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Topological condensate in an interaction-induced gauge potential
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We systematically investigate the ground-state and elementary excitations of a Bose-Einstein condensate
within a synthetic vector potential, which is induced by the many-body effects and atom-light coupling. For a
sufficiently strong spin-dependent interaction, we find the condensate undergoes a Stoner-type ferromagnetic
transition through the self-consistent coupling with the vector potential. For a weak interaction, the critical
velocity of a supercurrent is anisotropic due to the density fluctuations affecting the gauge field. We further
analytically demonstrate the topological ground state with a coreless vortex ring in a three-dimensional (3D)
harmonic trap and a coreless vortex-antivortex pair in a two-dimensional (2D) trap. The circulating persistent
current is measurable in the time-of-flight experiment or in the dipolar oscillation through the violation of the
Kohn theorem.
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I. INTRODUCTION

Gauge fields play an important role in modern particle
physics, mediating interaction between elementary particles.
In condensed-matter physics, the gauge fields bring many
important phenomena, such as integer and factional quantum
Hall effects [1,2], Laughlin liquids [3], and the Hofstadter
butterfly spectrum [4]. In quantum gas systems, artificial gauge
fields can be also generated for neutral atoms in the rotating
frame [5,6] or by the atom-light coupling with spatially depen-
dent laser fields [7–9] or detuning [10,11]. This opens up new
possibilities to study many-body physics with gauge potential
and is extended to investigate the spin-orbital (SO) coupling
problems in similar experiments [12]. Note that the synthetic
magnetic field experiment [10] and spin-orbital system [12,13]
are in two opposite parameter regimes: The former requires the
recoiled energy to be much smaller than the energy separation
between the dressed states (set by the strength of Raman
laser), so the BEC occupies in the lowest-energy state with an
effective magnetic field via the adiabatic approximation. On
the other hand, the SO-coupled condensate requires a smaller
Raman laser in order to include all the spin degrees of freedom.

Besides these schemes, it was theoretically proposed
to have gauge potentials induced by dipole-dipole interac-
tion [14–16] or by regular contact interaction through the
inhomogenous condensate density, while only condensate
dynamics [17] and excitations [18] in a one-dimensional (1D)
system have been investigated so far. Since the mean-field
solution can be easily destroyed by the finite-temperature
effects and quantum fluctuations in 1D, it is more realistic
and demanding to investigate many-body properties in higher
dimensional systems, where the effective gauge field may
further introduce topological defects and more interesting
many-body physics not observable in 1D systems.

In this paper, we systematically investigate the ground state
and excitation properties of a (pseudo)-spin-1/2 condensate
with the interaction-induced gauge field in higher dimensional
(2D and 3D) systems. To highlight a difference of such a gauge
field from the previously considered ones [7–11] induced by

spatially dependent laser fields, in this paper only a uniform
laser field is considered, so that no effective magnetic field
emerges if no interaction effects are considered. The effective
equations of motion are therefore derived self-consistently
through the interaction effects, which allow us to go
beyond the perturbative regime studied before [17]. Several
interesting many-body properties are highlighted here: (i)
The condensate can undergo a Stoner-type ferromagnetism
self-consistently through an interplay between the interaction
and the synthetic field; i.e., the relative amplitude of the
two components of spinor in the coherent ground state can
be changed sharply when the interaction is larger than a
critical value. However, due to the spin-dependent interaction,
the ferromagnetism is to break U(1)×Z2 symmetry instead
of the SU(2) symmetry in fermionic case. (ii) In the weak
interaction limit of a uniform space, the critical velocity for
the energetic instability becomes anisotropic in space due to
the density fluctuations within the gauge potential. (iii) In a
harmonic trap, we show both analytically and numerically
that the ground state has a coreless vortex ring around the
gauge field in a 3D trap and a coreless vortex-antivortex pair
in a 2D trap. Such topological structure, which reflects the
nonuniform particle density distribution, is strong evidence of
the many-body interaction effect on the synthetic gauge field.
(iv) We further discuss how the topological condensate can
be measured in the time-of-flight experiment and/or in the
dipolar oscillation, where the Kohn theorem [19,20] fails due
to the interaction-induced gauge potential.

The article is organized as follows. In Sec. II, we introduce
the Hamiltonian for the system considered, and then derive a
two-component Gross-Pitaevskii (GP) equation, which can be
furthermore simplified to a one-component GP equation under
adiabatic approximation. In Sec. III, we list the main results in
uniform space, such as the Stoner-type ferromagnetism in the
strong interaction limit and analysis of the critical velocity in
the weak interaction limit. In Sec. IV, we show the topological
ground state in a trapped system. In Sec. V, we discuss methods
to measure the topological condensate proposed in this paper.
In Sec. VI, we give a brief summary of the results.
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II. SYSTEM HAMILTONIAN AND ITS
MEAN-FIELD EQUATION

In this article, we consider bosonic atoms with two internal
states subjected to a Raman coupling. Within the rotating-
wave approximation, the Hamiltonian can be expressed as
Ĥ = ∑N

i=1 Ĥ1(i) + ∑N
i<j Ĥ2(i,j ), where the single-particle

Hamiltonian is (� ≡ 1)

Ĥ1 = p2

2m
Î + 1

2

[
� �e−2ikr ·r

�e2ikr ·r −�

]
+ Vtrap(r)Î, (1)

with kr being the recoil momentum and Vtrap(r) being
the spin-independent trapping potential. The two-body
interaction may be spin dependent and long ranged in
general, Hσσ ′

2 = Vσσ ′(ri − rj ), with σ,σ ′ = ↑/↓ being the
pseudospin indices. For simplicity, we just consider a
spatially independent detuning � and Rabi frequency �.
After the second quantization, the total Hamiltonian becomes
Ĥ= ∑

σ,σ ′
∫

dr�̂†
σ (r)Hσσ ′

1 �̂σ ′(r) + 1
2

∑
σ,σ ′

∫
drdr′�̂†

σ (r)�̂†
σ ′

(r′)Vσσ ′(r − r′)�̂σ ′(r′)�̂σ (r), where �̂σ (r) is the bosonic field
operator. Although the above Hamiltonian is the same as the
ones to study the SO-coupled condensate (see, for example,
Refs. [12,21]), we will concentrate on the adiabatic regime,
� � Er = k2

r /2m, where only one dressed-state component
is involved.

A. Two-component GP equation

In the following, we deduce the two-component GP
equation, which is intrinsically a single-particle-like equation
of motion (EOM) with a mean-field contribution. Considering
many-body properties at zero temperature, we can approxi-
mate the ground state |G〉 by a coherent state wave function,
i.e., �̂σ (r)|G〉 = �σ (r)|G〉, where �σ (r) is the condensate
wave function normalized to the total number of particles,
i.e.,

∑
σ

∫
�†

σ (r)�σ (r)dr = N . Then the mean-field energy
E ≡ 〈G|Ĥ |G〉 reads

E =
∑
σσ ′

∫
dr�∗

σ Hσσ ′
1 �σ ′

+1

2

∫
drdr′|�↑(r)|2|�↑(r′)|2V↑↑(r − r′)

+ 1

2

∫
drdr′|�↓(r)|2|�↓(r′)|2V↓↓(r − r′)

+
∫

drdr′|�↑(r)|2|�↓(r′)|2V↑↓(r − r′). (2)

By requiring the variation of the action with respect to �σ (r)
to be zero, i.e., δ

δ�σ
〈G| ∑σ i�̂∗

σ ∂t �̂σ − Ĥ |G〉 = 0, we arrive
at the two-component GP equation,

i∂t

(
�↑
�↓

)
= H1

(
�↑
�↓

)
+

(
G1 0
0 G2

)(
�↑
�↓

)
, (3)

where

G1(r) =
∫

dr′[|�↑(r′)|2V↑↑(r�) + |�↓(r′)|2V↑↓(r�)],

G2(r) =
∫

dr′[|�↓(r′)|2V↓↓(r�) + |�↑(r′)|2V↑↓(r�)],

with r� = r − r′. By expressing the matrix diag(G1,G2), a
linear combination of Pauli matrices, Eq. (3) becomes

i∂t

(
�↑
�↓

)
= H1

(
�↑
�↓

)
+

(
Q

2
+ G

2
σz

)(
�↑
�↓

)
, (4)

with

Q = G1 + G2, G = G1 − G2. (5)

Thus the single-particle-like effective Hamiltonian is

Ĥ eff
1 ≡ H1 + Q

2
+ G

2
σz

=
[

p2

2m
+ Vtrap + Q

2

]
Î + 1

2

[
�̃(r) �e−2ikr ·r

�e2ikr ·r −�̃(r)

]

(6)

with an effective detuning shifted by the interaction,

�̃(r) = � + G(r), (7)

and an effective trap Ṽtrap(r) = Vtrap(r) + Q(r)/2.

B. Interaction-induced synthetic gauge field
(adiabatic approximation)

We want to diagonalize the Hamiltonian (6) within Born-
Oppenheimer approximation (BOA) and then use adiabatic
approximation to get an effective single-component GP equa-
tion. The spatially uniform Raman coupling (which means
�,� are constants here) considered above should not provide
any synthetic magnetic field for a noninteracting system (see
Refs. [7–11]). However, as we will show, the additional
position-dependent detuning term G(r) due to interparticle
interaction can contribute an effective magnetic field so that the
gauge field and dressed state can be mixed by a self-consistent
equation. In order to investigate such new physics, we first omit
the kinetic term under BOA and diagonalize the rest parts of
Ĥ eff

1 through a spatially dependent transformation,

S(r) = 1√
2

[
eikr ·r

√
1 + �̃/	 e−ikr ·r

√
1 − �̃/	

−eikr ·r
√

1 − �̃/	 e−ikr ·r
√

1 + �̃/	

]
, (8)

where 	(r) =
√

�̃(r)2 + �2 and the r dependence is mostly
suppressed for convenience. In the frame of the basis �̃(r)(=
[�̃+(r),�̃−(r)]T ≡ S(r) · �(r)), the EOM becomes i∂t �̃ =
(−i∇−iS∇S†)2

2m
�̃ + [Vtrap + Q

2 + 	
2 σz]�̃, where the gauge field

is given by −iS∇S† = �
	

krσx + �∇�̃
2	2 σy − �̃

	
krσz.

Within the standard adiabatic approximation [8], the effect
of the off-diagonal tunneling terms in the new EOM above can
be neglected (after expanding the kinetic energy term) when
the recoil energy Er = k2

r /2m and the Doppler shift kkr/m are
small compared to the Rabi frequency �. Thus, the new EOM
decouples into two individual single-component GP equations:

i∂t �̃± = 1

2m

(
−i∇ ∓ �̃

	
kr

)2

�̃± + Vtrap(r)�̃± + Q

2
�̃±

± 	

2
�̃± + 1

8m

�2

	2

[
(∇�̃)2

	2
+ 4k2

r

]
�̃±. (9)
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Without considering the interaction effect, �̃ recovers to
�, and then �̃kr/	 is just a momentum shift without
any synthetic magnetic field. Throughout this paper, we
will assume that the condensate is initially prepared in the
lower branch (�̃−) state and remains there without involving
the higher energy branch (since the off-diagonal term is
negligible). Therefore, the total density is ρ(r) = |�̃−(r)|2, and
the densities in original spin states are ρ↑(r) = |S21(r)|2ρ(r)
and ρ↓(r) = |S22(r)|2ρ(r), respectively. Note that it is very
different from Refs. [22–24], in which the authors considered
the interaction effect for a pure Rashba-type or equal Rashba-
Dresselhaus-type spin-orbital system in a relatively smaller �

region, and did not deal with the dynamical gauge fields. Even
though the system we consider is the same as that in Ref. [17],
where the authors first obtain the adiabatic basis through a per-
turbative method and subsequently derive the effective Hamil-
tonian, the method developed here is based on a self-consistent
approach valid for both weak and strong interaction regimes.

In this paper, we just consider the short-ranged interac-
tion between atoms, i.e., Vσσ ′(r − r′) = gσσ ′δ(r − r′) with
gσσ ′ = 4πaσσ ′/m, where aσσ ′ is the spin-dependent s-wave
scattering length. Through substituting the above ρ↑ and ρ↓,
the additional detuning term G(r) is found to satisfy the
self-consistent equation

G(r) = ρ(r)

2

[
ga − gas

�̃(r)

	(r)

]
, (10)

where ga = g↑↑ − g↓↓,gs = (g↑↑ + g↓↓ + 2g↑↓)/4, and
gas = (g↑↑ + g↓↓ − 2g↑↓). It is worth stressing that

�̃ = � + G and 	 =
√

�̃2 + �2 are also functions of G.
Similarly, the effective potential shift is found to be Q(r) =
ρ(r)

2 [4gs − ga
�̃(r)
	(r) ]. The numerical solution is obtained by the

imaginary time evolution method to solve Eq. (9) starting from
an “arbitrary” wave function and finding the self-consistent
G(r) through Eq. (10) at each step. This method can be easily
extended to the long-range case where the right-hand side of
Eq. (10) becomes a functional of G(r) and ρ(r).

III. RESULTS IN UNIFORM SPACE

A. Ferromagnetism in the strong interaction limit

A general solution of the detuning shift G(r) can be
obtained in a uniform system for Eq. (10). Defining sinh θ =
�̃/� (i.e., cosh θ = 	/�), Eq. (10) becomes

F [θ ] ≡ sinh θ + B tanh θ = C, (11)

where B = gasρ/2� and C = (� + gaρ/2)/�. Equation (11)
has different types of solutions in the following two regimes
(see Fig. 1): Case I: When B > −1, or when B < −1
but |C| > C∗, only one solution is available, where C∗ ≡
F [cosh−1(|B|1/3)] is the critical value. Especially for the weak
interacting case (|B|,|C|  1), both θ and tanh θ = �̃/	 are
small, so that the G(r) ≈ gaρ(r)/2 and Q(r) ≈ 2gsρ(r). Case
II: When B < −1 and |C| < C∗, there are three solutions and
only one of them is the true ground state with the lowest energy.

Taking the zero detuning case (� = 0) for sim-
plicity, the chemical potential can be easily ob-
tained from Eq. (9): μ = (Q − 	)/2 + Er�

2/	2 = gsρ −
1
2�(C tanh θ + cosh θ ) + Er/ cosh2 θ . The result shows the

FIG. 1. (Color online) (a) Density plot of magnetization, Mχ =
(ρ↑ − ρ↓)/ρ, as a function of B = gas/2� and C = ga/2� for zero
detuning (� = 0). The regime between red (gray) dashed lines has
three solutions of θ (case II, see the text). Panels (b) and (c) show
the function F [θ ] [solid lines; see Eq. (11)] and the values of C

(horizontal dashed lines) for different positions Pi (i = 1, . . . ,4) in
panel (a). The ground state of each Pi is denoted by the filled circle.

one corresponding to the largest |θ | in the three solutions
has the minimum chemical potential. Consequently, we
may define the magnetization Mχ ≡ (ρ↑ − ρ↓)/ρ = |S21|2 −
|S22|2 = −�̃/	 = − tanh θ as an order parameter and find that
Mχ is discontinuous at C = 0 as B < −1. Since C ∝ ga = 0
represents a U (1) × Z2 symmetry without a “magnetic field”
imbalance, the critical change in the magnetization along the
C = 0 line can therefore be regarded as a Stoner-type ferro-
magnetism. In Fig. 1, we show the value of Mχ in the B − C

diagram by setting � = 0. We note that such a phase transition
merely occurs in a regime of rather strong interaction, i.e.,
|gas |ρ � 2� � Er . For the 87Rb atom, taking typical param-
eters � = 2π × 10 kHz and ρ = 5 × 1014 cm−3, it requires
a↑↓ − a� − a� > 13.7 nm. This may be achievable using the
Feshbach resonance or confinement resonance between two
pseudospin states. The Stoner-type phase transition is similar
to the phase separation of a two-component condensate, but
the two components are now coherently combined together by
the Raman coupling.

B. Excitations and energetic instability of superfluid current
(weak interaction limit)

Now we investigate the condensate in a uniform space in
the weak interaction limit (|ga,as,s |ρ(r)  �) at zero detuning,
which implies |B|  1 and |C|  1. From the analysis in case
I, we have G(r) = gaρ(r)/2 and Q(r) = 2gsρ(r) in the leading
order, which also implies 	 =

√
(� + G)2 + �2 ≈ �. Using

the fact (∇�̃
	

)
2  4k2

r [17], the lower branch in Eq. (9) can be
simplified to be

i�∂tψ = �
2

2m
(−i∇ + aρ)2ψ + bρψ, (12)

where a = gakr/2� and b = gs . In this process, we have
neglected the constant term and denote ψ(r) = �̃−(r) for
convenience. Equation (12) is consistent with the 1D result
of Ref. [17] to the leading order of weak interaction. For a
general wave function ψ = √

ρeiη, the superfluid velocity is
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v(r) = 1
m

(∇η + aρ) due to the effect of gauge field and the
corresponding Hydrodynamic equations are

∂tρ = −∇ · (ρv), (13)

∂tη = −
(

− 1

2m
√

ρ
∇2√ρ + mv2

2
+ bρ

)
. (14)

We start from the state ψ0(r,t) = √
ρ0e

iη0 with η0 =
mvg · r−μ0t , which is spatially uniform and carries a constant
superfluid velocity, vs = vg + aρ0/m. The corresponding

chemical potential is μ0 = mv2
s

2 + bρ0 from Eq. (14). In the
following, we consider the fluctuation of the wave function
around the static solution, i.e.,

ρ = ρ0 + δρ, (15)

η = η0 + δη, (16)

mv = mvs + ∇δη + aδρ. (17)

It is easy to find mδv =∇δη + aδρ from Eq. (17). Thus, the
linear perturbative expansion of Eq. (13) is

∂t δρ = −∇δρ · vs−ρ0

m
(∇2δη + a · ∇δρ), (18)

which shows that the Laplace of δη satisfies

∇2δη = −∇δρ · mvs

ρ0
−m∂tδρ

ρ0
− a · ∇δρ. (19)

Similarly, the perturbative expansion of Eq. (14) reads

∂tδη = −
(

− 1

4mρ0
∇2δρ + mvs · δv + bδρ

)
. (20)

By performing the time derivation of Eq. (19) and use it to
subtract the Laplace of Eq. (20), i.e., ∂t (19)−∇2(20), then we
obtain

(∇2)2

4mρ0
δρ − vs · (∇∇2δη + a∇2δρ) − b∇2δρ

= −∂t∇δρ · mvs

ρ0
−m∂2

t δρ

ρ0
− a · ∂t∇δρ, (21)

where we have used the fact mδv = ∇δη + aδρ. Now sub-
stitute Eq. (19) into Eq. (21) to cancel ∇2η, and we get the
differential equation of δρ,

−∂2
t δρ − 2vs · ∂t∇δρ − aρ0

m
· ∂t∇δρ

= (∇2)2

4m2
δρ − bρ0

m
∇2δρ − vs · aρ0

m
∇2δρ

+ (vs · ∇)2δρ + (vs · ∇)

(
aρ0

m
· ∇

)
δρ. (22)

By substituting δρ ∝ exp(−iωkt + ik · r) into Eq. (22), we
find the the excitation spectrum,

ωk = k · (vs + va) +
√

(c2 + 2vs · va + (va · k̂)2)k2 + k4

4m2
,

(23)

where c ≡ √
bρ0/m and va = aρ0

2m
. Especially in the absence

of the gauge field, i.e., va = 0, we have ωk = vs · k +

FIG. 2. (Color online) The critical velocity for different ratio
va/c, where va = gaρ0kr/4�m is along the x axis. The superfluid is
stable inside the circle.

√
c2k2 + k4/4m2, which recovers to the conventional BEC

with the standard Landau critical velocity c.
When the gauge field is finite, it is convenient to denote

va = va(1,0,0) and vs = vs(cos ξ, sin ξ,0) without loss of
generality, where ξ represents the angle between superfluid
velocity and light. For the superfluid to be stable, it re-
quires that for every fixed vs , the excitation ωk > 0 for
all k = k(sin γ cos κ, sin γ sin κ, cos γ ). This is equivalent
to requiring vk̂ ≡ lim|k|→0 ωk/|k| = vs sin γ cos (κ − ξ ) +
va sin γ cos κ + √

c2 + 2vsva cos ξ + v2
a sin2 γ cos2 κ > 0 for

all γ ∈ [0,π ] and κ ∈ [0,2π ), which gives the critical value
vs in each fixed direction ξ ∈ [0,2π ). The critical velocity
calculated here is the so-called vflow [25], where the condensate
is considered to move with a velocity vs with respect to the
laser field and impurity. Another kind of critical velocity
is defined by a moving impurity inside a static condensate:
vdrag = lim|k|→0(ωk|vs=0)/|k| = va · k̂ +

√
c2 + (va · k̂)2. The

two are different due to a violation of the Galilean invariance
for center-of-mass motion of atoms in the laser field.

In Fig. 2, we show the numerically calculated critical
superfluid velocity, (vs,x/c,vs,y/c,0), where vs,x ≡ vs cos ξ

and vs,y ≡ vs sin ξ . Note that there is an axial symmetry along
the x̂ axis in our system. As one can see, the minimum critical
velocity may appear neither along nor perpendicular to va ,
showing a hybridization effect of the synthetic gauge field
and superfluidity. This is a clear evidence that the density
fluctuation in the gauge potential is coupled to the kinetic
energy, and it does not exist if the synthetic gauge field is
generated solely by the laser field without interaction.

IV. RESULTS IN A HARMONIC TRAP

Now we solve the static GP equation of Eq. (12) with a har-
monic trap Vtrap(r) = 1

2mω2r2. For a 1D trap along the x axis
considered in Ref. [17], the gauge field can be eliminated via
the transformation ψ(x) = ψ0(x) exp [−i

∫ x

0 aρ(x ′)dx ′]. The
transformed wave function ψ0(x) satisfies the conventional
GP equation without the gauge field term and therefore can be
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well approximated within the Thomas-Fermi approximation
(TFA). The resulting ground-state wave function is ψ(x) =√

μ−mω2x2/2
b

exp[−i
a(μx−mω2x3/6)

b
]. Note that the particle cur-

rent is zero for v = 1
m

(−aρ + aρ) = 0, even though the wave
function is complex.

For higher dimensional systems, the gauge field cannot be
completely gauged away. We start from the following static
hydrodynamic equations:

0 = −∇ · j ≡ −∇ · (ρv), (24a)

μ = −�
2

2m
√

ρ
∇2√ρ + 1

2
mv2 + bρ + 1

2
mω2r2, (24b)

where j is the current density and superfluid velocity vs(r) =
1
m

(∇η + aρx̂) assuming the laser is along the x̂ axes. We can
get the density function from Eq. (24b) within TFA again
by neglecting the kinetic energy term, so that μ = mω2R2/2
and ρ = mω2(R2 − r2)/2b. Here R is the TF radius and
determined by the total number of particles. By substituting
this density expression in Eq. (24a), we obtain the differential
equation of η,

− (R2 − r2)

2
∇2η + r∂rη = f (r), (25)

where f (r) ≡ −amω2x(R2 − r2)/b. We first try to solve the
eigenequation

− 1
2 (R2 − r2)∇2η + r∂rη = εη, (26)

and then use Green’s function method to solve Eq. (25).

A. Coreless vortex-antivortex pair in the 2D trap

For the 2D case, we use the polar coordinate (r,θ ) and
decompose the phase function into η(r,θ ) = D(r)e−ilθ , and
then Eq. (26) becomes

εD(r) = − (R2 − r2)

2

[
D′′(r) + 1

r
D′(r) − l2

r2
D(r)

]
+ rD′(r).

(27)

Subsequently, we define a new radial function G(r) =
D(r)/r |l| and substitute it into the above equation, and then
we have

εG(r) = − (R2 − r2)

2

[
G′′(r) + 2|l| + 1

r
G′(r)

]
+ |l|G(r) + rG′(r). (28)

Now, by introducing the new variable u = r2/R2, we can
transform Eq. (28) into a familiar form:

0 = u(1 − u)G′′(u) + [(|l| + 1) − (|l| + 2)u]G′(u)

+ ε − |l|
2

G(u), (29)

which is the standard form for the hypergeometric function
2F1(α,β,γ ; u),

0 = u(1 − u)F ′′(u) + [γ − (α + β + 1)u]G′(u) − αβG(u).

(30)

FIG. 3. (Color online) (a) The spatial distribution of particle den-
sity (brightness) and current density (arrows) in a 2D harmonic trap.
(b) The density-dependent magnetic field B = ∇ × aρ induced by
interaction. Here we use parameters of 87Rb atoms with the two spin
states, |↑〉 = |F = 2,mF = +1〉 and |↓〉 = |F = 1,mF = −1〉 [26],
trapped in a quasi-2D isotropic harmonic trap with trapping frequency
ω = 2π × 60 Hz. We choose total particle number, N = 5.0 × 104.
The laser beams are along the x direction, i.e., kr = kr x̂. The recoiled
momentum, kr = 2π × 1μm−1, and � = 2π × 10 kHz. Scattering
lengths aa = 3 nm and as = 6 nm are used when near the Feshbach
resonance [27–30]. The chemical potential is μ � 2π × 2.1 kHz for
a transverse confinement length 0.53 μm.

For the function to be well behaved, it requires α = −n,

where n is a non-negative integer. By comparing Eq. (29)
with Eq. (30), we have β = |l| + n + 1,γ = |l| + 1,ε =
|l| + 2n + 2n|l| + 2n2. Consequently, the eigenfunction of
Eq. (26) is ηnl = C̃nlr

|l|
2F1(−n,|l| + n + 1,|l| + 1; r2

R2 )e−ilθ

with eigenvalue εnl = |l| + 2n + 2n|l| + 2n2. Here, C̃nl is the
normalization coefficient.

Now we can solve Eq. (25) by Green’s function method,

η(r) =
∑
n,l

∫
dr′ηnl(r)

1

εnl

η∗
nl(r

′)f (r′)

= amω2x(r2 − 3R2)

7b
. (31)

Actually, only a few components ηnl give nonzero contribution
in the expansion above. By substituting the ρ and η into the
expression of superfluid velocity v, we obtain

v = 2aω2

7b
(x2 + R2/4 − 5r2/4, xy).

In Fig. 3(a), we show the full numerical results of the
particle density ρ(r) and the current density j(r) distribution,
which agree with the analytic results (not shown) very well. We
note that the ground state has a pair of coreless vortices for the
persistent current, and the center of vortices (given by the zero
velocity point) is located at (0, ± R/

√
5). We emphasize that

such a coreless vortex can be regarded as a result of a synthetic
magnetic field flux, which is induced by the synthetic gauge
field [Fig. 3(b)]. Mathematically,

∮
v · dl = ∫

(∇ × v) · d2r =
1
m

∫
(∇ × aρ) · d2r, which supports our claim.

B. Coreless vortex ring in the 3D trap

For the 3D case, there is a detailed calculation of solving
differential Eq. (26) in Ref. [31] and the process is similar
to the 2D case, so we will not repeat the details here
but do show the results. The eigenfunction of Eq. (26) in
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ZHENG, XIONG, JUZELIŪNAS, AND WANG PHYSICAL REVIEW A 92, 013604 (2015)

FIG. 4. (Color online) The current (arrows) distribution in a 3D
harmonic trap. The parameters are same as in Fig. 3 except for
the total particles N = 1 × 106 and the 3D trap (ω,ω,ω) = 2π ×
(60,60,60) Hz. The Thomas-Fermi radius R = 12.8 μm and the
corresponding chemical potential μ � 2π� × 2.5 kHz. The radius
of the coreless ring is 7.4 μm, and the direction on the ring is used
to mark the direction of magnetic field B = ∇ × aρ.

3D is ηnlm = Cnlr
l
2F1(−n,l + n + 3/2,l + 3/2; r2

R2 )Ylm with
eigenvalue εnlm = l + 3n + 2nl + 2n2. Here Cnl is the nor-
malization coefficient. Using the Green’s function method, we
can get the phase η(r) = amω2x(r2 − 3R2)/8b, so that the
superfluid velocity is

vsx = aω2

4b
x2 + aω2

8b
(R2 − 3r2), (32)

vsy = aω2

4b
xy, vsz = aω2

4b
xz, (33)

where the persistent current forms a coreless vortex ring with
a radius R/

√
3 around the laser direction. In Fig. 4, we show

the current distribution in a 3D trap. We emphasize that the
coreless vortex structure here has a length scale of the system
size, which is different from the persistent current structure of
the stripe phase in the SO regime [32].

V. EXPERIMENT MEASUREMENT

There are several methods to measure the topological
condensate proposed in this paper. We first consider a time-
of-flight (TOF) measurement, where the two spin components
are decoupled and freely expand. In Fig. 5(a), we show the
momentum distribution calculated from the condensate in a
2D trapped system. The condensate cloud of the two species
is clearly seen to have a constant shift in the momentum distri-
bution with respect to the their recoiled momentum, ±kr . The
shift for each component can be easily calculated to be �k↑ ≈
�k↓ ≈ �N

N
kr (if μ  �), where �N

N
≡ N↑−N↓

N
= − ga

3gs

μ

�
=

− gaρ(0)
3�

for the 2D case, and �N
N

= − 2ga

7gs

μ

�
= − 2gaρ(0)

7�
for the

3D case within the TFA. Here ρ(0) is the density in the center
of the trap. Note that the interaction-induced gauge field can be
enhanced by considering Feshbach resonance or confinement
resonance. The coreless vortices or vortex ring can be also
measurable by interfering with another condensate of no (or
different) gauge field.

FIG. 5. (Color online) (a) Momentum distribution of a typical
condensate shown in Fig. 3, which can be measured in the TOF
experiment. Left (right) part is the spin-up (spin-down) component.
The vertical dashed line is guiding the position of condensate center
without gauge field. (b) The dipolar oscillation of a condensate of
total 5 × 103 particles with an initially displaced center at position
(x0 = 2.8 μm,0) in a 2D trap of frequency 2π × (240,240) Hz.
To signify this effect induced by gauge field, we use the parameter
aa = 15 nm (solid blue [gray] line), while other parameters are the
same as used in Fig. 3.

In the presence of a uniform magnetic field, the celebrated
Kohn theorem [19,20] shows that the center-of-mass oscil-
lation frequency should be independent of the interparticle
interaction. In a SO-coupled condensate (where the atom-
light coupling field is weak), the single-particle dispersion
is distorted and the Kohn theorem can fail even without
interatom interaction [33] or with interaction [34]. In the
density-dependent synthetic gauge field we discuss here in
the large � limitation, however, the Kohn theorem fails to
apply only when the interaction effect is included. In Fig. 5(b),
we show how the oscillation frequency along the x̂ direction
is changed in the presence of the synthetic gauge field.

VI. SUMMARY

In this paper, we have systematically derived a generalized
synthetic gauge field theory for a coupled two-component
bosonic system, where the interparticle interaction is included
by a self-consistent equation. In the strong interaction regime,
we show a Stoner-type ferromagnetism by the interplay of
gauge field and interparticle coupling. In the weak interaction
limit, we show the anisotropic critical velocity in a uniform
space and the topological structure of the persistent currents
in a harmonic trap. These distinctive features can be observed
in the standard TOF and dipolar oscillation experiments.
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