directions for different layers, whereas the
interlayer laser-assisted tunneling is to be accompanied by
a recoil in different directions for different spin states [58].
These requirements would be extremely difficult to implement
experimentally.

Here we consider an alternative bilayer scheme which is
free from the above mentioned drawbacks and can provide
a 2D SOC of the Rashba type. An essential element of the
bilayer scheme is that the atoms now pick up a π phase
after completing a cyclic transition between the four spin-layer
states. In that case the dressed states of the atom-light coupling
are twofold degenerate. As a result, one effectively implements
the N = 4 ring coupling scheme [53] by using a combination
of two layers and two internal atomic states. If the interlayer
tunneling and Raman transitions are sufficiently strong, the
laser recoil induces a 2D SOC of the Rashba type for a pair of
degenerate atomic dressed states. In that case the minimum of
the single particle dispersion represents a degenerate Rashba
ring.

A characteristic feature of the bilayer system is that the
interaction takes place between atoms belonging to the same
layer. Therefore the atom-atom interaction is now different
from the one featured for the scheme involving four cyclically
coupled atomic internal states [53]. It is demonstrated that
the bilayer scheme provides a diverse ground-state phase
diagram. In particular, in the regime of a strong atom-light
coupling the stripe and plane-wave phases emerge at specific
directions of the degenerate Rashba ring. Thus the system
exhibits an interaction-induced anisotropy. On the other hand,
in an intermediate range of the atom-light coupling, two in-
terlacing lattices of half-skyrmions and half-antiskyrmions are
formed.

The proposed bilayer setup can be experimentally imple-
mented by using the current experimental technology. Unlike
in the previous bilayer scheme [58], now the Raman coupling
in each layer is accompanied by a recoil in the same direction
ex − ey in the xy plane, as one can see in Fig. 1. Consequently
each layer is affected by the Raman coupling used previously
to produce a 1D SOC [37]. The π phase shift can be
realized if the Raman coupling has an out-of-plane momentum
component kz

�, such that the relative phase between the layers
is kz

�dz = 2ϕ = π , where dz is an interlayer separation. On
the other hand, the interlayer tunneling is accompanied by
the recoil in the same direction ex + ey in the xy plane for
both spin states. Such a laser-assisted interlayer tunneling is
also experimentally available [3,4]. To implement the present
bilayer setup one needs to combine the Raman coupling
between the different spin states [37] together with the laser-
assisted interlayer tunneling [3,4]. An additional merit of the
bilayer scheme is that only two atomic spin states are involved.
Thus there is no need to make use of spin states belonging
to a higher hyperfine manifold [53]. The latter spin states
suffer from a collisional population decay [62] undermining
the effective SOC.

FIG. 1. (a) Schematic plot of the atomic system. The BEC is
tightly trapped in an asymmetric double-well potential along the z

axis, forming a bilayer structure. The bosonic atoms in each layer
are condensed into two single-particle internal states |γ 〉 = |↑〉, |↓〉.
The layer index j = 1,2 provides an extra degree of freedom, so the
four states |γ,j〉 serve as the required atomic states in the N = 4
ring-coupling scheme [53]. The intralayer transitions |↑,j〉 ↔ |↓,j〉
are engendered by Raman coupling, while the interlayer transitions
|↑,1〉 ↔ |↑,2〉 and |↓,1〉 ↔ |↓,2〉 are due to the laser-assisted
tunneling. (b) Schematic plot of the intralayer Raman transition
and interlayer laser-assisted tunneling. (c) The lowest branch of the
single-particle spectrum Eq. (6) for a strong symmetric coupling
� = J = 5Erec and ϕ = π/2. The spectrum is plotted in units of
recoil momentum κ and recoil energy Erec. In this case, a nearly
degenerate Rashba-ring minimum with a radius κ/2 emerges. (d) A
possible way to induce Raman transitions and interlayer tunneling
by illuminating both layers with three laser beams, two of them E1

and E2 propagating in the xy plane, the third one E0 being along the
z axis. The frequencies of the laser beams are chosen such that the
E0 and E1 drive the Raman transition, whereas E0 and E2 induces
the laser-assisted interlayer tunneling. The field E0 provides the z

component to the Raman coupling needed to have the phase difference
2ϕ for the Raman coupling in different layers. For more details see
Appendix A.

The paper is organized as follows. In Sec. II we construct
the single-particle Hamiltonian describing SOC in a bilayer
BEC affected by the atom-light interaction. The single particle
energy spectrum and corresponding eigenstates are determined
for an arbitrary strength of atom-light coupling. In Sec. III
we consider the many-body ground-state phases of weakly
interacting bilayer BECs by numerically solving the Gross-
Pitaevskii equations in a wide range of magnitudes of the
interatomic interaction and the atom-light coupling. In the limit
of strong atom-light coupling, we also analyze a behavior of
the ground-state phase using a variational approach, and find it
in a good agreement with the numerical results. In Sec. IV we
present the concluding remarks and discuss possibilities of the
experimental implementation of the proposed bilayer scheme.
Finally, some auxiliary calculations are placed in Appendixes
A and B.
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II. BILAYER BEC AFFECTED BY THE ATOM-LIGHT
INTERACTION

A. Single-particle Hamiltonian

To realize the synthetic SOC in the atomic BEC based
on the N = 4 close-loop (ring-coupling) scheme [53], we
consider a two-component Bose gas confined in the bilayer
geometry depicted in Fig. 1. The atoms are confined in a
deep enough asymmetric double-well potential [63], so their
motion is suppressed in the z direction. The atoms are in the
ground states of individual wells, and only the laser-assisted
tunneling can induce transitions between the two wells. The
four combined spin-layer states |γ,j 〉 ≡ |γ 〉spin ⊗ |j 〉layer serve
as the states required for the ring coupling scheme [53]. Here
j = 1, 2 signifies the j th layer, and |γ 〉 = |↑〉, |↓〉 denotes
an internal (quasispin) atomic state. The spin-layer states are
cylindrically coupled by illuminating the atoms by three lasers
inducing the intralayer Raman transitions and the laser-assisted
interlayer tunneling, as depicted in Fig. 1. As it is shown in
Appendix A, the resultant single-particle Hamiltonian can be
represented as

Ĥ0 = Ĥatom + Ĥintra + Ĥinter + Ĥextra, (1)

where

Ĥatom =
∫

d2r⊥

∑
j,γ

ψ̂
†
γj

�
2k2

⊥

2m
ψ̂γj (2)

is the Hamiltonian for an unperturbed atomic motion within
the layers;

Ĥintra =
∫

d2r⊥�[eiϕψ̂
†
↑1ψ̂↓1 + e−iϕψ̂

†
↑2ψ̂↓2 + H.c.] (3)

describes the spin-flip intralayer Raman transitions character-
ized by the Rabi frequency �, and

Ĥinter =
∫

d2r⊥

∑
γ

J ψ̂
†
γ 2ψ̂γ 1 + H.c. (4)

represents the laser-assisted interlayer tunneling with the
strength J . Finally, the last term

Ĥextra =
∫

d2r⊥
�

2κ

m
[ψ̂†

↑2kxψ̂↑2 − ψ̂
†
↓1kxψ̂1↓

+ ψ̂
†
↓2kyψ̂↓2 − ψ̂

†
↑1kyψ̂↑1] (5)

describes the SOC due to the recoil momentum κ in the
xy plane induced by the interlayer tunneling and Raman
transitions. Here ψ̂γj is an operator annihilating an atom
with a spin γ in the j th layer, r⊥ = (x,y) and k⊥ = (kx,ky)
are in-plane projections of the atomic position vector and
momentum, and 2ϕ = kz

�dz is a phase difference between the
Raman couplings in the two layers. The latter phase difference
can be tuned by either varying the double-well separation dz

or the out-of-plane Raman recoil kz
�. To implement an N = 4

ring coupling scheme with a π phase shift [53] the Raman
coupling in different layers should have a π phase difference,
so we set ϕ = π/2 throughout the paper.

Note that in the original representation the laser-induced
terms Ĥ ′

intra and Ĥ ′
inter contain position-dependent recoil factors

featured in Eqs. (A2) and (A3) in Appendix A. Such a position

FIG. 2. The lowest branch of the single-particle dispersion as a
function of momentum for various coupling strengths are shown in
(a)–(f). In a weak coupling regime �2 = J 2 
 E2

rec, the dispersion
is a superimposition of four distinct paraboloids centered at ±κ êx

and ±κ êy as depicted in (a). Increasing the coupling strength, the
four paraboloids become mixed with each other as plotted in (b) and
(c) for �2 = J 2 � E2

rec and the minima become much shallower as
shown in (d) and (e) when �2 = J 2 ∼ E2

rec. In the strong coupling
regime �2 = J 2 � E2

rec (see Ref. [53]), the Rashba-ring minimum
with a radius κ/2 emerges, as one can see in (e) and (f).

dependence can be eliminated via the transformation (A4)
leading to a position-independent single-particle Hamiltonian
Ĥ0 given by Eq. (1). Additionally, the SOC term Ĥextra appears
in the transformed Hamiltonian Ĥ0.

In the following we shall work in dimensionless units where
the energy is measured in units of the recoil energy Erec =
�

2κ2/2m and the wave vector is measured in the units of κ .

B. Single-particle dispersion

Diagonalization of the single-particle Hamiltonian [Eq. (1)]
yields four branches of the single-particle dispersion consid-
ered in Appendix B 1. Here we focus only on the lowest branch
characterized by the eigenenergies

Eg = 1 + k2 −
√

�2 + J 2 + 2k2 + 2ak, (6)

with

ak =
√

�2(kx + ky)2 + J 2(kx − ky)2 + (
k2
x − k2

y

)2
, (7)

where k ≡ k⊥ = (kx,ky) is an atomic momentum.
For a symmetric coupling (� = J ), the ground-state disper-

sion surface is plotted in Fig. 2 for various coupling strengths.
In the following we shall present the corresponding eigenstates
in different regimes of the coupling strength at the local minima
of the dispersion surface where the atoms condense.

In the weak coupling regime �2 = J 2 
 E2
rec, the disper-

sion surface is built of superimposed paraboloids centered
at ±κex and ±κey , as shown in Fig. 2(a). Each eigenstate
corresponding to the four energy minima contains a single
spin-layer component

|↓,1〉eiκx, |↑,2〉e−iκx, |↑,1〉eiκy, |↓,2〉e−iκy, (8)
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where

|↑,1〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |↓,1〉 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

|↑,2〉 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |↓,2〉 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ (9)

represents a basis of the spin-layer states. Therefore the four
spin components are not yet mixed in the weak coupling limit.

With increasing the coupling to �2 = J 2 � E2
rec, the four

paraboloids gradually coalesce but still the dispersion exhibits
four distinguishable minima located at ±κex and ±κey as
depicted in Figs. 2(b)–2(d). Each eigenstate corresponding to
the four energy minima now contains contributions of three
spin states⎛

⎜⎜⎝
1
2i
�

0
−i

⎞
⎟⎟⎠eiκx,

⎛
⎜⎜⎝

1
0
−2
J

i

⎞
⎟⎟⎠e−iκx,

⎛
⎜⎜⎝

−2i
�

1
i

0

⎞
⎟⎟⎠eiκy,

⎛
⎜⎜⎝

0
1
−i
−2
J

⎞
⎟⎟⎠e−iκy .

(10)
This will lead to a brickwall phase for the bilayer BEC.

Finally, in the strong coupling regime �2 = J 2 � E2
rec, one

has ak ≈ �k
√

2 and thus Eg ≈ −�
√

2 + 1 − k + k2. Hence
mixing between the spin states results in the emergence of
a cylindrically symmetric Rashba-ring minimum of a radius
κ/2 in the dispersion shown in Figs. 2(e) and 2(f). This
is a characteristic feature of the close-loop (ring coupling)
scheme [53]. In this regime, the single particle eigenstates �kg

on the Rashba ring takes the form

χ =

⎛
⎜⎜⎝

√
2 cos φ

i(1 − sin φ + cos φ)
1 − sin φ − cos φ

−√
2i(1 − sin φ)

⎞
⎟⎟⎠ eik·r⊥√

8 − 8 sin φ
, (11)

with k = kg = κ(cos φ ex + sin φ ey)/2, where φ is an az-
imuthal angle parametrizing the degenerate ring.

It is convenient to project the system onto the state-
vectors χ (1) and χ (2) corresponding to the spinor part of the
ground-state-vector (11) for φ = 3π/4 and φ = −π/4, i.e.,
corresponding to the opposite momenta k and −k along the
diagonal ex − ey , see Eq. (B13) in Appendix B 2. The projected
Hamiltonian represents a Rashba-type Hamiltonian given by
Eq. (B16).

Note that the Rashba-ring minimum occurs only for a
symmetric coupling where � = J . The asymmetric coupling
(� �= J ) breaks the rotational symmetry in the momentum
space, reducing the ring minimum to a twofold degenerate
ground state.

III. MEAN-FIELD GROUND STATES

A. Gross-Pitaevskii energy functional

We assume that all atoms interact with each other via con-
tact potentials. As a result, the second-quantized interaction

Hamiltonian is given by

Ĥint =
∫

d2r⊥

∑
j=1,2

(
g↑
2

n̂2
↑j + g↓

2
n̂2

↓j + g↑↓n̂↑j n̂↓j

)
, (12)

where the interlayer interaction is neglected because of the
short-range nature of the interatomic interactions. Here g↑
and g↓ denote the intraspecies interaction strengths, g↑↓ the
interspecies interaction strength, and n̂γj = ψ̂

†
γj ψ̂γj is the

number density operator for the γ th spin state in the j th
layer. To approach the ground-state structure of the spin-orbit
coupled BEC at zero temperature, we adopt the mean-field
approximation, namely, the field operator ψ̂γj is replaced
by the ground-state expectation value ψγj ≡ 〈ψ̂γj 〉, which
is complex in general. Accordingly, the Gross-Pitaevskii
(GP) energy functionalE[ψ∗

γj ,ψγj ] = 〈Ĥ0 + Ĥint〉 is explicitly
expressed as

E[ψ∗
γj ,ψγj ] =

∫
d2r⊥

⎡
⎣∑

j,γ

ψ∗
γj

(
− 1

2
∇2

⊥ + 1

2
ω2r2

)
ψγj

+ κ(ψ∗
↑2p̂xψ↑2 − ψ∗

↓1p̂xψ↓1)

+ κ(ψ∗
↓2p̂yψ↓2 − ψ∗

↑1p̂yψ↑1)

+ �(eiϕψ∗
↑1ψ↓1 + e−iϕψ∗

↑2ψ↓2 + H.c.)

+ J (ψ∗
↑2ψ↑1 + ψ∗

↓2ψ↓1 + H.c.)

+
∑

j

(
g↑
2

ρ2
↑j + g↓

2
ρ2

↓j + g↑↓ρ↑j ρ↓j

)⎤
⎦,

(13)

where ργj = |ψγj |2, and the wave functions are normalized
to unity, namely,

∫
d2r⊥

∑
jγ ργj (r⊥ ) = 1. This is achieved

by the substitution ψγj → √
Nψγj which rescales interaction

strengths, viz. g↑↓ → Ng↑↓, g↑ → Ng↑ and g↓ → Ng↓,
where N is the total number of atoms. Without loss of
generality, we assume g↑ = g↓ ≡ g. Furthermore, to confine
atoms we have included a sufficiently weak harmonic trapping
potential with a level spacing �ω much smaller than the recoil
energy Erec.

An important quantity characterizing the bilayer BEC is
the spin texture on the j th layer Sj (r⊥) = 〈χj |σ |χj 〉 [64],
where σ = σxex + σyey + σzez is a vector of Pauli matrices,
and χj (r⊥ ) = [χ↑j (r⊥ ),χ↓j (r⊥)]T is a local spinor. The latter
χj (r⊥ ) is proportional to the spinor wave function ψγj (r⊥) =√∑

γ ργj (r⊥ )χγj (r⊥ ) and is normalized to unity, namely,

|χ↑j |2 + |χ↓j |2 = 1. It is convenient to represent the spinor
χj (r⊥ ) in terms of its amplitude and phase

χγj (r⊥ ) = |χγj |eiθγj , with γ = ↑,↓. (14)

In that case the Cartesian components of the vector Sj take the
form

Sx
j = 2|χ↑j ||χ↓j | cos(θ↓j − θ↑j ),

S
y

j = 2|χ↑j ||χ↓j | sin(θ↓j − θ↑j ), (15)

Sz
j = |χ↑j |2 − |χ↓j |2.
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FIG. 3. Ground-state phase diagram of the bilayer spin-orbit-
coupled BEC as a function of 1 − g2

↑↓/g
2 and the laser-assisted

coupling � for J = �. The phase diagram consists of two types
of plane-wave phases (PW-I: cyan and PW-II: yellow), a brickwall
phase (BW: green) and a standing-wave phase (SW: purple).

B. Numerical results

To investigate the ground-state phases of the interacting
BEC in a harmonic trap, we minimize the GP energy functional
Eq. (13) by the imaginary-time propagation method [65].
As shown in Fig. 3, the ground state possesses a variety
of phases which are determined by the inter- and intralayer
coupling and the intralayer interaction between the atoms.
In the numerical simulations, four distinct phases have been
identified. These are the plane-wave phases of types I and
II (PW-I and PW-II), the brickwall (BW) phase, as well as
the standing-wave (SW) or stripe phase. The occurrence of
PW-I and BW phases depends only on the Raman coupling
and the interlayer tunneling. On the other hand, the PW-II and

SW phases emerge at stronger Raman coupling and stronger
tunneling, and depend on the interatomic interactions. In the
following, the structure of each phases is discussed.

PW-I phase. In the weak coupling regime, �2 = J 2 

E2

rec, the four spin-layer components are almost uncoupled.
Consequently each layer behaves like an ordinary binary BEC
except that the single-particle dispersion is shifted due to the
term Ĥextra, Eq. (5), induced by the gauge-transformation (A4).
Therefore, each spin-layer component would condense at
the bottom of the shifted parabolic dispersion, as shown in
Fig. 4. The real-space density profiles of the four spin-layer
components |ψγj (r⊥ )|2 are presented in Figs. 4(a)–4(d), and
their momentum-space counterparts |ψ̄γj (k)|2 are shown in
Figs. 4(f)–4(i). The momentum distribution of each component
|ψ̄γj (k)|2 is sharply peaked around the four momenta, k =
κex , −κex , κey , and −κey , indicating that each spin-layer
component acquires a momentum shift via the SOC term Ĥextra

given by Eq. (5).
The spin texture Sj (r⊥) of PW-I phase is depicted in

Figs. 4(e) and 4(j) for the first layer (j = 1). The color of the
arrows indicates the magnitude of Sx

j and the periodic modu-
lation of spin orientation is caused by the interference between
the plane waves characterizing the spin-layer components.

BW phase. By simultaneously increasing � and J , the
four otherwise distinct paraboloids characterizing the PW-I
phase start developing a noticeable overlap between the
neighboring paraboloids and finally completely merge in
the moderate coupling regime where �2 = J 2 � E2

rec. The
dispersion surface so formed introduces a ground-state phase
shown in Figs. 5(a)–5(d). The BEC density profiles of the
four spin-layer components now exhibit periodic spatial
modulations characteristic to a BW pattern. Note that the dips
in the density profiles are not vortices according to their phase
profiles. The BW patterns of both spin components in the same
layer interlace, so that the density dips of one spin component
are filled by another spin component. The formation of BW

FIG. 4. (a)–(d) Plots of the real-space density profiles of all spin-layer components for the PW-I phase, i.e., ρ↑1, ρ↓1, ρ↑2, and ρ↓2,
respectively. The corresponding momentum-space distributions are depicted in (f)–(i), where the axes are in units of recoil momentum. The
spin texture in the first and second layers are shown in (e) and (j), respectively, where the color of the arrows indicate the magnitude of Sx

j . The
couplings and interaction strengths are taken to be � = J = 0.05Erec and g↑ : g↓ : g↑↓ = 1 : 1 : 0.9.
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FIG. 5. The real-space density profiles of all spin-layer compo-
nents in BW phase, ρ↑1, ρ↓1, ρ↑2, and ρ↓2, are plotted in (a)–(d),
respectively. The corresponding momentum-space distributions are
depicted in (e)–(h), where the axes are calibrated in units of recoil
momentum. The couplings and interaction strengths are taken to be
� = J = 0.5Erec and g↑ : g↓ : g↑↓ = 1 : 1 : 0.9.

structure can be easily understood by examining the density
profiles in the momentum space.

As shown in Figs. 5(e)–5(h), it is evident that ψ̄γj (k)
appears as a superposition of three out the four-momentum
eigenmodes labeled by k = ±κex and ±κey . For instance,
let us take ψ↑1 representing a superposition of the modes with
k = ±κex and κey . In this case the majority of atoms condense
in the k = κey mode, whereas the remaining atoms evenly
condense in the k = ±κex modes. The latter two modes are
populated owing to the presence of non-negligible inter- and
intralayer couplings.

In contrast to the PW-I phase, the BW structure leads to an
intriguing spin texture in each layer, as shown in Fig. 6. The
spin texture consists of two interlacing square lattices of spin
vortices with opposite handednesss. To further characterize
this state, we calculate the topological charge density in the j th
layer, τj = Sj · ∂xSj × ∂ySj /4π . As shown in Fig. 6, the left
(right)-handed circulation corresponds to a positive (negative)

FIG. 6. (a) Spin texture of the first layer for the BW phase
depicted in Fig. 5. The color of the arrows indicates the magnitude of
Sz

1. (b) The topological charge density of the spin orientation shown in
(a). Two interlacing square lattices of positive and negative charges
are clearly visible. Integrating the charge density over an unit cell
for the lattice of positive (negative) charge gives 1/2 (−1/2) which
corresponds to the half-skyrmion (half-antiskyrmion).

FIG. 7. (a) and (b) The real-space density profiles of the spin-
layer components ρ↑1 and ρ↓1 in the first layer for PW-II phase with
k = κe−/2. The corresponding momentum-space distributions are
depicted in (c) and (d), where the axes are marked in units of the
recoil momentum. The couplings and interaction strengths are taken
to be � = J = 2Erec and g↑ : g↓ : g↑↓ = 1 : 1 : 1.1.

topological charge density. Integrating τj over the elementary
unit cell, we identify that the topological charge can be either
+1/2 or −1/2. This corresponds to the half-skyrmions and
half-antiskyrmions, respectively [54,58,66,67].

PW-II phase. Now let us assume that g↑↓ > g and con-
sider the strong coupling limit where �2 = J 2 � E2

rec. In
this regime, the Rashba-ring minimum emerges, and the
many-body ground state (PW-II phase) becomes interaction-
dependent. Figure 7 illustrates formation of the PW-II phase for
� = J = 2Erec and g↑ : g↓ : g↑↓ = 1 : 1 : 1.1 corresponding
to the case where g↑↓ > g. Unlike in the PW-I phase, here each
spin-layer component condenses in the same momentum mode
with k = ±κe−/2 along the diagonal e− = (ex − ey)/

√
2, and

the total multicomponent wave function contains a common
plane-wave factor. In each layer the intralayer spin polarization
is nonzero due to the imbalanced population of ρ↑j and ρ↓j . On
the other hand, the density profiles of the same spin component
but different layers are identical, i.e., ργ 1 = ργ 2. Note that
in the previously considered Rashba-type spin-orbit-coupled
system [15], the plane wave phase exists in the regime where
g↑↓ < g. This is opposite to the current bilayer system.

SW phase. Finally, for g↑↓ < g and �2 = J 2 � E2
rec, the

ground-state wave function consists of two counterpropagating
plane waves on the Rashba ring with opposite momenta
along the diagonal e+ = (ex + ey)/

√
2. This constitutes the

SW phase. As shown in Fig. 8, the real-space density profile
of each component with � = J = 2Erec and g↑ : g↓ : g↑↓ =
1 : 1 : 0.9 forms the stripe structure, while the momentum-
space density is sharply peaked around the of two momenta
k = ±κe+/2. The spin texture in each layer is depicted in
Figs. 8(e) and 8(j). The periodic modulation of the spin texture

053630-6



RASHBA-TYPE SPIN-ORBIT COUPLING IN BILAYER . . . PHYSICAL REVIEW A 93, 053630 (2016)

FIG. 8. The real-space density profiles of all spin-layer components in SW phase, ρ↑1, ρ↓1, ρ↑2, and ρ↓2, are plotted in (a)–(d), respectively.
The corresponding momentum-space distributions are depicted in (f)–(i), where the axes are calibrated in units of recoil momentum. The spin
texture in the first and second layers are shown in (e) and (j), respectively, where the color of the arrows indicate the magnitude of Sz

j . The
couplings and interaction strengths are taken to be � = J = 2Erec and g↑ : g↓ : g↑↓ = 1 : 1 : 0.9.

is accompanied by the stripe structure of the density profile.
Furthermore, one can see in Fig. 8 that the occupation of
the two momentum states k = (±κ/2)e+ is asymmetric in the
bilayer system, in contrast to the SW phase in the previously
considered spin-orbit-coupled BECs [15,20–22,24,26]. It is
noteworthy that now the SW phase occurs for g↑↓ < g. This is
opposite to the usual BEC affected by the Rashba SOC [15].
To further understand the phases of the bilayer system, a
variational analysis is presented in the following section.

C. Variational approach

So far our conclusions on the BEC phases were mostly
based on numerical simulations. In order to gain a better
insight into the ground-state structure of the bilayer spin-
orbit-coupled BEC, a simpler analytical study is desirable.
To this end, we employ a variational approach to investigate
the ground-state phases in different coupling regimes. We are
particularly interested in solving the ground state in the strong-
coupling regime, where the many-body ground state shows
a preference of residing at some special locations of the
degenerate Rashba ring.

We begin by writing down the interaction energy, namely,
the ground-state expectation value of the interaction Hamilto-
nian (16)

Eint = 1

4

∑
j

(
c0ρ

2
j + c2μ

2
j

)
, (16)

where ρj = ρ↑j + ρ↓j and μj = ρ↑j − ρ↓j are, respectively,
the total number and magnetization densities in the j th layer,
and c0 = g + g↑↓ and c2 = g − g↑↓ characterize the density-
density and spin-spin interactions, respectively. We use the
following trial wave functions of PW-II and SW phases:

�PW-II = �kg
(17)

and

�SW = 1√
2

(�kg
+ �−kg

), (18)

where �kg
is the plane-wave solution given by Eq. (11), with

kg = κ(cos φ ex + sin φ ey)/2. In the following we compare
the interaction energies for these two trial wave functions. For
simplicity we shall not include a harmonic trapping potential.

PW-II phase. Let us first consider the variational ansatz of
PW-II phase. With the trial wave function given by Eq. (17),
the total density and spin density in the j th layer read

ρj = 1

2
+ (−1)j−1(cos φ + sin φ)

4
(19)

and

μj = sin φ − cos φ

4
. (20)

Therefore, for the PW-II phase the nonlinear interaction energy
is given by

EPW-II
int = c0

8
+ c0

64
(1 + sin 2φ) + c2

32
(1 − sin 2φ). (21)

It is evident that the interaction energy depends on the
azimuthal angle φ. This is in contrast to the single-layer
Rashba spin-orbit-coupled system in which the interaction
energy does not depend on the azimuthal angle φ [15,20,24].
Using Eq. (21), the energy minima are found at two angles
φ = 3π/4 and −π/4, for which

EPW-II
int, min = c0

8
+ c2

16
. (22)

SW phase. For the SW phase, the trial wave function
Eq. (18) provides the following total density and magnetization
density:

ρj = 1
2 + 1

4 | cos φ|(tan φ − 1) cos(x cos φ + y sin φ) (23)
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and

μj = 1
4 | cos φ|(1 + tan φ) cos(x cos φ + y sin φ), (24)

where the spatial dependence comes from the periodic modu-
lation of the stripes. The resultant energy takes the form

ESW
int = c0

8
+ c0

64
(1 − sin 2φ) + c2

64
(1 + sin 2φ), (25)

where the spatially oscillating cosine terms are replaced by the
mean values 〈cos(x cos φ + y sin φ)〉 = 0 and 〈cos2(x cos φ +
y sin φ)〉 = 1/2. Thus the interaction is again anisotropic along
the Rashba ring. The energy minimum occurs at φ = π/4 or
equivalently at 5π/4,

ESW
int, min = c0

8
+ c2

32
. (26)

The energy minima of the PW-II and SW phases differ by
the amount EPW-II

int, min − ESW
int, min = c2/32. This implies that for

c2 > 0 (c2 < 0) the SW (PW-II) phase represents the ground
state, in agreement with the numerical simulations. Although
the ordinary single layer Rashba SOC also provides the SW
and PW-II phases [15], the conclusions are opposite compared
to our bilayer system, that is, for c2 < 0 (c2 > 0) the ground
state is in the SW (PW-II) phase.

We note that in a single-layer Rashba SOC the energy of the
PW phase is spin-independent on a Rashba ring, and the phase
has a zero magnetization [15]. On the other hand, in the bilayer
system the energy minima of PW-II phase on the Rashba ring
are characterized by a nonvanishing magnetization. Therefore
the PW-II phase has a lower energy than the SW phase for
c2 < 0 corresponding to g↑↓ > g. In this way one arrives at a
situation opposite to that appearing for an ordinary single layer
BEC affected by the SOC [15] in which the PW phase has an
energy lower than the SW phase if c2 > 0 corresponding to
g↑↓ > g. The difference originates from the anisotropy in the
population of each spin-layer component on the Rashba ring
in the bilayer system, as one can see in Eq. (11).

In this way, the variational approach shows that the atoms
favor to condense at φ = 3π/4 or −π/4 for the PW-II phase,
whereas the SW phase involves a superposition of the plane
waves at φ = π/4 and 5π/4. To gain more insight into such an
interaction-induced symmetry breaking, in Appendix B 3 the
Hamiltonian has been expressed in terms of the basis vectors of
the lowest dispersion branch at the azimuthal angles φ = 3π/4
or −π/4. The projection of the Hamiltonian onto these states
gives rise to the appearance of the Rashba Hamiltonian (B16)
subjected to an asymmetric atom-atom interaction given by
Eq. (B19).

We have presented the variational study in the regime of
strong coupling. For a weak and a moderate coupling, the
single-particle dispersion surfaces are characterized by four
distinct minima in the momentum space. The trial wave func-
tions are then simply superpositions of the four corresponding
momentum eigenstates. This provides the ground state phases
in a good agreement with the numerical results.

1. Asymmetric coupling � �= J

Now let us briefly discuss a situation when � �= J and√
�2 + J 2 � Erec. The asymmetric coupling breaks the rota-

tional symmetry in the momentum space and leads to a twofold

FIG. 9. The real-space density profiles of spin components in the
first layer in a metastable state, ρ↑1 are ρ↓1 are plotted in (a) and
(b), respectively. The corresponding momentum-space distributions
are depicted in (d) and (e), where the axes are calibrated in units of
recoil momentum. The coupling is now asymmetric, � = 1.5Erec and
J = 2Erec, and interaction strengths are g↑ : g↓ : g↑↓ = 1 : 1 : 0.9.
The phase profiles of the wave function in the first layer θ↑1(r) and
θ↓1(r) are plotted in (c) and (f), respectively, where an array of vortices
can be clearly seen.

degenerate single-particle dispersion. For � > J , the energy
minimum occurs at φ = π/4 and 5π/4, while for � < J the
energy minimum appears at φ = −π/4 and 3π/4. Numerical
simulations reveal that the many-body ground state is the SW
or PW-II phase for � > J or � < J , respectively. The phase
is independent of the interaction strengths. This is because
the single particle dispersion possesses only two degenerate
minima. In other words, due to the lack of the ring degeneracy,
the many-body ground state is determined only by the strengths
of the Raman coupling and the tunneling.

2. Metastable states

Occasionally the imaginary-time propagation ended up at
a metastable state containing domains. The metastable state
emerges for parameters of the system corresponding to the
PW-II phase, namely, for c2 < 0 with �2 = J 2 � E2

rec or
for � �= J with

√
�2 + J 2 � Erec. It has an energy slightly

higher than that of the ground state. The metastable state is
made of two spatially separated spin-polarized domains in the
same layer, as shown in Fig. 9. The domains carry opposite
momenta k = ±κe−/2, like in the previously considered
case of the ordinary Rashba SOC [15]. Since the phases of
the two counterpropagating PW-II states in each domain could
not continuously connect along the boundary, the frustration
results in the formation of arrays of vortices, as depicted in
Figs. 9(c) and 9(f). The density of the vortices increases with
increasing the SOC strength.

IV. DISCUSSION AND CONCLUSION

In conclusion, the proposed bilayer system provides a
possibility to realize the Rashba-type SOC for ultracold
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atoms. Numerical simulation and variational analysis have
elucidated a diverse phase diagram of the bilayer BEC in
a wide range of magnitudes of the atom-light coupling and
atom-atom interaction. In the moderate coupling regime the
BW phase is formed leading to the emergence of lattices of
half-skyrmions and half-antiskyrmions. In the strong coupling
regime, the Rashba-ring minimum emerges, and the ground
state is either the SW or PW-II phases, depending on the
interatomic interaction strengths.

An experimental implementation of the proposed bi-
layer spin-orbit-coupled system is within reach of current
experiments with ultracold atoms. For instance, the two
magnetic sublevels of the F = 1 ground state manifold of
the 87Rb-type alkali atoms [37] could serve as the atomic
internal (quasispin 1/2) states. Typically the experimental
trapping frequencies are (ω⊥,ωz) = 2π × (10 400) Hz and the
wavelength of laser fields inducing the Raman coupling and
interlayer tunneling is around λL � 800 nm, corresponding
to the recoil energy Erec � 11�ω⊥. The scattering lengths for
the two spin states |F = 1,mF = 0〉 ≡ |↑〉 and |F = 1,mF =
−1〉 ≡ |↓〉, used in Ref. [37], are given by a↑ = c0 and
a↓ = a↑↓ = c0 + c2, with c0 = 7.79 × 10−12 Hz cm3 and c2 =
−3.61 × 10−14 Hz cm3 [68,69]. The intra- and interspecies
interaction strengths are given by g↑,↓ = √

2πNa↑,↓/ξz and
g↑↓ = √

2πNa↑↓/ξz, with ξz = √
�/mωz. The corresponding

intraspecies interaction is nearly symmetric with g↑/g↓ =
1.0047, so the phase diagram of Fig. 3 can be applied directly.
Finally, the diverse phase diagram of the bilayer system also
provides the possibilities to study the quantum phase transition
by varying the coupling strengths which will be investigated
in another study.
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APPENDIX A: ATOM-LIGHT INTERACTION

In this Appendix we provide a full account of the atom-
light interaction processes proposed for generating SOC in a
bilayer BEC. The general Hamiltonian HAL of the atom-light
interaction in an atomic hyperfine ground-state manifold is
expressed in terms of the scalar and vector light shifts [11,70]:

HAL =us(E∗ · E) + iuvgF

�gJ

(E∗ × E) · F̂, (A1)

where E∗ is the negative frequency part of the full electric
field, F̂ the total spin operator, and us and uv are the scalar
and vector atomic polarizabilities. The parameters gJ and gF

denote the Landé g factors due to the electronic spin and the
total angular momentum of the atom, respectively. For 87Rb
atoms in the lowest energy hyperfine manifold with F = 1,
one has gF /gJ = −1/4. Additionally, the atoms are trapped
in a spin-independent asymmetric double-well potential [63].
The energy difference for the atomic ground states localized in
different layers is �inter, whereas the Zeeman splitting between
atomic internal spin states within a layer is �intra.

Figure 1(d) illustrates the laser configuration for creating
the desirable intra- and interlayer couplings. As shown in
Fig. 1(a), both layers are simultaneously illuminated by three
laser beams labeled by E0, E1, and E2. The former field E0 ∼
(ex + iey)ei(k0z−ω0t) is circularly polarized and propagates
along the z axis. It contributes both to the intra- and interlayers
coupling. The latter fields E1 and E2 are responsible for
producing the intra- and interlayer couplings, respectively. In
the following we shall consider these couplings in more detail.

1. Intralayer transitions

The other applied field E1 ∼ êze
i[k1·r−(ω0+δω1)t] is linearly

polarized along êz and is characterized by the wave vector
k1 = k1e− in the xy plane, as one can see in Fig. 1(d), where
e− = (ex − ey)/

√
2. The vector product E∗

0 × E1 in Eq. (A1)
describes the intralayer spin-flip transitions taking place if the
frequencies of the fields E0 and E1 are tuned to the two-photon
resonance δω1 = �intra between the magnetic sublevels |↓〉 ≡
|mF = −1〉 and |↑〉 ≡ |mF = 0〉. The third magnetic sublevel
|mF = 1〉 can be excluded due to a sufficiently large quadratic
Zeeman effect, as demonstrated by the NIST group [37].
Therefore, the Hamiltonian of the intralayer Raman coupling
can be written as

Ĥ ′
intra =

∫
d2r⊥

∑
j

[
�ei(k⊥

�·r⊥ +(−1)j ϕ−δω1t) + c.c.
]

× �̂
†
↑j�̂↓j + H.c., (A2)

where k� = k1 − k0 = k⊥
�e− + kz

�ez with k⊥
� = k1 and kz

� =
k0. Here �̂γj (r⊥ ,z) is the field operator annihilating an atom
in the spin-layer state |γ,j 〉, and � is the Rabi frequency of
the intralayer Raman coupling. Since the atoms move freely
only in the xy plane, the out-of-plane Raman recoil provides
the phase difference 2ϕ = kz

�dz for the Raman coupling in
different layers. The phase difference can be tuned by either
varying the double-well separation dz or the out-of-plane
Raman recoil kz

�. In what follows, we take ϕ = π/2 to get
the N = 4 close-loop scheme [53].

2. Interlayer tunneling

The third applied field E2 ∼ e−ei[k2·r−(ω0+δω2)t] propagates
along k2 = k2e+ with e+ = (ex + ey)/

√
2 and is linearly

polarized along e− in the xy plane. Since E0 and E2 are not
orthogonal, their scalar product E0 · E2 featured in Eq. (A1)
provides a scalar light shift oscillating with a frequency δω2.
This gives rise to the state-independent interlayer transitions
depicted in Fig. 1(c). To drive such transitions, the frequencies
of laser beams are assumed to satisfy the condition of
two-photon interlayer resonance δω2 = �inter. The resultant
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Hamiltonian for the laser-assisted tunneling takes the form

Ĥ ′
inter =

∫
d2r⊥

∑
γ

(
Jeik⊥

J ·r⊥ −iδω2t + c.c.
)
�̂

†
γ 2�̂γ 1 + H.c.,

(A3)

where kJ = k2 − k0 = k⊥
J e+ + kz

J ez with k⊥
J = k2 and kz

J =
k0. Here J = �J

∫
dzφ∗

2 (z)φ1(z)eikz
J z is the interlayer coupling

with �J being the corresponding Rabi frequency, whereas
φ1,2(z) are the Wannier-like states localized in layer 1 or 2. Note
that the Wannier-like states φ1(z) and φ2(z) are orthogonal.
Therefore the nonvanishing overlap integral determining J

comes from the contribution of the factor eikz
J z ≡ eik0z due to

the momentum transfer along the tunneling direction ez [4].
Since the length of the in-plane wave vectors k1 and k2 is
almost the same, in the following we shall take k⊥

J = k⊥
� = κ .

3. Elimination of the spatial and temporal dependence

To gauge away the spatial and temporal dependence in
the atom-light interaction operators Ĥ ′

intra and Ĥ ′
inter, a fast

oscillating (both spatially and temporarily) phase is factored
out from each operator �̂jγ (r⊥ ) by writing⎛

⎜⎜⎝
�̂↑1(r⊥ )
�̂↓1(r⊥ )
�̂↑2(r⊥ )
�̂↓2(r⊥ )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ψ̂↑1(r⊥)e−iκy−iε1↑t

ψ̂↓1(r⊥)e−iκx−iε1↓t

ψ̂↑2(r⊥)eiκx−iε2↑t

ψ̂↓2(r⊥)eiκy−iε2↓t

⎞
⎟⎟⎠. (A4)

Applying the rotating wave approximation, the resultant
time- and position-independent single-particle Hamiltonian is
given by Eqs. (2)–(5) in the main text. Note that the gauge
transformation (A4) introduces an additional SOC term ĤSOC

given by Eq. (5).

APPENDIX B: EIGENVALUE PROBLEM AND
HAMILTONIAN IN ROTATED BASIS

1. The single-particle Hamiltonian and its eigenstates

Denoting

|↑,1〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, |↓,1〉 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠,

(B1)

|↑,2〉 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, |↓,2〉 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠,

the single-particle Hamiltonian [Eqs. (1)–(4)] can be expressed
in the momentum space as

H0 = �
2

2m
(k2 + κ2) + HSOC,k, (B2)

where

HSOC,k = �
2

m
k · q + Hinter + Hintra (B3)

and

q = κex(|↑,2〉〈↑,2| − |↓,1〉〈↓,1|)
+ κey(|↓,2〉〈↓,2| − |↑,1〉〈↑,1|), (B4)

Hinter = J (|↑,2〉〈↑,1| + |↓,2〉〈↓,1|) + H.c., (B5)

Hintra = �(eiϕ |↑,1〉〈↓,1| + e−iϕ |↑,2〉〈↓,2|) + H.c., (B6)

where the momentum k ≡ k⊥ = (kx,ky) is in the xy plane.
The Hamiltonian HSOC,k can be represented in a block

diagonal form:

HSOC,k =
(

h1,k J

J h2,k

)
, (B7)

with

h1,k =
( −2ky �eiϕ

�e−iϕ −2kx

)
, h2,k =

(
2kx �e−iϕ

�eiϕ 2ky

)
,

(B8)
and the off-diagonal 2 × 2 blocks J ≡ JI being proportional
to the 2 × 2 unit matrix I . The block diagonal form of the
Hamiltonian H0 given by Eqs. (B2), (B7), and (B8) allows us
to find its eigenstates in a straightforward way:

Eα,η = 1 + k2 + α
√

�2 + J 2 + 2k2 + 2ηak, (B9)

with α = ±1, η = ±1, where the energy is measured in
the units of the recoil energy Erec = �

2κ2/2m, whereas the
momentum is measured in terms of the recoil momentum κ .
Here

ak =
√

�2(kx + ky)2 + J 2(kx − ky)2 + (
k2
x − k2

y

)2
, (B10)

with k = k(cos φ ex + sin φ ey)/2, and φ is the azimuthal angle
in the momentum space. The lowest dispersion branch

Eg = E−1,1 = 1 + k2 −
√

�2 + J 2 + 2k2 + 2ak (B11)

is obtained by taking α = −1, η = +1. For �2 = J 2 � E2
rec

the eigenvector corresponding to the lowest dispersion branch
is given by Eq. (11) of the main text:

χ =

⎛
⎜⎜⎝

√
2 cos φ

i(1 − sin φ + cos φ)
1 − sin φ − cos φ

−√
2i(1 − sin φ)

⎞
⎟⎟⎠ eik·r⊥√

8 − 8 sin φ
. (B12)

To gain more insight into the interaction-induced symmetry
breaking, we will present the Hamiltonian in terms of the
basis vectors for which the atoms possess the minimum
interaction energy on the Rashba ring. The projection of such a
Hamiltonian to lower energy states gives rise to the appearance
of Rashba Hamiltonian. These issues will be addressed next.

2. Hamiltonian in rotated basis and reduction
to the Rashba Hamiltonian

In Sec. III C of the main text, the variational approach
shows that the minimization of interaction energy breaks
the rotational symmetry of the Rashba ring. In the case of
single momentum states (PW-II phase), the interaction energy
between the atoms acquires a minimum value for φ = 3π/4
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or φ = −π/4, i.e., for k and −k along the diagonal ex − ey .
For these azimuthal angles the spinor part of eigenvectors
χ (1) = χ (3π/4) and χ (2) = χ (−π/4) read using Eq. (B12) or
Eq. (11) in the main text:

χ (1) = 1

b−

⎛
⎜⎝

−1
ia−
1

ia−

⎞
⎟⎠, χ (2) = 1

b+

⎛
⎜⎝

1
ia+
1

−ia+

⎞
⎟⎠, (B13)

where

b± = 2

√
2 ±

√
2, a± = 1 ±

√
2.

The vectors χ (1) and χ (2) can serve as a basis for the lowest
dispersion branch. To have a complete rotated bases, we choose
the remaining two orthogonal vectors to be

χ (3) = 1

b−

⎛
⎜⎝

−1
i

a−
−ia−

⎞
⎟⎠, χ (4) = 1

b+

⎛
⎜⎝

1
i

a+
ia+

⎞
⎟⎠. (B14)

In the rotated basis, the Hamiltonian HSOC,k [Eq. (B7)] reads
for � = J ,

HSOC,k =
(−√

2� 0
0

√
2�

)

+
(

1√
2
(k−σz + k+σx) −kyI + ikxσy

−kyI − ikxσy − 1√
2
(k−σx + k+σz)

)
,

(B15)

with k± = kx ± ky .
For �2 = J 2 � E2

rec, the upper and lower pairs states
are separated by the energy ≈2

√
2�. In that case one can

neglect the coupling between the lower and upper two pairs of
states. The Hamiltonian projected onto the manifold of low-
energy states χ (1) and χ (2) reduces to the usual Rashba-type
Hamiltonian

HSOC,k → 1√
2

(k−σz + k+σx) (B16)

subject to the rotation of the spin by π/2 along the x axis
transforming σz to σy .

3. Interaction energy

According to the interaction Hamiltonian (12), the contact
interaction between atoms is described by the functional

Eint =
2∑

j=1

∫
d2r

(
g↑
2

|ψ↑,j |4 + g↓
2

|ψ↓,j |4

+ g↑↓|ψ↑,j |2|ψ↓,j |2
)

. (B17)

Let us assume that the state of the atomic cloud is a
superposition of lowest states χ (1) and χ (2) with the coefficients
ψ̃1 and ψ̃2:

χ = χ (1)ψ̃1 + χ (2)ψ̃2. (B18)

For g↑ = g↓, the interaction energy (B17) becomes

Eint = 1
16

[
(3g↑ + g↑↓)(|ψ̃1|4 + |ψ̃2|4)

+ 4(g↑ + 2g↑↓)|ψ̃1|2|ψ̃2|2
+ (g↑ + g↑↓)

(
ψ̃∗2

1 ψ̃2
2 + ψ̃∗2

2 ψ̃2
1

)]
. (B19)

Taking ψ̃1 = −ψ sin[ 1
2 (φ + π

4 )], ψ̃2 = ψ cos[ 1
2 (φ + π

4 )] the
superposition vector (B18) reduces to Eq. (B12) or Eq. (11)
in the main text. For φ = −π/4, one has ψ̃1 = 0, so there is
only one column χ (2). Thus φ indeed represents the azimuthal
angle in the momentum space. Inserting the expressions for
ψ̃1 and ψ̃2 into Eq. (B19) we get

Eint = c0

8
+ c0

32
(1 + sin 2φ) + c2

32
(1 − sin 2φ), (B20)

where we assume g↑ = g↓ = g and introduce c0 = g + g↑↓
and c2 = g − g↑↓, with c0 � c2. This is equivalent to the
expression (21) of the main text for the PW-II phase. Using
the projected basis χ1 and χ2, the interaction energy Eint given
by Eq. (B20) acquires a minimum value for φ = 3π/4 or
φ = −π/4, as required. Thus the interaction appears to be
highly anisotropic along the Rashba ring.
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[16] Z. F. Xu, R. Lü, and L. You, Phys. Rev. A 83, 053602 (2011).
[17] C.-F. Liu and W. M. Liu, Phys. Rev. A 86, 033602 (2012).
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