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1 INTRODUCTION

The power spectra of a large variety of systems ranging widely from astrophysics and
technology to sociology and psychology at low frequencies have 1/f behavior, i.e., the
power spectral density S(f) is inversely proportional to the frequency f . Both time
� dependent phenomena and spatial series may show such characteristics against the
frequency. Great e�orts have been made to explain and model the universal presence
of 1/f noise.

1/f noise, also known as �icker noise, is intermediate between white noise [no cor-
relation in time, S(f) ∼ 1/f0] and the Brownian motion [no correlations between
increments, S(f) ∼ 1/f2]. Simple procedures of integration or di�erentiation of such
�uctuating signals do not yield the signal exhibiting 1/f noise.

Usually 1/f noise theories are formulated for the intensity of the currents or signals.
In such cases one starts from the systems of su�ciently complicated, as a rule nonlinear,
di�erential equations with partial derivatives or from the system of equations with a
wide and speci�c distribution of times of the linear relaxations of the signal components.
In such a way the obtained signals are, as a rule, Gaussian. However, not all signals
exhibiting 1/f noise are Gaussian. Some of them are non-Gaussian, exhibiting power-
law or even fractal distributions.

Some mathematical analyses, models and algorithms for the generation of processes
with 1/f noise also expose some shortcomings: they are very speci�c, formal (like �frac-
tional Brownian motion�) or unphysical. They cannot usually be solved analytically,
and they do not reveal either the origin or the necessary and su�cient conditions for
the appearance of 1/f -type �uctuations.

This makes the problem of omnipresence 1/f noise one of the oldest problems and
puzzles in the contemporary physics. In contrast to the Brownian motion generated by
the linear stochastic equation, the simple systems of di�erential, even linear stochastic
equations generating signals with 1/f noise are not known.

Most of 1/f noise physical models in some physical systems are special or com-
plicated and they do not explain the omnipresence of the processes with 1/fβ power
spectral density.

Some random phenomena, however, occur at discrete times or locations, with the
individual events largely identical. A stochastic point process is a mathematical con-
struction which represents these events as random points in space or time. Point pro-
cesses arise in di�erent �elds, such as physics, economics, cosmology, ecology, neurology,
the Internet, signaling and telecom networks, and seismology, i.e., in a large variety of
systems with the �ow of point objects (electrons, photons, cars, pulses, events, and so
on) or subsequent actions, like seismic events, neural action potentials, transactions in
the �nancial markets, human heart beats, biological ion-channel openings, burst errors
in many communication systems, the Internet network packets, etc.

The point process is completely described by the set of event times {tk}, or equiva-
lently by the set of interevent (interpulse) intervals τk = tk+1− tk. Such point processes
might be called fractal if some relevant statistics display scaling, characterized by a
power-law behavior, with related scaling coe�cients indicating that the phenomena
contain clusters of points over a relatively large set of time scales.

The complete characterization of a stochastic process involves a description of all
possible joint probabilities of various events occurring in the process. Di�erent statistics
provide complementary views of the process. One single statistics cannot in general
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describe a stochastic process completely. Fractal stochastic processes exhibit scaling
in their statistics. Fractal stochastic point processes exhibit scaling in all statistics,
while the fractal-rate stochastic point processes are endowed with rate functions that
are either themselves fractal or their increments are fractal.

The power-law distribution of the interpulse time of the point process results in
the power-law distribution of the intensity of the stochastic signal � the phenomenon
observable in a large variety of processes, ranging from earthquakes, Internetquakes,
the behavior of physical systems in the vicinity of a critical point up to the �nancial
time series, networks and growth of complex organizations. Power-law distributions are
counter intuitive because they lack a characteristic scale. Examples of random variables
with in�nite variances were treated as paradoxes before the work of L�evy. Today power-
law distributions are used in the description of open systems. Stochastic processes with
power-law distributions, although well de�ned mathematically, are di�cult to use and
raise fundamental questions when applied to the real systems. A stochastic process
with �nite variance characterized by scaling relations in a large but �nite interval is the
truncated L�evy �ight process, which is a bit arti�cial and not very well-founded.

The key result in recent �ndings is that a lot of power-law distributions are well
outside the stable L�evy regime � they are neither L�evy stable nor invariant under
addition. Therefore, new stochastic models with long-range correlations and power-law
asymptotic behavior are of great interest.

Stochastic models for the time intervals between events of point processes may be
characterised by the distributions which were mentioned above. Such models of time
series have only a few parameters de�ning the statistical properties of the system,
i.e., the power-law behavior of the distribution functions and the scaled power spectral
density of the signal. The ability of the models to simulate power-law noise and produce
signals with the values of power spectral density slope between 0.5 and 1.5, promises a
wide variety of applications of the models in di�erent �elds.

Main goals of the research are:

• Generalization of the point process model for generation of signals with di�er-
ent slopes β of the power spectral density of S(f) ∼ 1/fβ noise and power-law
distributions of the signal intensity.

• Analysis of the relation of the point process models with the Bernamont-Surdin-
McWorter model, representing the signal as a sum of the appropriate signals with
a wide-range distributions of times of the linear relaxation of signal components
and analysis of fractality of the generated signals.

• Relation of the point processes generating 1/f noise with the stochastic signals
represented by �uctuating intensity of the signal and derivation of stochastic non-
linear di�erence and di�erential equations generating signals with 1/f noise.

• Modeling and analysis of 1/f noise processes by sequences of stochastic pulses of
di�erent duration, transition from the point processes to the continuous signals
and generation of the point processes from the rate functions.

• Search of 1/f noise in chaotic Hamiltonian systems, like a rotor a�ected by the
periodic strikes and classical hydrogen atom in an electromagnetic �eld, dynamics
of which represented by the appropriate mapping equations of motion.
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Scienti�c statements

1. The generalized point process model of 1/f noise generates time series of the
signals with di�erent slopes 0.5 . β . 1.5 of the power spectral density S(f) ∼
1/fβ and results in the power-law distribution of the stochastic signals, i.e., the
phenomenon observable in a large variety of processes, ranging from earthquakes
and the Internet up to the �nancial markets.

2. The autoregressive point process model of 1/fβ noise, representing the signal as
consisting of pulses with the Brownian motion of the interpulse time is comple-
mentary to the model based on the sum of signals with a wide-range distribution
of times of the linear relaxation. In contrast to the Gaussian distribution of the
signal intensity of the sum of the uncorrelated components, the intensity of the
point process exhibits asymptotically a power-law distribution.

3. The generated signals of the point processes are multifractal, in contrast to the
monofractality of the signals, consisting of the sum of the uncorrelated components
with a wide-range distribution of times of the linear relaxation.

4. The proposed and analysed transformations of the point process models with the
stochastic dynamics of the interpulse time to the signals, represented by �uctuat-
ing intensity, preserve the power spectral density of the signals at low frequencies.

5. The derived mapping expressions for the energy and angular momentum changes
of the classical hydrogen atom in an electromagnetic �eld may be used for anal-
ysis of transition to chaotic behavior while the �uctuations of the period of the
trajectories of the nonlinear Hamiltonian systems in the transition from regular
to chaotic motion exhibit 1/fβ noise.

Approbation of the results

The main results of the research described in this dissertation have been published in
7 scienti�c papers and 9 presentations made at scienti�c conferences.

Personal contribution of the author

The author of the thesis has performed all numerical simulations presented in this
dissertation. He has been involved in derivations of most of the analytical results,
especially in deriving complicated expressions for the chaotic dynamics in Hamiltonian
systems and analysis of numerical simulations conformity with according analytical
approaches. The author has created a set of programs, which can simulate various point
and stochastic signals, investigate their distributions, spectral densities, fractality, and
other statistical properties.
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2 1/f NOISE OVERVIEW

2.1 History

The triode was invented by Lee de Forest in 1907, and soon afterwords the �rst ampli�ers
were built. By 1921 the �thermionic tube� ampli�ers were developed to such an extent
that C. A. Hartmann [1] made the �rst courageous experiment to verify Schottky's
formula for the shot noise spectral density [2]. Hartmann's attempt failed, and �nally
it was J. B. Johnson who successfully measured the predicted white noise spectrum [3].
However, Johnson also measured an unexpected ��icker noise� at low frequency, and
shortly thereafter W. Schottky tried to provide a theoretical explanation [4].

Schottky's explanation was based on the physics of electron transport inside the
vacuum tube, but in the years that followed Johnson's discovery of �icker noise, it was
discovered that this strange noise appeared again and again in many di�erent electrical
devices. The observed spectral density of �icker noise is actually quite variable: it
behaves like 1/fβ , where β is in the range 0.5÷ 1.5, and usually this behavior extends
over several frequency decades. The appearance of power laws in the theory of critical
phenomena and above all the work of B. Mandelbrot on fractals in the 1970's [5], seemed
to indicate that something deeper was hidden in those ubiquitous spectra. Power laws
and 1/f spectra were most unexpectedly found in many di�erent phenomena.

The work of Voss and Clarke on 1/f noise in resistors also spawned an interest-
ing study of 1/f noise in music, which became widely known thanks to an excellent
popularization made by M. Gardner in Scienti�c American [6]. Voss and Clarke found
that both voice and music broadcasts have 1/f spectra [7], and they even devised an
algorithm to compose �fractal� music [8].

By then many physicists were convinced that there had to be a reason for the
ubiquity of this kind of power-law noises, that there might be something akin to the
universality of exponents in critical phenomena, and therefore many people set out to
�nd an all-encompassing explanation.

1/f �uctuations are widely found in nature, i.e., the power spectra of a large variety
of physical [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], biological [21, 22, 23], geophysical
[24, 25, 26, 27], astronomical [28, 29, 30], fractals [31, 32], tra�c [33, 34, 35], �nancial
[36, 37, 38, 39, 40, 41, 42, 43, 44, 45] and other systems at low frequencies f have 1/fβ

(with β ≈ 1) behavior.
Investigation of �uctuations and noise processes, including 1/f noise problem, in

Lithuania has long-lasting and deep-rooted traditions (see, e.g., [46,47,48,49,50,51,52,
53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] and references herein). Most of the inves-
tigations stemmed from semiconductor, solid state and discharge studies; �uctuations
and noise processes have been related with the correlations and relaxation processes in
the speci�c materials and systems.

The research presented in this dissertation is, however, mostly originated from
the analytically solvable point process model of 1/f noise proposed and analysed in
Refs. [57, 60, 61, 62, 63]. The main objectives of the dissertation have been further
generalizations, analytical and numerical analysis and comparison of the point process
model of 1/f noise with other approaches and search for 1/f �uctuations in the chaotic
Hamiltonian systems.
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2.2 1/fβ noise from the superposition of relaxation processes

An early and simple explanation of the appearance of 1/fβ noise in vacuum tubes
was implicit in some comments made by Johnson [3], and was mathematically stated
by Schottky [4]: there was a contribution to the vacuum tube current from cathode
surface trapping sites, which released the electrons according to a simple exponential
relaxation law N(t) = N0e

−λt for t > 0 and N(t) = 0 for t < 0. The Fourier transform
of a single exponential relaxation process is

F (f) =

+∞∫
−∞

N(t)e−iωtdt = N0

+∞∫
0

e−(λ+iω)tdt =
N0

λ+ iω
, ω = 2πf. (1)

Therefore for a train of such pulses N(t, tk) = N0e
−λ(t−tk) for t > tk and N(t, tk) = 0

for t < tk, we �nd

F (f) =

+∞∫
−∞

∑
k

N(t, tk)e
−iωtdt = N0

∑
k

eiωtk

+∞∫
0

e−(λ+iω)tdt =
N0

λ+ iω

∑
k

eiωtk (2)

and the spectrum is

S(f) = lim
T→∞

2

T

〈
|F (f)|2

〉
=

N2
0

λ2 + ω2
lim

T→∞

2

T

〈∣∣∣∣∣∑
k

eiωtk

∣∣∣∣∣
2〉

=
2N2

0 ν̄

λ2 + ω2
, (3)

where ν̄ is the average pulse rate and the triangle brackets denote an ensemble average.
This spectrum is nearly �at near the origin, and after a transition region it becomes
proportional to 1/ω2 at high frequency. This was su�cient for Schottky who found
such a dependence in Johnson's data, but later it became clear that a single relaxation
process was not enough, and that there had to be a superposition of such processes,
with a distribution of relaxation rates λ [68, 69, 70, 71, 72, 73, 53]. If the relaxation rate
is uniformly distributed between two values λ1 and λ2, and the amplitude of each pulse
remains constant, we �nd the spectrum

S(f) =
2N2

0 ν̄

λ2 − λ1

λ2∫
λ1

1

λ2 + ω2
dλ =

N2
0 ν̄

πf(λ2 − λ1)

[
arctan

(
λ2

ω

)
− arctan

(
λ1

ω

)]

≈


2N2

0 ν̄, 0 < ω � λ1 � λ2,
N2

0 ν̄

2f(λ2−λ1)
, λ1 � ω � λ2,

2N2
0 ν̄

ω2 , λ1 � λ2 � ω.

(4)

Relaxation rates may be distributed according to di�erent distributions, for instance
we may have

dP (λ) =
A

λα
dλ (5)

in the range λ1 < λ < λ2: in this case it is still possible to integrate the spectrum
exactly [74,75] and we obtain

S(f) ∝
λ2∫

λ1

1

λ2 + ω2

dλ

λα
=


1

ω2 ln λ√
λ2+ω2

∣∣∣λ2

λ1

, α = 1,

λ1−α

(1−α)ω2 , F
(

1−α
2
, 1; 1 + 1−α

2
;− λ2

ω2

)∣∣∣λ2

λ1

, α 6= 1,
(6)
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where

F (a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
=

Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− tz)−adt (7)

is the usual hyper-geometric function. However, we do not have to use the exact
expression (6) to �nd the behavior of the spectral density in the range λ1 � ω � λ2 ,
since we can approximate the exact integral as follows:

S(f) ∝
λ2∫

λ1

1

λ2 + ω2

dλ

λα
=

1

ω1+α

λ2/ω∫
λ1/ω

1

(1 + x2)

dx

xα
≈ 1

ω1+α

∞∫
0

1

(1 + x2)

dx

xα
∝ 1

ω1+α
(8)

and thus we obtain a whole class of �icker noises with di�erent exponents.
From the previous discussion one may argue that it is important to �nd experimen-

tally the actual limiting values λ1 and λ2, in order to characterize the noise process.
Unfortunately, this is seldom possible, and in most cases it seems that the 1/f behavior
continues as far as one can see: according to the good data of Pellegrini, Saletti, Terreni
and Prudenziati [76] the 1/f behavior extends over more than 6 frequency decades and
there seems to be still no noise power �attening at low frequency.

Caloyannides did a very long data-taking run using operational ampli�ers as noise
sources and extended his measurements down to 10−6.3 Hz: he observed a 1/f1.23 spec-
trum with no �attening at low frequency [77].

What if this behavior were real, and it continued indeed down to zero frequency?
Then we would meet with a disaster, because the integrated �uctuation would be

∞∫
0

S(f)df ∝ lim
f1→0,f2→∞

f2∫
f1

1

fβ
df =

limf1→0,f2→∞ ln f2

f1
, β = 1,

limf1→0,f2→∞

(
f1−β
2

1−β
− f1−β

1

1−β

)
, β 6= 1

(9)

and this expression always diverges, either at the low-frequency limit (for β > 1) or
at the high frequency limit (for β < 1) or both (for β = 1), so that low frequency
�uctuations are arbitrarily large. But is this divergence real? Flinn [78] produced a
simple argument which showed that we should not worry about it, even if it were there.
Indeed for a true 1/f spectrum we know that

f2∫
f1

df

f
= ln

f2

f1

, (10)

so that the integrated �uctuation per decade is always the same. Moreover, the lowest
observable frequency is given by the inverse of the life of the Universe ≈ 2 · 109 years
≈ 6 · 1016s, and therefore it should be approximately 10−17Hz. On the other hand
it takes λC/c ≈ (4 · 10−13m)/(3 · 108m/s) ≈ 1.3 · 10−21s to go through an electron
Compton wavelength at the speed of light, and this might be taken as the smallest
observable time, which would correspond to a high frequency limit of 1021Hz. There
are 38 frequency decades between these two extremes, so that the highest possible total
�uctuation can be only 38 times the total �uctuation between 1Hz and 10Hz! Even if
we extend slightly Finn's argument, and take Planck's time as the smallest observable
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time tp = lp/c =
√
G~/c5 ≈ 10−43s, we get a high frequency limit of 1043Hz which

yields a total of 59 frequency decades, the conclusion remains the same, and we should
not worry too much about the mathematical divergences.

Consider a 1/f noise, x(t), has the band-pass �ltered power spectral density,

S(f) =

{
B/f, ω1 6 ω 6 ω2,

0, otherwise.
(11)

The auto correlation function of x(t) is obtained by using the Wiener-Khintchine the-
orem [79,80],

C(τ) = B

ω2∫
ω1

cos(ωτ)

ω
dω = B[Ci(ω2τ)− Ci(ω1τ)], (12)

where

Ci(z) =

z∫
−∞

cos y

y
dy (13)

is the cosine integral. The series expansion of Ci(z) is

Ci(z) = γ + ln(z) +
∞∑

k=1

(−1)kz2k

(2k)!2k
, (14)

where γ = 0.5772 . . . is Euler's constant. Thus, in the limit of z → 0, the cosine integral
reduces to Ci(z) ' ln(z). The mean-square of x(t) is thus given by

C(τ = 0) = B ln

(
ω2

ω1

)
. (15)

It is evident from the above argument that the band-pass �ltered 1/f noise is statisti-
cally stationary because it has the second-order quantities depending only on the delay
time and not on the absolute time at which the ensemble average is performed.

2.3 A random pulse train model of 1/f noise

The power spectral density of a random pulse train, x(t), is given by Carson's theorem
[11,81,82],

S(f) = 2ν̄a2|F (ω)|2, (16)

where F (ω) is the Fourier transform of the pulse shape function A(t), ν̄ is the mean rate
of the pulses and a2 is the mean-square value of the pulse height. Thus, the frequency
dependence of S(ω) is entirely determined by A(t). Consider the �ctitious pulse shape
function,

A(t) = θ(t)t−(1−β
2
)e−ωxt, (17)

where β and ωx are positive and independent of time, and θ(t) is the unit step function.
The Fourier transform of A(t) is

F (ω) =

∞∫
0

t−(1−β
2
)e−(ωx+iω)tdt =

Γ
(

β
2

)
(ωx + iω)

β
2

, (18)
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where Γ(x) is the gamma function. Using (18) in (16), we obtain

S(f) =
2ν̄a2Γ2

(
β
2

)
(ω2

x + ω2)
β
2

. (19)

It shows the approximate 1/f noise characteristic at ω � ωx,

S(f) ' B/fβ, (20)

when β ' 1. Here B = 2ν̄a2Γ2
(

β
2

)
. In spite of how small ωx may be, provided it is

non-zero, S(f) has the �at spectrum at ω 6 ωx, which indicates that such a random
pulse train is statistically stationary.

The auto correlation function of this random pulse train is given by

C(τ) =

∞∫
0

S(f) cos(ωτ)df = BK0(ωxτ), (21)

where β = 1 and K0(z) is the modi�ed Bessel function of the second kind of zero order.
The series expansion of K0(z) is

K0(z) = −γ + ln 2− ln(z) + . . . . (22)

For small ωxτ , C(τ) varies as ln(ωxτ) and takes a �nite value except at the origin
τ = 0. This logarithmic in�nity is associated with the in�nite extension of the 1/f noise
spectrum to high frequencies, which is of course unrealistic because any �nite response
time in a system introduces a cut-out characteristic beyond the certain frequency and
the spectrum usually rolls o� with a 1/ω2 dependence.

It is clear from the above argument that a random pulse train in which the pulse
shape varies as t−1/2 shows the 1/f noise behavior [83]. However, the physical origin of
such a pulse shape is not clear [84].

2.4 Distributed trapping model

The most popular model of 1/f noise is the trapping model with a wide spread of time
constants. If a free carrier is immobilized by falling into a trap, it is no longer available
for current transport. The modulation of carrier numbers has the form of random
telegraph signal with a Poisson distribution of the occurrence times. The probability
of observing n telegraphic signals in the time interval T is given by

P (n, T ) =
(ν̄T )n

n!
e−ν̄T , (23)

where ν̄ is the mean rate of transitions per second. If τ+ and τ− are the average times
spent in the upper and lower states, respectively, the probability distributions of the
upper and lower state times, t+ and t−, are

P (t±) = τ−1
± exp

{
− t±
τ±

}
. (24)

14



The product x(t)x(t + τ) is equal to +a2 if an even number of transitions occurs in
the interval (t, t + τ) and to −a2 if an odd number of transitions occurs in the same
interval. Therefore, the auto correlation function is

C(τ) = a2[P (0, τ) + P (2, τ) + . . .]− a2[P (1, τ) + P (3, τ) + . . .]

= a2e−ν̄τ [1− ν̄τ +
(ν̄τ)2

2!
− (ν̄τ)3

3!
+ . . .] = a2e−2ν̄τ . (25)

The power spectrum is thus calculated by the Wiener-Khintchine theorem,

S(f) = 4

∞∫
0

C(τ) cos(ωτ)dτ =
2a2/ν̄

1 + ω2/4ν̄2
= a2 4τz

1 + ω2τ 2
z

. (26)

Here τz = 1/2ν̄ is the time constant of the trap. If τz is distributed according to the
function P (τz), the power spectral density of the total carrier number �uctuation is

S(f) = 4C(τ = 0)

∞∫
0

τzP (τz)

1 + ω2τ 2
z

dτz. (27)

Here it is assumed
∞∫
0

P (τz)dz = 1.

Suppose the carrier trap occurs by the tunneling of carriers from semiconductors to
the traps inside the oxide layer at depth ω, the time constant obeys

τz = τ0e
γω, (28)

where τ0 and γ are constants. If the traps are homogeneously distributed between the
depths ω1 and ω2 , corresponding to the time constants τ1 and τ2 , we obtain

P (τz)dτz =

{
dτz/τz

ln(τ2/τ1)
, τ1 6 τz 6 τ2,

0 otherwise.
(29)

Using (29) in (27), the power spectral density of the total carrier number �uctuation is
given by

S(f) =
4C(0)

ln(τ2/τ1)

τ2∫
τ1

dτz
1 + ω2τ 2

z

=
4C(0)[arctan(ωτ2)− arctan(ωτ1)]

ω ln(τ2/τ1)
. (30)

Eq. (30) shows 1/f power law in the frequency range of ωτ2 � 1 and 0 6 ωτ1 � 1.
The above argument also applies to the intrinsic bulk transport property of the

hopping conduction. The essential requirement to obtain the 1/f power law is the
Poissonian telegraphic event with a distributed time constant, which obeys 1/τz distri-
bution function.

2.5 Fractal Renewal Processes generating 1/f noise

Fractals are distinguished by power-law scaling behavior. We also de�ne fractal random
variables as random variables with a power-law decay in their associated probability
density functions.
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L�evy-stable variables are a class of continuously distributed random variables that
contain Gaussian random variables as a subset [85, 86, 87, 88, 39, 89, 90]. They are the
only random variables with a property that the sum of any two drawn from the same
L�evy-stable density will have a density di�ering from the original only by a scaling
factor. L�evy-stable densities may be centered at any �nite value, and thus the sum will
di�er from the original one by a constant shift term in addition to the scaling factor.
In particular, if the random variables X and Y have the same L�evy-stable density, then
for any positive numbers a and b, the random variable Z will have the same density as
X and Y if and only if

cZ = aX + bY, (31)

where
cD = aD + bD (32)

for some exponent D (sometimes called the L�evy index) depending only on the L�evy-
stable density of X and Y .

The Gaussian density

P (x) =
1√

2πσ2
exp

{
− x2

2σ2

}
(33)

(with σ a constant) has an exponent D = 2, while the Cauchy density

P (x) =
k/π

k2 + x2
(34)

(with k a constant) corresponds to D = 1. Since renewal processes are usually de�ned
to have positive interevent times, we only consider the sub-class of L�evy-stable densities
which are positive only on the positive ordinate. Such one-sided L�evy-stable densities
exist only within the range 0 < D < 1. Closed-form analytical expressions for these
densities do not exist, except for D = 1/2, in which case [91]

P (x) =

√
k

4πx3
exp

{
− k

4x

}
. (35)

Therefore, we de�ne instead the family of one-sided L�evy-stable densities implicitly by
their Fourier transforms [91]

Qs(D;−iθ) ≡ F{Ps(D;x)} =

∞∫
0

Ps(D;x)e−iθxdx = exp[−(iθ)D], (36)

where the index D refers to the associated exponent as de�ned in Eq. (32). These
probability density functions Ps(D;x) have tails that decay as x−(D+1) for large values
of the independent variable x.

The L�evy-stable density de�ned by Eq. (36) has in�nite moments of all orders [91].
Particularly, when a mean value of the interevent time 〈T 〉 = ∞, and a renewal process
constructed with this density has a mean rate ν̄ of zero at equilibrium. One method for
ensuring a positive rate is to impose an upper exponential cuto� on the density, which
results in

P (t) = A−1 exp[(A/B)D]Ps(D; t/A)e−t/B, (37)
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where B is the upper cuto� value, and the factor constants in P (t) are normalizing
constants ensuring unit area of the density. The resulting density has �nite moments
of all orders. The Fourier transform of the probability density function (37) (which is
the complex conjugate of the characteristic function) has the simple form

Q(−iω) ≡ F{P (t)} =

∞∫
0

P (t)e−iωtdt = exp[(A/B)D − (iωA+ A/B)D]. (38)

Successive derivatives of the characteristic function evaluated at ω = 0 yield the mo-
ments of the density P (t) [92]. The second characteristic function or the comulant
characteristic function is de�ned as the natural logarithm of the characteristic function,
and its successive derivatives de�ne the comulants

Cn = D(A/B)D Γ(n−D)

Γ(1−D)
Bn, (39)

for n > 1, where

Γ(x) ≡
∞∫

0

tx−1etdt (40)

is the Euler gamma function.
The modi�ed L�evy-stable probability functions de�ned by Eqs. (36) and (37) vary

as P (t) ∼ t−(D+1) for A� t� B, and it is this power-law dependence in the interevent
time density which leads to fractal behavior in renewal point processes. Possibly the
simplest interevent time density with this power-law form is the abrupt-cuto� power-law
density

P (t) =
D

A−D −B−D
×

{
t−(D+1), A < t < B,

0, otherwise.
(41)

The associated moments are given by

〈T n〉 =
D

n−D
(A/B)DBn 1− (A/B)n−D

a− (A/B)D
, (42)

and the Fourier transform of the interevent time density is

Q(−iω) =
D

A−D −B−D

B∫
A

e−iωtt−(D+1)dt =
D(iω)D

A−D −B−D

iωB∫
iωA

exx−(D+1)dx. (43)

In a case B−1 � ω � A−1

1−Q(−iω) ≈ (iωA)DΓ(1−D). (44)

A standard (non-alternating) renewal process (SRP) N(t) is a point process in which
the interevent times are independent random variables drawn from the same probability
density, denoted P (t). We require that P (t) = 0 when t 6 0. This density has
an associated mean value 〈T 〉, and we de�ne ν̄ ≡ 〈T 〉−1 to be the average rate of
events, where the angle brackets represent the expectation taken over the distribution
of interevent times. We require that the mean dwell time 〈T 〉 is �nite.
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The coincidence rate GN(τ) is a measure of the correlation between the events with
a speci�ed time delay between them, regardless of intervening events. Assuming the
point process N(t) to be stationary, the coincidence rate is de�ned as [93,31]

GN(τ) ≡ lim
∆→0

Pr{E(t, t+ ∆) and E(t+ τ, t+ τ + ∆)}
∆2

, (45)

where E(x, y) represents the occurrence of at least one event in the interval (x, y). The
coincidence rate has units of frequency squared. Treating the events dN(t) as Dirac
delta functions (pulses) distributed along the time axis, a power spectral density might
be de�ned. It is equal to the Fourier transform of the coincidence rate by the Wiener-
Khintchine theorem.

The interevent time density may be viewed as a conditional rate; that is, given an
event at time t, P (t) is the density of an event occurring at time t+τ with no intervening
events. If we de�ne

P ?2(t) ≡ P ? P (t) =

t∫
0

P (t− v)P (v)dv, (46)

where ? represents the convolution operation, then P ?2(t) is the density of an event
occurring at t+ τ with one intervening event. Continuing this process, we de�ne

P ?n(t) ≡ P ? P ? · · · ? P (t), (47)

with P (t) appearing n times, which corresponds to n− 1 intervening events. The total
interevent time density, also called the renewal function, is the sum over all possible
numbers of intervening events, which can now be expressed as a function of P (t).
Therefore

u(t) =
∞∑

n=0

P ?n(t), (48)

where we de�ne P ?0 ≡ δ(t), the Dirac delta function for completeness. To remove the
condition when an event occurred in the interval (t, t+ ∆), we multiply by the rate of
events ν̄, and thus the coincidence rate is given by

GN(τ) = ν̄

∞∑
n=0

P ?n(|τ |). (49)

The power spectral density SN(f) is the Fourier transform of the coincidence rate
if both are de�ned, in which case

SN(f) ≡ 2F{GN(τ)} = 2

∞∫
−∞

e−iωτ ν̄
∞∑

n=0

P ?n(|τ |)dτ =

2ν̄2δ(f) + 2ν̄Re

{
1 +Q(−iω)

1−Q(−iω)

}
, (50)

where

Q(−iω) ≡ F{P (t)} =

∞∫
0

e−iωtP (t)dt (51)
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is the Fourier transform of the density P (t), and Q(+iω) is the corresponding charac-
teristic function of the interevent time T . The constant term in the coincidence rate ν̄2

leads to an impulsive term in the power spectral density

2ν̄2δ(f) = 2ν̄2δ(ω/2π) = 4πν̄2δ(ω). (52)

For low frequencies, in the range ω � B−1, the power spectral density approaches
a constant value which depends on the moments of T . In the limit ω → 0 the resulting
form for the power spectral density is indeterminate, so we perform the substitution

Q(−iω) = 1− iω〈T 〉 − ω2〈T 2〉/2 +O(ω2), (53)

where O(x) is some function satisfying

lim
x→0

O(x)/x = 0. (54)

This yields

lim
ω→0

SN(f) = 2ν̄ lim
ω→0

Re

{
1 +Q(−iω)

1−Q(−iω)

}
= 2ν̄3Var{T}. (55)

For the unmodi�ed L�evy-stable densities the coincidence rate GN(τ) is zero for all
nonzero delays τ , so, the power spectral density SN(f) is zero for all �nite frequencies
ω. However, for the modi�ed L�evy-stable densities, the resulting power spectral density
may be obtained from Eqs. (38), (39) and (50), and is given by

SN(f) = 2D−2(B/A)2DB−2δ(f)

+ 2D−1(B/A)DB−1Re

{
exp[(iωA+ A/B)D] + exp[(A/B)D]

exp[(iωA+ A/B)D]− exp[(A/B)D]

}
. (56)

In the limit B−1 � ω � A−1 we obtain

〈T 〉SN(ω)(ωA)D ≈ 2 cos(πD/2), (57)

so that
SN(f) ≈ 4D−1(B/A)DB−1 cos(πD/2)(ωA)−D. (58)

Thus the power spectral density varies as 1/fD over a substantial range of frequencies,
where D corresponds to the exponent in the original L�evy-stable density.

Outside the range B−1 � ω � A−1, the power spectral density exhibits little change
with frequency. For low frequencies, in the range ω � B−1, we have directly from (55)

lim
ω→0

SN(f) = 2D−2(1−D)(B/A)2DB−1. (59)

In the range ω � A−1, we have |Q(−iω)| � 1, so that the power spectral density
approaches a constant value

lim
ω→∞

SN(f) ≈ 2ν̄ = D−1(B/A)DB−1. (60)

This limiting value is the same as that obtained for the Poisson process; for these high
frequencies the contributions of the individual events are essentially uncorrelated, thus,
the Poisson limit is recovered.
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2.6 1/f noise in deterministic dynamical systems

One explanation of the occurrence of 1/f noise in resistors is that the charge carriers
get trapped in capture sites and are released with variable rates (this is essentially
the extension of Schottky's original explanation of 1/f noise in vacuum tubes), and in
search for a �universal� explanation of 1/f noise one may wonder if the same mechanism
may act in more general dynamical systems. Geisel, Zacherl and Radons (GRZ) [94]
devised just one such mechanism: it is well known that if we are given a particular
Hamiltonian, its phase space splits in chaotic regions where the system point follows
pseudo-orbits, and in ordered regions where the system point follows periodic orbits
(this is the essence of the KAM theorem). The ordered regions are often surrounded
by a hierarchy of cantori, and the conjecture of GRZ is that the system point gets
temporarily trapped in these cantori and is released with variable rates, just as the
charge carriers in an ordinary conductor with trapping sites. GRZ is considered, in
particular, a classical particle in a periodic two-dimensional potential

V (x, y) = A+B[cos(x) + cos(y)] + C cos(x) cos(y), (61)

and solved numerically the coupled equations of motion{
ẍ = [B + C cos(y)] sin(x),

ÿ = [B + C cos(x)] sin(y).
(62)

The particle performs a complex motion amid the many peaks of the potential,
which looks like a sort of random walk, while the velocity of the particle looks like a
periodic signal plus noise. 1/fβ noise of velocity �uctuations with 0.7 6 β 6 1.1 was
observed.

The dynamical system of GRZ is a Hamiltonian system, i.e. it belongs to a spe-
ci�c subclass, however in physics there are non-Hamiltonian systems as well, like the
celebrated Lorentz system 

ẋ = σ(y − x),

ẏ = −xz + rx− y,

ż = xy − bz,

(63)

which has been extensively studied since its �rst appearance in 1963 [95,96]. Systems,
such as this, have many interesting features: stable limit cycles, strange attractors,
intermittency and 1/f noise. Intermittent behavior is characterized by a seemingly
stationary signal, interrupted by bursts of activity [97,98,99,100,101,102].

The fundamental work of Feigenbaum on the transition to chaos in the logistic map
has shown that simple functions may be used as representatives of a much wider class
of functions [103]: the function

f(x) = x+ ux2(mod1), (64)

which maps the (0, 1) interval into itself has been used to study both intermittence and
power-law noise in dynamical systems [98,104,105]. Repeated iteration of the map (64)
yields a sequence

xn+1 = f(xn) = xn + ux2
n(mod1), (65)

which has both, an intermittent behavior and a very clean 1/f spectral density. Schuster
and Procaccia have [103] shown theoretically that it is a real 1/f spectral density using
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the Feigenbaum renormalization group method in function space [103]. It is important
to note that the �uctuations produced by the dynamical systems, discussed in this
section, are far from Gaussian, and therefore the spectral densities are not su�cient to
characterize the processes.

2.7 Self-organized criticality

The outstanding feature of 1/f noise is that it is scale invariant, i.e. it looks the
same for any choice of frequency or time unit, and for this reason it has been widely
considered to be a prominent manifestation of the fractal character of many natural
phenomena. Since many nonlinear processes have complex phase spaces with fractal
attractors, several physicists have looked into nonlinear processes as sources of 1/f
noise.

In 1987 Bak, Tang and Wiesenfeld (BTW) introduced a nonlinear model system
that was met with wide interest and had since generated spates of scienti�c papers, the
so-called �Sandpile Model� [106,107]. The title of the original paper was Self-Organized
Criticality: An Explanation of 1/f Noise, and it put forward a very ambitious program,
as it described a nonlinear process that had fractal characteristics, a complex behavior
that mimicked a noise process, a spectral density that the authors claimed to be 1/f ,
and displayed a limiting behavior that was called �self-organized criticality�.

The sandpile model is closely related to an earlier classical model developed to
describe the charge-density waves observed in some special conductors like NbSe3 or
K0.3MoO3 (see [108] and [109] for very readable reviews or [110] for a more technical
one): in this model a charge density wave may be viewed as a single particle (or an
array of particles) in a periodic or quasi-periodic potential.

BTW introduced a coupled-pendula model of self-organized criticality but the anal-
ogy with sand proved to be so suggestive, that shortly only the sandpile paradigm
survived in the literature. The two-dimensional version of the model is described math-
ematically by the discrete evolution equations

zj,k → zj,k, zj,k ≤ K,
zj,k → zj,k − 4,

zj±1,k → zj±1,k + 1, zj,k > K,

zj,k±1 → zj,k±1 + 1,

(66)

where zj,k is an integer variable that may be taken to represent the height di�erences
between adjacent nodes in a two-dimensional lattice, and K is a threshold value. From
equation (66) we see that the dynamics described by (66) represents a discrete, nonlinear
di�usion process.

Being discrete and nonlinear, the sandpile model is very hard to study with the
help of the usual analytical tools, but it can easily be adapted to large scale numerical
calculations and in [107] BTW reported 1/fβ spectral densities obtained from their
numerical simulations, with β near 1.

BTW also argued that the sandpile model exhibits a form of self-organization as
the slope of the sandpile approaches a limiting value, just as in real sandpiles (in plain
words, the di�usion process cannot proceed until the threshold K is reached) and they
dubbed it �Self Organized Criticality� (SOC).
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Papers [106] and [107] initiated a �urry of activity as many physicists tried to
replicate BTW's results, either with their own numerical simulations or with direct
simulations of sand �ows, and sometimes also with more sophisticated analytical tools
such as the renormalization group approach. However, most of these studies have
widened the scope of applications of SOC but have not led to a deeper understanding
of the behavior of the model, which remains controversial. For instance, there are
applications of SOC to the �elds as diverse as �re propagation [111] or evolutionary
biology [112, 113], but alongside the enthusiastic attitudes of some physicists (see, e.g.
[114]) there is an increasing number of papers that raise doubts on the validity and
actual applicability of the model.

The study of 1/f noise started in electronics, and we have already seen that electrical
1/f noise seems to be stationary and Gaussian, but the pulses of sandpiles are not
Gaussian, and the other statistical properties, too, di�er from those of the observed
electrical 1/f noise [115]; moreover, electrical 1/f noise exists at equilibrium while all
SOC models require an external driving process. Another point that remains highly
controversial is the reality of the claimed 1/f spectra: are they 1/fβ spectra (with
β ≈ 1) or are they trivial 1/f2 spectra? If they were just 1/f2 spectra, then SOC would
not be essentially di�erent from a simple Brownian process, and therefore it was essential
to establish the numerical value of the exponent. Jaeger, Liu and Nagel performed an
experiment with a real sandpile in 1988 [116,117] and their results contradicted BTW's
claims, they did not observe a 1/fβ spectrum, but rather a white noise plateau modi�ed
at low frequency by grain size e�ects followed by a 1/f2 tail.

Jensen, Christensen and Fogedby added mathematical substance to the measure-
ments of Jaeger, Liu and Nagel [117], and they demonstrated that the spectra in real
sandpiles were actually 1/f2 [118]. The problem of establishing the exponent has been
aggravated by serious errors in the literature, as in ref. [119], where the authors claimed
to have found a sandpile model with a 1/f spectrum, whereas they actually found a
1/f2 spectrum and forgot to square the Fourier coe�cients.

The importance of �nding 1/fβ spectra with β 6= 2 seemed to have escaped the at-
tention of some authors, such as Dalton and Corcoran, who recently performed another
experiment on a granular system [120], found a trivial 1/f2 spectrum and concluded
that this was in accordance with SOC.

Skokov and Koverda investigated system near to the critical phase transition [121],
which could be described by system of two non linear stochastic equations

φ̇ = −φψ2 + ψ + ξ1(t),

ψ̇ = −ψφ2 + γφ+ ξ2(t), (67)

where γ is some parameter, ξ1(t) and ξ2(t) are white noise sources and, in their pa-
per [121] they showed that equations (67) transformed white noise into two stochastic
processes with power spectral densities proportional to 1/f and 1/f2.

In general, the SOC does not seem to adequately describe 1/f noise, neither does
it aspire to the universality that its supporters claim. Moreover, the studies [122, 123,
124] on SOC systems show that the power laws of the spatial and timporal sizes are
�ngerprints of the SOC.
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2.8 Earthquakes

After Mandelbrot's work, 1/f noise has often been associated with fractal phenomena
and other power laws, and the physics of earthquakes is just one of those �elds where the
features of scaling which lead to the power laws, seem to be applicable. The mainstay
of this �eld is the celebrated Gutenberg-Richter law [125] which states that N(M), the
number of earthquakes with magnitude greater than M , is proportional to 10−bM , i.e.
log10N(M) = A − bM where the slope b is found to be a number near 1. There is
also a classical earthquake model with dissipative nonlinear dynamics, the Burridge-
Knopo� model [126], so the challenge lies in solving the Burridge-Knopo� model or
another similar model to retrieve the Gutenberg-Richter law, and other earthquake
statistics. The Burridge-Knopo� model is a simple block-and-spring model of a crustal
fault originally introduced in 1967, and it has been extensively studied [127], especially
by Carlson and his collaborators [128,129].

Milotti in [130] showed that there was indeed a magnitude range where a power
law was held, while there was a low magnitude region where the power law broke
down. Earthquakes are complex phenomena, and the restricted power law range may
come from some fundamental di�erence in physics between small and large magnitude
earthquakes [131].

Telesca, Cuomo, and Lappena (TCL) analysed seismic data from National Institute
of Geophysics and Vulcanology catalogue, covering the period from 1986 to 2001 and
analysed three di�erent seismic zones located in northern, central and southern Italy
[132]. They mathematically expressed a sequence of earthquakes by �nite sum of Dirac's
delta functions centered on the occurrence times ti with amplitude Ai proportional to
the magnitude Mi of the i-th event

x(t) =
n∑

i=1

Aiδ(t− ti). (68)

They divided the time axis into equally spaced contiguous counting windows of duration
τ , and produced a sequence of counts {Nk(τ)}, with Nk(τ) denoting the number of
earthquakes in the k-th window

Nk(τ) =

Tk∫
Tk−1

n∑
i=1

δ(t− ti)dt. (69)

Using representation (69) TCL calculated three di�erent statistics. The Fano Factor is
a measure of correlation over di�erent time scales

FF (τ) =
〈N2

k (τ)〉 − 〈Nk(τ)〉2

〈Nk(τ)〉
, (70)

where 〈. . . 〉 denotes the expectation value. The Allan Factor is in relation with the
variability of successive counts

AF (τ) =
〈[Nk+1(τ)−Nk(τ)]

2〉
2〈Nk(τ)〉

, (71)

and the Count-based Periodogram, which is the periodogram of the sequence of the
counts Nk and allows estimating the exponent of the power spectral density β.
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The calculations of this statistics showed the existence of 1/fβ temporal �uctuations
of seismicity at higher timescales and the sequences of Italian earthquakes demonstrated
a clear clustering e�ect. These allow to detect correlation properties in the point pro-
cesses [132].

2.9 1/f noise in meteorology

Approximate 1/f noise behavior was found by Yano, Fraedrich, and Zebiak (YFZ) in
tropical surface temperature, moisture, and wind speed for periods of 1 hour to beyond
10 days and in oceanic wind stress up to 2 year periods [133]. They showed that the
origin of the 1/f noise can be closely tied to pulse-like events with a highly intermittent
nature of the time series. Examples for such pulse-like events include the cumulus
convection events leading to convecting downdraughts and intra seasonal westerly wind
events associated with the Madden-Julian oscillations.

YFZ have used Tropical Ocean and Global Atmosphere, Coupled Ocean-Atmosphere
Response Experiment (TOGA-COARE) collected data for analysis, which consisted of
data intervals of 6−12 hours. In the following paper [134] longer (more then a month's)
time scales were analysed.

Yano introduced a method for objectively extracting the pulse-like events of par-
ticular scales from the original time series based on wavelets [135, 136]. Wavelets were
expected to work e�ectively for this purpose with their highly localized structures.
Speci�cally, the discrete Meyer wavelets were adopted by taking advantage of their
completeness and orthogonality.

A discrete wavelet mode ψi,j(t) is characterized by the time scale (�duration�) ∆t ≡
T/2j−1 and the timing t = (i − 1/2)∆t when the localized individual mode takes its
maximum, where j = 1, . . . , log2N and i = 1, . . . , 2j−1 for a time series of length T
with N measurements in equal interval.

A time series x(t) was decomposed by the wavelets as

x(t) =

log2 N∑
j=1

2j−1∑
i=1

x̂i,jψi,j(t) + x̄, (72)

with the expansion coe�cients x̂i,j, where x̄ is the time mean. Orthogonality and
completeness of the wavelets make this decomposition unique. Normalization

〈ψ2
i,j(t)〉 = 1/2j−1 (73)

was used, making the maximum values of wavelets approximately invariant with the
scale, so the coe�cients x̂i,j present the amplitudes of the corresponding localized signal.
Total number of measurements N must be a power of two.

The resulting wavelet spectrum is two-dimensional, where i-axis graphically indi-
cates the timing of events, whereas the j-axis indicates the characteristic scales. When
a pulse-like event is found in a time series, it is expected that such an event is rep-
resented by a local maximum in absolute values of coe�cients in this wavelets space,
because the spatially localized nature of wavelets allows the event to be represented by
its characteristic scale (�duration�) and timing. Thus, an extraction of such an event
can be performed by extracting the modes clustered around this peak.

Temperature, moisture mixing ratio, wind speed, and precipitation rates consist of
1/f -noise spectrum slope down to 1-hour scale and up to the intra seasonal time-scale
(30− 60 days).
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2.10 1/f �uctuations in tra�c

In 1976 Musha and Higuchi (MH) decided to measure car current on an ordinary high-
way and calculate power spectral density [137]. They stayed on a bridge over a three-
lane part of the chosen highway and recorded transit times of the cars on a magnetic
tape. 11080 cars were recorded in four hours. By substituting each vehicle with delta
function, they obtained a series of interevent transit times.

To eliminate 1/f2 term at low frequencies, which was present regardless of the
detailed structure of the sequence, MH divided the whole observation time T into 20
pieces of equal length and they took the di�erences between delta functions in di�erent
pieces. This led to a white noise at high frequencies and 1/f noise at a small scale.

Furthermore, they wrote continuity equation for the local mean concentrations of
the cars n(x, t) and local mean car current along x axis J(x, t) and found the di�usion
current

J = nv −D
∂n

∂x
, (74)

where v is local mean velocity and D is e�ective di�usion coe�cient.
Greenberg [138] observed that the car velocity decreased with the increase of the

car concentration and MH assumed linear relationship between them

v = v0

(
1− n

ns

)
, (75)

where v0 was the drift velocity when n approached zero and the constant ns was usually
much larger than the mean concentration.

Changing coordinates to x = −x′ + v0t
′ and t = t′ MH obtained Navier-Stokes'

equation with the pressure term being ignored

∂n

∂t′
+ an

∂n

∂x′
= D

∂2n

∂x′2
, (76)

where a = 2v0/ns.
Car currents �owing into and leaving out of the main current at ramps were re-

garded as external disturbance continuously given to the main car current, and the
uniform stationary car current on the highway was considered as a superposition of
non stationary car currents at ramps. Introducing wave number k′ and frequency f ′ in
the frames of reference (x′, t′) and k = −k′, f = f ′ − v0k

′/(2π) in the original frame
of reference (x, t) and taking into account that �uctuations are small, leads to power
spectral density

S(f) ∝ v2
0/f. (77)

As we can see MH derived a 1/f power spectrum, which agreed with the observation
data.

2.11 Examples from biophysics

As an example of a biophysical system in which 1/f noise is actually observed, we
can mention the �uctuations of the electrical dipole moment of an important enzyme �
lysozome.

It is a very interesting physical system in as much as it provides the information
on the structure of water and on its interaction with biological molecules [139]. The

25



�uctuations have been studied by Careri and Consolini [140] and the spectral density
is once again a 1/fα spectrum, with α = 1.5.

Milotti [130] believes that the electrical dipole �uctuations are due to the migration
of free protons on the molecule surface, and to test this model he has set up a Monte
Carlo simulation. The �rst results obtained with this approach are encouraging, as
Milotti has found good values for the noise exponent and reasonable dependencies on
the other physical parameters. It is found that the distribution of transition rates
between di�erent proton states follows a power law, and therefore produces a 1/fα

spectral density. The individual signals are non-Gaussian, but the macroscopic signal
is a superposition of many such signals, and thus it is Gaussian.

Takano, Takahashi, and Nagayama (TTN) simulated molecular dynamics of the
helix-coil transition of a polypeptide [141]. The simulated transition was two-state-
like and similar to the solid-liquid-like transition that has been observed in computer
simulations of an atomic cluster. At the transition temperature, the polypeptide chain
�uctuated between a helical and a random-coil state, and TTN observed 1/f �uctuation
through potential-energy �uctuations.

2.12 Scaling of heartbeat intervals

Scale-invariant properties in biological systems have recently received much atten-
tion. Kobayashi and Musha investigated human heartbeat and found a 1/f behav-
ior of power spectra [142]. Peng, Mietus, Hausdor�, Havlin, Stanley, and Goldberger
(PMHHSG) showed that the power spectra of the human heartbeat intervals from
healthy individuals exhibits a scale invariant 1/f pattern in the low frequency range
(f < 0.1 Hz) [143]. They analysed the digitized electrocardiograms of beat-to-beat
heart rate �uctuations over very long time intervals (up to 24 h ≈ 105 beats), recorded
with an ambulatory monitor. Time series, obtained by plotting the sequential inter-
vals between beat n and n + 1, typically reveal a complex type of variability related
to competing neuroautonomic inputs. PMHHSG passed the time series through a dig-
ital �lter that removed �uctuations of frequencies > 0.005 beat−1. They observed a
more complex pattern of �uctuations for a representative healthy adult compared to
the �smoother� pattern of interbeat intervals for a subject with severe heart disease and
came to a conclusion that loss of 1/f slope in power spectra is closely related to the
prognosis and severity of heart disease.

Heart failure can predict other parameters as well. Ivanov, Amaral, Goldberger,
Havlin, Rosenblum, Stanley, Struzik (IAGHRSS) investigated multifractality in heart-
beat dynamics [144]. They measured a time series for 18 healthy subjects and for 12
patients with congestive heart failure. Investigation of the shape of fractal dimensions
D(h) for the healthy people indicated multifractal behavior, however, D(h) for the
heart failure group was very narrow, indicating the loss of multifractality. IAGHRSS
assumed that a di�erent form of fractal dimensions may re�ect perturbation of the
cardiac neuroautonomic control mechanisms associated with this pathology.

Though the characteristics of a point process are often studied via the sequence
of intervals between successive events, in some cases it is advantageous to examine
the sequence of event numbers (counts) {Nk} observed in successive counting times τ .
Teich introduced a wavelet-based version of the Allan factor (71) generated by replacing
Haar-function counting windows of duration τ by wavelet and scaling functions, denoted
ψ(t) and ϕ(t) respectively, in an arbitrary wavelet basis [145]. Wavelet and scaling
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coe�cients, d(τ, k) and c(τ, k) respectively, can then be constructed from the point
process N(t),

d(τ, k) =
1√
τ

∞∫
−∞

[ψ(u/τ − k)]∗dN(u), (78)

c(τ, k) =
1√
τ

∞∫
−∞

[ϕ(u/τ − k)]∗dN(u), (79)

where ∗ denotes complex conjugation. The wavelet Allan factor is then de�ned as

AW (τ) =
√
τ
〈|d(τ, k)|2〉
〈|c(τ, k)|〉

, (80)

where the average is over k. Teich computed wavelet Allan factor for 12 normal and
15 heart-failure patients and showed that the threshold value for wavelet Allan factor
can be chosen in such a way, that all heart-failure and normal patients can be properly
identi�ed.

2.13 Statistical properties of stock price �uctuations

Economic time series, such as stock market indices or currency exchange rates, depend
on the evolution of a large number of interacting systems and are examples of complex
evolving systems widely studied in physics [36,37,38,39,40,41]. The recent availability
of large amounts of data allows the study of economic time series with high accuracy
on a wide range of time scales varying from ≈ 1 minute up to ≈ 1 year.

Liu, Gopikrishnan, Cizeau, Meyer, Peng, and Stanley (LGCMPS) analysed S&P
500 index Z(t) from the New York Stock Exchange historical data for the 13-year
period January 1984 to December 1996 with a recording frequency of 15 s interval [146].
LGCMPS introduced the price change G(t) as the change in the logarithm of the index

G(t) ≡ lnZ(t+ ∆t)− lnZ(t) ∼=
Z(t+ ∆t)− Z(t)

Z(t)
, (81)

where ∆t is the sampling time interval. Only the time during the opening hours of the
stock market was counted, whereas, nights, weekends and holidays were removed from
the data set and the closing as well as the opening of the market were considered to be
continuous. LGCMPS de�ned the volatility as the average of |G(t)| over a time window
T = n∆t, i.e.,

VT (t) ≡ 1

n

t+n−1∑
t′=t

|G(t′)|, (82)

where n is an integer. The central part of volatility pdf exhibits a log-normal behavior,
however, tail of the cumulative distribution of the volatility is consistent with a power-
law asymptotic behavior

P (VT > x) ∼ 1

xµ
, (83)

where µ ≈ 3, is well outside the stable L�evy range 0 < µ < 2.
LGCMPS calculated the power spectral density of the price change G(t) and found

that it would be �tted by two separate power laws S(f) ∼ 1/fβ1 for f > fx and
S(f) ∼ 1/fβ2 for f < fx, where condition 0 < β1 < β2 < 1 is met.
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Gontis and Kaulakys (GK) assumed transactions in the �nancial markets as point
events and introduced a multiplicative stochastic model for the time intervals between
events of point process [44, 45]. Their model of time series has only a few parameters
de�ning the statistical properties of the system, i.e., the power-law behavior of the
distribution function and the scaled power spectral density with the slope β ranging
between 0.5 and 1.5. GK showed numerical results con�rming that the multiplicative
stochastic model of the time intervals between the trades in the �nancial markets is
able to reproduce the main statistical properties of the trading activity and its power
spectral density.

2.14 1/f noise in computer networks and the Internet

The statistical characteristics of network tra�c have been of interest to researchers for
many years in order to obtain a better understanding of the factors that e�ect the
performance and scalability of a large system, such as the Internet. Early studies of the
Internet tra�c proved particularly interesting, as they exposed self-similar characteris-
tics that were not previously commonplace [147].

Field, Harder and Harrison (FHH) analysed the switched Ethernet system in a
University Computing department at Imperial College, London [148]. They collected a
huge amount of network tra�c data, logged in �les from di�erent sources � web servers
and routers. Time stamp and size of each packet were logged. Using this data they
obtained a point process of network packets, and later divided the time scale into equal
intervals and formed an aggregated time series by calculating number of packets sent
or received in each particular time interval.

FFH observed that the power spectrum of both the incoming and outgoing tra�c
time series, aggregated over di�erent time intervals exhibit a 1/f behavior [148]. Fur-
thermore, they investigated the changes in the observed packet rates and found out
that they were extremely well approximated by a Cauchy distribution

P (x) =
2

π

s

s2 + x2
, (84)

where s > 0 is some parameter. FFH generated network tra�c packets with di�erent,
Cauchy and Poisson time distribution and feeded them to a web server. Power spectral
density of outgoing packets from the server proved to be a power-law.

Csabai performed measurements on the speed of the network between two points. He
measured round-trip times (RTT) between a workstation at E�otv�os University, Hungary,
and a distant ftp site, located in Finland [149]. There were 15 gateways between the
two hosts. Csabai found no simple low dimensional chaotic attractor in the analysis of
time series, but the power spectrum of data showed a 1/f -like behavior in the whole
time domain (see Figure 1).
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Figure 1. Power spectral density of the RTT, obtained by Csabai [149].
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3 POINT PROCESS MODEL

3.1 Point processes

In many cases the intensity of some signal or current can be represented by a sequence of
random (however, as a rule, mutually correlated) pulses or elementary events Ak(t−tk).
Here the function Ak(φ) represents the shape of the k pulse having an in�uence on the
signal I(t) in the region of transit time tk [57]. The signal of intensity of the current of
particles in some space cross section may, therefore, be expresses as

I(t) =
∑

k

Ak(t− tk). (85)

It is easy to show that the shapes of the pulses mainly in�uence the high frequency,
f > ∆tp, with ∆tp being the characteristic pulse length, power spectral density, while
�uctuations of the pulse amplitudes result, as a rule, in white or Lorentzian, but not
1/f , noise [150,151,152]. Therefore, we restrict our analysis to noise due to correlations
between the transit times tk. In such an approach we can replace the function Ak(t−tk)
by the Dirac delta function δ(t− tk) and the signal express as

I(t) = ā
∑

k

δ(t− tk), (86)

with ā being an average contribution to the signal of one pulse. This model also corre-
sponds to the �ow of identical objects: electrons, photons, cars, and so on, when they
cross the section of observation and it is called the point process model. Point processes
arise in di�erent �elds, such as physics, economics, cosmology, ecology, neurology, seis-
mology, tra�c �ow, signaling and telecom networks, audio streams, and the Internet
(e.g., [152, 137, 153, 154, 155, 149, 31, 156, 132, 157, 148] and references herein). On the
other hand, �uctuations of the amplitudes Ak may result in additional noise but cannot
reduce 1/f noise we are looking for.

The power spectral density of current (86) is

S(f) = lim
T→∞

〈
2

T

∣∣∣∣∣∣
tf∫

ti

I(t)e−i2πftdt

∣∣∣∣∣∣
2〉

= lim
T→∞

〈
2ā2

T

∣∣∣∣∣
kmax∑

k=kmin

e−i2πftk

∣∣∣∣∣
2〉

= lim
T→∞

〈
2ā2

T

∑
k

kmax−k∑
q=kmin−k

ei2πf∆(k;q)

〉
, (87)

where ti and tf are initial and �nal observation times, T = tf − ti � ω−1 is the whole
observation time, ω = 2πf ,

∆(k; q) ≡ tk+q − tk =

k+q−1∑
i=k

τi (88)

is the di�erence between the pulses occurrence times tk+q and tk, and τk = tk − tk−1 is
the time intervals between pulses. Here kmin and kmax are minimal and maximal values
of index k in the interval of observation T and the brackets 〈. . .〉 denote the averaging
over realizations of the process.
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It should be stressed that the spectrum is related to the underlying process but
not to a realization of the process [79, 80, 81, 82, 158]. Therefore, the averaging over
realizations of the process is essential. Without the averaging over the realizations we
obtain the squared modulus of the Fourier transform of the data, i.e., the periodogram
which is �uctuating widely and its variance is almost independent of T [80, 158]. For
calculation of the power spectrum of the actual signal one should use the well-known
procedures of the smoothing for spectral estimations [80,158,82,159].

Equation (87) may be rewritten as

S(f) = 2ā2ν̄ + lim
T→∞

〈
4ā2

T

N∑
q=1

kmax−q∑
k=kmin

cos[2πf∆(k; q)]

〉
(89)

where N = kmax − kmin and

ν̄ =

〈
lim

T→∞

N + 1

T

〉
(90)

is the mean number of pulses per unit time. The �rst term in the right-hand-side of
Eq. (89) represents the shot noise,

Sshot(f) = 2ā2ν̄ = 2āĪ , (91)

with Ī = āν̄ being the average signal.
Eqs. (87) � (91) may be modi�ed as

S(f) = 2ā2

N∑
q=−N

(
ν̄ − |q|

T

)
χ∆(q)(ω) (92)

and used for evaluation of the power spectral density of the non-stationary process or
for the process of �nite duration, as well. Here

χ∆(q)(ω) = 〈eiω∆(q)〉 =

+∞∫
−∞

eiω∆(q)Ψq[∆(q)]d∆(q) (93)

is the characteristic function of the distribution density Ψq[∆(q)] of ∆(q), a de�nition
∆(q) = −∆(−q) = ∆(k; q) is introduced, and the brackets 〈. . .〉 denote the averag-
ing over realizations of the process and over the time (index k) [57, 61, 62]. For the
non-stationary process or the process of the �nite duration one should use the real
distribution Ψq[∆(q)] with the �nite interval of the variation of ∆(q) or calculate the
power spectra directly according to Eq. (87).

When the second sum of Eq. (92) in the limit T → ∞, due to the decrease of the
characteristic function χ∆(q)(ω) for �nite ω and large q, approaches to zero,

lim
T→∞

1

T

N∑
q=−N

|q|χ∆(q)(ω) → 0, (94)

we have from Eq. (92) the power spectrum in the form

S(f) = lim
T→∞

〈
2ā2

T

∑
k,q

eiω∆(k;q)

〉
= 2āĪ

N∑
q=−N

χ∆(q)(ω). (95)
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According to the above analysis, the power spectral density of the signal depends
on the statistics and correlations of the transit times tk only. It is well known that a
sequence of random, Poisson transit times generates white (shot) noise [150, 151, 152].
The sequence of transit times tk with random increments tk = tk−1 + τ̄+σεk (where τ̄ is
the average interpulse time between pulses, {εk} denotes the sequence of uncorrelated
normally distributed random variables with zero expectation and unit variance, i.e., the
white noise source, and σ is the standard deviation of white noise) results in a Lorentzian
spectra [37,73]. Here we will consider sequences of transit times with random increments
of the time intervals between pulses, τk = τk−1 +σεk, where τk = tk− tk−1. It is natural
to restrict in some way in�nite Brownian increase or decrease of the interpulse times
τk, e.g., by the introduction of relaxation to the average interpulse time τ̄ rate γ. So,
we have recurrent equations for the transit times:

tk = tk−1 + τk,

τk = τk−1 − γ(τk−1 − τ̄) + σεk. (96)

3.2 Power spectral density

An advantage of model (96) is that it may be solved analytically. So, an iterative
solution of Eqs. (96) results in an expression for the interpulse time,

τk = τ̄ + (τ0 − τ̄)(1− γ)k + σ
k∑

j=1

(1− γ)k−jεj, (97)

where τ0 is the initial interpulse time. The dispersion of the interpulse time τk is

σ2
τ (k) ≡

〈
τ 2
k

〉
− 〈τk〉2 =

σ2[1− (1− γ)2k]

2γ(1− γ/2)
'

{
σ2k, 2kγ � 1,

σ2/2γ, 2kγ � 1.
(98)

Therefore, after a characteristic transition to the stationary process time, ttr = τ̄ /γ,
the dispersion of the interpulse time approaches the limiting value σ2

τ = σ2/2γ.
After some algebra we can also obtain an explicit expression for the transit times tk

(k > 1),

tk = t0 + kτ̄ +
1− γ

γ
[1− (1− γ)k](τ0 − τ̄) +

σ

γ

k∑
l=1

[1− (1− γ)k+1−l]εl, (99)

where t0 is the initial time. The dispersion of the transit time

σ2
t (k) ≡

〈
t2k
〉
− 〈tk〉2 =

σ2

γ2

{
k − 2

1− γ

γ
[1− (1− γ)k] + (1− γ)2 1− (1− γ)2k

1− (1− γ)k

}
=

{
σ2(k/6 + k2/2 + k3/3 + · · · ), 2γk � 1,

(σ/γ)2(k − 3/(2γ) + 5/4± · · · ), 2γk � 1.
(100)

At k � γ−1, Eq. (99) generates a stationary time series. The di�erence of the transit
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times tk+q and tk in Eq. (87), for τ0 = τ̄ or 2γk � 1, is

∆(k; q) = τ̄ q +
σ

γ

{
[1− (1− γ)q]

k∑
l=1

(1− γ)k+1−lεl

+

k+q∑
l=k+1

[1− (1− γ)k+q+1−l]εl

}
, q > 0. (101)

The dispersion of these times' di�erences equals

〈
∆(k; q)2

〉
− τ̄ 2q2 =

σ2

2
g(q), (102)

where

g(q) =
2

γ2

{
[1− (1− γ)q]2

k∑
l=1

(1− γ)2l +

q∑
l=1

[1− (1− γ)l]2

}
, q > 0. (103)

Summation in Eq. (103) results in

g(q) =
2

γ2

{
q − (1− γ)[1− (1− γ)q]

1− (1− γ)2
{2 + [1− (1− γ)q](1− γ)2k+1}

}
. (104)

At γq � 1,

g(q) =

{
(2k + 1)q2 + q/3 + 2q3/3, 2γk � 1,(

1
γ

+ 1
2

)
q2 + 1

3
q − 1

3
q3, 2γk � 1,

(105)

while for 2γq � 1 we have

g(q) =
2

γ2

[
q − 2

(1− γ)[1− (1− γ)q]

1− (1− γ)2

]
'

{(
1
γ

+ 1
2

)
q2 + 1

3
q − 1

3
q3, γk � 1,

2
γ2

(
q + 1

2

)
− 2

γ3 + · · · , q � γ−1 � 1.
(106)

Note that for q < 0 we should replace q in Eqs. (101) � (106) by |q| and k by k − |q|.
Therefore, the function g(q) at k − |q| � γ−1 is even, i.e, g(−q) = g(q).

Substituting Eq. (101) into Eq. (87), and replacing the summations in the exponents
by the multiplications of the exponents, we have the following expression for the power
spectral density of the current

S(f) = lim
T→∞

〈
2ā2

T

∑
k

kmax−k∑
q=kmin−k

ei2πfτ̄q ×
k∏

l=1

exp

{
i
2πfσ

γ
[1− (1− γ)q](1− γ)k+1−lεl

}

×
k+q∏

l=k+1

exp

{
i
2πfσ

γ
[1− (1− γ)k+q+1−l]εl

}〉
. (107)

The average over realizations of the process coincides with the average over the
distribution of the random variables εl. Using the fact that random variables εl are
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independent and mutually uncorrelated, we can ful�ll the averaging over every random
variable εl independently. Therefore, Eq. (107) may be rewritten in the form

S(f) = lim
T→∞

2ā2

T

∑
k,q

ei2πfτ̄q

k∏
l=1

〈
exp

{
i
2πfσ

γ
[1− (1− γ)q](1− γ)k+1−lεl

}〉

×
k+q∏

l=k+1

〈
exp

{
i
2πfσ

γ
[1− (1− γ)k+q+1−l]εl

}〉
. (108)

The result of the averaging of the exponent exp{icεl} (with c being a constant) over
the normally distributed random variable εl with zero expectation and unit variance is

〈
eicεl

〉
=

+∞∫
−∞

eicεl
1√
2π
e−ε2

l /2dεl = e−c2/2. (109)

Therefore, after the averaging over the normal distribution of the random variables εl,
Eq. (108) takes the form

S(f) = lim
T→∞

2ā2

T

∑
k,q

ei2πfτ̄q

k∏
l=1

exp

{
−2π2f 2σ2

γ2
[1− (1− γ)q]2(1− γ)2(k+1−l)

}

×
k+q∏

l=k+1

exp

{
−2π2f 2σ2

γ2
[1− (1− γ)k+q+1−l]2

}
(110)

The transition in Eq. (110) from the multiplications of the exponents to the summa-
tions in the exponents and transformations, in analogy with Eq. (103) of the two sums'
summation indexes l → k + 1 − l and l → k + q + 1 − l, respectively, yield, according
to Eq. (103), the �nal expression for the power spectral density:

S(f) = lim
T→∞

2ā2

T

∑
k,q

ei2πfτ̄q−π2f2σ2g(q). (111)

Since the expansion of the function g(q) in powers of γ|q| � 1 at 2γk � 1, according
to Eq. (104) and Eq. (105), is

g(q) =
1

γ
q2 − 1

3
|q|3 +

1

2
q2 ± · · · (112)

for f � fτ = (2πτ̄)−1 and f < f2 = 2
√
γ/πσ, we can replace the summation in

Eq. (111) by the integration

S(f) = 2āĪ

+∞∫
−∞

ei2πfτ̄q−π2f2σ2g(q)dq (113)

where Ī = limT→∞(kmax − kmin + 1)ā/T = (τ̄)−1 is the averaged current.

34



Furthermore, at f � f1 = γ3/2/πσ, it is su�cient to take into account only the �rst
term of expansion (112), g(q) = q2/γ. Integration in Eq. (113) hence yields the 1/f
spectrum

S(f) = 2āĪ

+∞∫
−∞

exp

[
i2πfτ̄q − (πfσ)2

γ
q2

]
dq = Ī2αH

f
, f1 < f < f2, fτ (114)

where αH is a dimensionless constant (the Hooge parameter)

αH =
2√
π
Ke−K2

, K =
τ̄√
2στ

=
τ̄
√
γ

σ
. (115)

Using an expansion of the function g(q) at γq � 1 according to expansion (105),
g(q) = 2q/γ2, from Eq. (113) we obtain the Lorentzian power spectrum density for
f < f1:

S(f) = 2āĪ
σ2

τ̄ 2γ2

1

1 + (πfσ2/τ̄γ2)2
= Ī2 4τrel

1 + τ 2
relω

2
. (116)

Here ω = 2πf , and τrel = Dt = σ2/2τ̄ γ2 is the �di�usion� coe�cient of the time tk
according to Eqs. (99) and (100). The model is, therefore, free from the unphysical
divergence of the spectrum at f → 0; for f � f0 = τ̄ γ2/πσ2 = 1/2πτrel, we have, from
Eq. (116), the white noise

S(f) = Ī2(2σ2/τ̄γ2). (117)

Therefore, the model containing only one relaxation rate γ for a su�ciently small
parameter γ can produce an exact 1/f -like spectrum in any desirably wide range of
frequency, f1 < f < f2, fτ . Furthermore, due to the contribution to the transit times
tk of the large number of rather separated in time random variables, εl (l = 1, 2, ..., k),
our model represents a �long-memory� random process.

3.3 Distribution density of the interpulse time τk

Recurrent equation for stochastic increments between pulses τk (96) can be written as
one variable di�erential Langevin equation in It�o form [160]

dτk = h(τk)dk + g(τk)dW, (118)

where function h(τk) corresponds to the drift and function g(τk) to the di�usion of the
interevent time τk, and W (k) is a realization of the Wiener process W (k) =

∫ k

0
ξ(k′)dk′,

where ξ(t) is the white noise source with zero expectation and unit variance [161]. In
our model both functions h(τk) and g(τk) do not change with time and their expressions
are h(τk) = −γ(τk− τ̄) and g(τk) = σ, accordingly. Finally we have di�erential equation
for increments between pulses

dτk = −γ(τk − τ̄)dk + σdW. (119)

The process described by the Langevin equation (118) or (119) with δ-correlated random
variables 〈ξ(t)ξ(t′)〉 = δ(t − t′) is a Markov process, i.e., its conditional probability at
time tk depends only on the value τk−1 at the next earlier time. This follows from the
fact that a �rst-order di�erential equation is uniquely determined by its initial value

35



and that the δ-correlated random variable ξ(t) at a former time t < tk−1 cannot change
the condition probability at a later time t > tk−1.

From the di�erential equations (118) and (119) we can write a Fokker-Planck equa-
tion for the distribution density Pk(τk, t) of τk [161]

∂Pk(τk, t)

∂t
= − ∂

∂τk
[h(τk)Pk(τk, t)] +

1

2

∂2

∂2τk
[g2(τk)Pk(τk, t)]

=
∂

∂τk
[γ(τk − τ̄)Pk(τk, t)] +

1

2

∂2

∂2τk
[σ2Pk(τk, t)] (120)

The steady-state solution of (120) does not depend on time, Pk(τk, t) = Pk(τk), and,
therefore, ∂Pk(τk, t)/∂t = 0. In the stationary case we can integrate di�erential equation
(120) analytically, and, taking into account normalization condition∫ +∞
−∞ Pk(τk)dτk = 1, we �nd the distribution density

Pk(τk) =
1√

2πστ

exp

{
−(τk − τ̄)2

2σ2
τ

}
, (121)

which is the Gaussian distribution with the mean value τ̄ and deviation στ = σ/
√

2γ.
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Figure 2. Interpulse time τk of the recurrent sequence (96) a); and the distribution
density Pk(τk) b). Open circles represent numerical simulations of Nτ = 106 points,
averaged over n = 100 realizations with parameters τ̄ = 1, σ = 0.01 and γ = 0.0001; solid
line corresponds to the analytical distribution density, calculated according to Eq. (121).

In Figure 2 we compare distribution density for τk (121) with the numerical cal-
culation, obtained by generating τk sequence according to Eq. (96) and calculating
distribution density numerically. As we can see, the right hand side of numerically
calculated τk distribution density is in good agreement with the analytically calculated
Gaussian distribution. However left hand side of the numerically calculated distribu-
tion density is not Gaussian, because while generating time intervals between pulses,
we made physical assumption and considered that the time di�erence τk cannot be neg-
ative. If τk = tk− tk−1 < 0, it means that event at time tk occurred before event at time
tk−1.. In order to avoid negative τk values we constructed a time sequence {tk} from the
sequence of {τk} according to Eq. (96) and rearranged it in increasing order to a new
time sequence {t′k}, where t′k+1 > t′k for all k. From {t′k} we calculated new, positive
in all points, sequence τ ′k = t′k − t′k−1. Distribution density for τ ′k is shown in Figure 2
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as open circles. Had we not followed the assumption that all τk must be positive, we
would have had a good agreement with analytical curve on the left hand side of the
picture as well.

3.4 Non-Gaussian perturbations and numerical analysis

This model may also be generalized for non-Gaussian and for continuous perturbations
of the systems' parameters, resulting in the �uctuations of the interpulse time τ . So,
for perturbations by the non-Gaussian sequence of random impacts {εk} with zero
expectations, Eqs. (85) � (106) remain valid. It is only Eq. (111) which describes the
averaging over realizations of the process in the case of non-Gaussian perturbations
may have a di�erent form. We now consider such situation in greater detail.

The power spectral density (87) may be rewritten in the form

S(f) = 2āĪ

〈∑
q

ei2πfτk(q)q

〉
, (122)

where the di�erence between the transit times tk+q and tk is expressed as

∆(k; q) =

k+q∑
l=k+1

τl = τk(q)q, q > 0, (123)

and the brackets denote the averaging over the time (index k) and over the realizations
of the process. Here τk(q) ≡ ∆(k; q)/q is the averaged interpulse time between the
subsequent transit times in the time interval ∆(k; q). Note that for the slow (di�usive-
like) �uctuations of the averaged interval τk(q) with the change of the index k, Eq. (123)
is valid also when q < 0, i.e., ∆(k; q) = τk+q(q)q ' τk(q)q, q < 0. The variance σ2

∆ of
the time di�erence ∆(k; q) for |q| � γ−1 is a quadratic function of the time di�erence
and, consequently, of the di�erence q of the pulse serial numbers k, i.e.,

σ2
∆ = σ2

τ (k)q
2. (124)

At 2πfτk(q) � 1 we may replace the summation in Eq. (122) by the integration,
and do not take into account the dependence of τk(q) on q. In such case Eq. (122) yields

S(f) = 2āĪ

〈 +∞∫
−∞

ei2πfτkqdq

〉
= 2āĪ

+∞∫
−∞

〈
ei2πfτkq

〉
dq. (125)

Here, the averaging over k and over the realizations of the process coincides with the
averaging over the distribution of the interpulse times τk, i.e.,

〈
ei2πfqτk

〉
=

+∞∫
−∞

ei2πfqτkPk(τk)dτk = χτ (2πfq), (126)

where Pk(τk) is a distribution density of interpulse times τk, and χτ (ϑ) is a charac-
teristic function of the distribution Pk(τk). Taking into account the property of the
characteristic function,

+∞∫
−∞

χτ (ϑ)dϑ = 2πPk(0), (127)
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we have from Eqs. (126) and (127), the �nal expression for the power spectral density:

S(f) = 2āĪPk(0)/f. (128)

Substituting into Eq. (128) the value Pk(0) = exp(−τ̄ 2/2σ2
τ )/
√

2πστ for the Gaussian
distribution of the interpulse times τk, we recover results (114) and (115).

Since di�erent processes result in the Gaussian distribution, it is likely that per-
turbations by non-Gaussian impacts {εk} in Eq. (96) nevertheless yield the Gaussian
distribution of the interpulse times τk.
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Figure 3. Power spectral density vs frequency of the current generated by Eqs. (86) � (96)
for τ̄ = 1, σ = 0.01, γ = 0.0001 and ā = 1 with the Gaussian distribution of the random
increments {εk} a); and uniform distribution of the {εk} in the interval (−0.02, 0.02) b).
Open circles represent the results of numerical simulations of Nτ = 106 points, averaged
over n = 100 realizations, and the solid lines represent the analytical spectra according to
Eqs. (114), (115), and (128), respectively.

As an illustrative example, in Figure 3, the numerically calculated power spectral
densities of the process (96) with Gaussian and uniform distributions of the random
increments {εk} are compared with the analytical calculations according to Eqs. (113)
� (117) and (128), respectively. The analytical results are in good agreement with the
numerical simulations. For the non-Gaussian distribution of the random perturbations
we have no explicit expression analogous to Eq. (113) for the integral representation of
the noise power spectral density. Note that analytical results predict not only the slope
and intensity of 1/f noise, but the frequency range f1 − f2, fτ of 1/f noise and the
intensity of the very low frequency f � f0 white noise (117) as well.

The proposed point process model (86) � (128) can be modi�ed and useful for
the modeling and analysis of self-organized systems [18, 24], atmospheric variability
[133, 25, 27, 134, 26], large �ares from Gamma-ray Repeaters in astronomy [162], parti-
cles moving in viscous �uid [163], dynamical percolation [164], 1/f noise observed in
cortical neurons and earthquake data [22], �nancial markets [42, 165, 44, 45], cognitive
experiments [21, 166], the Parkinsonian tremors [23], and time intervals production in
tapping and oscillatory motion of the hand [167].

3.5 Multifractality of the point process

Multifractality of the point process can be investigated by transition from the point
process to the stochastic signal I(t), using rectangular pulses (as shown in Section
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5.5). Stochastic signal will have the same fractal properties as the origin point process.
We calculate a generalized qth order height-height correlation function (GHCF) Fq(t)
de�ned as

Fq(t) = 〈|I(t′ + t)− I(t′)|q〉1/q, (129)

where the angular brackets denote a time average. The GHCF Fq(t) characterizes
the correlation properties of the signal I(t), and for a multia�ne signal a power-law
behavior like

Fq(t) ∼ tHq (130)

is expected, where Hq is the generalized qth order Hurst exponent [168]. If Hq is
independent on q, a single scaling exponent Hq is involved and the signal I(t) is said
to be monofractal [169, 170, 171]. If Hq depends on q, the signal is considered to be
multifractal.
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Figure 4. a) Generalized height-height correlation function Fq(t) versus time t for the
signal (86) with q = 0.5, 1, 1.5, . . . , 5 from bottom to top. The signal of NI = 106 points
was generated from Nτ = 105 point process points with the parameters τ̄ = 1, σ = 0.01
and γ = 0.0001. b) The generalized Hurst exponents Hq versus 1/q for the corresponding
GHCF in a) in the scaling regime 1 < t < 1000.

In Figure 4 a) we present the GHCF as a function of the time interval t. We observe
clear multifractal behavior since the slopes of the log-log plot depend on q. In Figure 4
b) we show a Hurst exponents calculated from GHCF using linear regression dependence
on 1/q. This, too, indicates to the multifractality of the point process.

Multifractal models have been used to account for scale invariance properties of
various objects in very di�erent domains ranging from the energy dissipation or the
velocity �eld in turbulent �ows [172] to �nancial data [173].

Healthy human heartbeat intervals, rather than being fractal, exhibit multifractal
properties and for a life-threatening condition, known as congestive heart failure, there is
a loss of multifractality [174]. Cerebral blood �ow in healthy humans is also multifractal
[175].

The analytically solvable model (86) � (128) and its generalizations contain, however,
some shortage of generality, i.e., it results only in exact 1/f (with β = 1) noise and
only if Pk(τk) ' const when τk → 0. On the other hand, the numerical analysis of
the generalized model with di�erent restrictions for di�usion of the interpulse time τk
reveals 1/fβ spectra with 1 . β . 1.5 [61, 62].
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The aims of next sections 3.6 � 4.4 are to generalize the analytical model seeking
to de�ne the variety of time series, exhibiting the power spectral density S(f) ∼ 1/fβ

with 0.5 . β . 2 and to analyze the relation of the point process model with the
Bernamont-Surdin-McWhorter model [68, 69, 70, 71, 53], representing the signal as a
sum of the appropriate signals with the di�erent rates of the linear relaxation.

3.6 Generalization of the point process model

In a point process the power spectrum of the signal is completely described by the
set of the interevent intervals τk. Moreover, the low frequency noise is de�ned by the
statistical properties of the signal at a large-time-scale, i.e., by the �uctuations of the
time di�erence ∆(k; q) at large q, determined by the slow dynamics of the average
interpulse time τk(q) = ∆(k; q)/q between the occurrence of pulses k and k+ q. In such
case quite generally the dependence of the average interevent time τk on the occurrence
number k may be described by the general Langevin equation with the drift coe�cient
h(τk) and a multiplicative noise g(τk)ξ(k), Eq. (118) [44,45],

dτk
dk

= h(τk) + g(τk)ξ(k). (131)

Here we interpret k as a continuous variable while the white Gaussian noise ξ(k) satis�es
the standard condition

〈ξ(k)ξ(k′)〉 = δ(k − k′) (132)

with the brackets 〈. . .〉, denoting the averaging over the realizations of the process. We
understand the equation (131) in It�o interpretation.

Perturbative solution of Eq. (131) in the vicinity of τk yields

τk+j ' τk + h(τk)j + g(τk)

k+j∫
k

ξ(l)dl, (133)

∆(k; q) =

k+q−1∑
i=k

τi '
q∫

0

τk+jdj ' τkq + h(τk)
q2

2
+ g(τk)

q∫
0

dj

k+j∫
k

ξ(l)dl. (134)

After integration by parts we have

∆(k; q) = τkq + h(τk)
q2

2
+ g(τk)

k+q∫
k

(k + q − l)ξ(l)dl, (135)

〈∆(k; q)〉 = τkq + h(τk)
q2

2
. (136)

Analogously, in the same approximation we can also obtain the variance σ2
∆(k; q) =

〈∆(k; q)2〉 − 〈∆(k; q)〉2 of the time di�erence ∆(k; q),

σ2
∆(k; q) = g2(τk)

q3

3
. (137)
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Substituting Eqs. (135) and (136) into Eq. (87) and replacing the averaging over k
by the averaging over the distribution of the interevent times τk we have

S(f) = 4Ī2τ̄

∞∫
0

dτkPk(τk) Re

∞∫
0

dq exp

{
i2πf

[
τkq + h(τk)

q2

2

]}

=
2Ī2τ̄√
πf

∞∫
0

Pk(τk) Re
[
e−i(x−π

4 )erfc
√
−ix

] √x
τk
dτk (138)

where x = πfτ 2
k/h(τk).

Approach (138) is the improvement of the simplest model of the pure 1/f noise (96)
taking into account the second, drift, term h(τk)q

2/2 in expression for ∆(k; q). Note,
that for h(τk) → 0 from Eq. (138) we recover result (128).

According to Eqs. (128) and (138) the small interevent times and the clustering of
the pulses make the greatest contribution to 1/fβ noise. The power-law spectral density
is frequently related with the power-law behavior of other characteristics of the signal,
such as an autocorrelation function, probability densities and other statistics, and with
the fractality of the signals, in general [31, 38, 32, 39, 43]. Therefore, we investigate the
power-law dependences of the drift coe�cient and of the distribution density on the
time τk in some interval of the small interevent times, i.e.,

h(τk) = γτ δ
k , Pk(τk) = Cτα

k , τmin ≤ τk ≤ τmax (139)

where the coe�cient γ represents the rate of the signal relaxation and C has to be
de�ned from the normalization.

The power-law distribution of the interpulse, interevent, interarrival, recurrence or
waiting time is observable in di�erent systems ranging from physics, astronomy and
seismology to the Internet, �nancial markets and neural spikes (see, e.g., [31, 176, 149,
148,177,178,18,24] and references herein).

Because of the divergence of the power-law distribution and requirement of the
stationarity of the process, the stochastic di�usion may be realized over a certain range
of the variable τk only. Therefore, we restrict the di�usion of τk in the interval [τmin, τmax]
with the appropriate boundary conditions. Then, the steady state solution of the
stationary Fokker-Planck equation (120) with a zero �ow corresponding to Eq. (131)
is [161]

Pk(τk) =
C

g2(τk)
exp

2

τk∫
τmin

h(τ)

g2(τ)
dτ

 . (140)

Then equations (138) and (139) yield the power spectra with di�erent slopes β, i.e.,

S(f) =
2Ī2

√
π(2− δ)f

(
f0

f

) α
2−δ

Iκ(xmin, xmax), (141)

Iκ(xmin, xmax) = Re

xmax∫
xmin

e−i(x−π
4 )erfc

(√
−ix

)
xκdx. (142)
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Here Ī is the average signal, κ = α
2−δ

− 1
2
, xmin = f/f2, xmax = f/f1,

f0 =
γ

π
(Cτ̄)

2−δ
α , f1 =

γ

πτ 2−δ
max

, f2 =
γ

πτ 2−δ
min

. (143)

Note that f0 is inde�nite when α → 0, however, f
α

2−δ

0 is de�nite and converges to Cτ̄
in this limit.

We note the special cases of the power spectral density (141).
(i) f1 � f � f2, −1 < κ < 1/2,

S(f) =
Γ(1 + κ)Ī2

√
π(2− δ) cos[(κ/2 + 1/4)π]f

(
f0

f

)κ+ 1
2

, (144)

i.e., S(f) ∼ 1/f1+ α
2−δ and S(f) ∼ 1/f for α = 0, in accordance with Eq. (128).

(ii) f � f1, κ > −1,

S(f) =
Ī2

(1 + α− δ/2)

(
f0

f1

) α
2−δ
√

2

πf1f
, (145)

i.e., for very low frequencies S(f) ∼ 1/
√
f .

(iii) f � f2, κ < 1/2,

S(f) =
Ī2

√
π(2− α− δ)

(
f0

f2

) α
2−δ f2

f 2
, (146)

i.e., for high frequencies S(f) ∼ 1/f2.
For very high frequencies f � τ−1

max, however, we cannot replace the summation in
Eq. (87) by the integration. Then from Eq. (87) one gets the shot noise S(f) = 2āĪ.

Equations (141) and (144) � (146) reveal that the proposed model of the stochastic
point process may result in the power-law spectra over several decades of low frequencies
with the slope β between 0.5 and 2.

The simplest and well-known process generating the power-law probability distri-
bution function for τk is a multiplicative stochastic process with g(τk) = στµ

k and
δ = 2µ− 1, written as

τk+1 = τk + γτ 2µ−1
k + στµ

k εk. (147)

Here γ represents the nonlinear relaxation of the signal, while τk �uctuates due to the
perturbation by normally distributed uncorrelated random variables εk with a zero ex-
pectation and unit variance and σ is a standard deviation of the white noise. According
to Eq. (140), the steady state solution of the stationary Fokker-Planck equation with a
zero �ow, corresponding to Eq. (147), gives the power-law probability density function
for τk in the k-space,

Pk(τk) =
1 + α

τ 1+α
max − τ 1+α

min

τα
k , α =

2γ

σ2
− 2µ. (148)

The power spectrum for the intermediate f , f1 � f � f2, according to Eq. (144) is

S(f) =
(2 + α)(β − 1)ā2Γ(β − 1/2)
√
πα(τ 2+α

max − τ 2+α
min ) sin(πβ/2)

(γ
π

)β−1 1

fβ
(149)
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Figure 5. Distribution density Pk(τk) of τk generated according to Eqs. (147) with
the parameters a) µ = 0.5, σ = 0.02 and di�erent relaxations of the signal γ = 0.0001
(open circles), 0.0002 (open squares), 0.0003 (open triangles); and b) µ = 1, σ = 0.1
and γ = 0.008 (open circles), 0.01 (open squares), 0.012 (open triangles). We restrict the
di�usion of the interevent time in the interval τmin = 10−6, τmax = 1 with the re�ective
boundary condition at τmin and transition to the white noise, τk+1 = τmax + σεk, for
τk > τmax and n = 100 realizations with Nτ = 106 points each were used. Solid lines
represent distributions, calculated according to Eq. (148).

where

β = 1 +
α

3− 2µ
,

1

2
< β < 2. (150)

For µ = 1 we have a completely multiplicative point process when the stochastic
change of the interevent time is proportional to itself. Multiplicativity is an essential
feature of the �nancial time series, economics, some natural and physical processes
[179,180].

Another case of interest concerns µ = 1/2, when the Langevin equation in the actual
time takes the form

dτ

dt
= γ

1

τ
+ σξ(t), (151)

i.e., the Brownian motion of the interevent time with the linear relaxation of the signal
I ' ā/τ .

In Figure 5 we present the distribution density of τk, generated according to (147)
for di�erent parameters. We can see that the distribution density exhibits a power-law
distribution described by Eq. (148).

Figure 6 represents the spectral densities with the di�erent slopes β of the signals
generated numerically according to Eqs. (86), (87) and (147) for di�erent parameters of
the model. We see that the simple iterative equation (147) with the multiplicative noise
produces the signals with the power spectral density of di�erent slopes, depending on the
parameters of the model. The agreement of the numerical results with the approximate
theory is quite good, especially for the case with µ = 1/2.

It should be noted that the low frequency noise is insensitive to the small additional
�uctuations of the particular occurrence times tk. Therefore, we can interpret that
Eqs. (131), (147) and (149) describe the slow di�usive motion of the average interevent
time, superimposed by some additional randomness.

On the other hand, the numerical investigations have shown that the proposed
model is stable with respect to variation of dynamics of the interevent time τk. The
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Figure 6. Power spectral density (87) vs frequency of the signal generated by Eqs. (86)
and (147). The parameters used are the same as in Figure 5. The solid lines represent the
analytical results according to Eq. (144).

substitution of the re�ecting boundaries for τk by an appropriate con�ning potential
does not change the result.

The origin for appearance of 1/f �uctuations in the point process model is related
with the slow, Brownian �uctuations of the interpulse time τk as a function of the pulse
number k, when the average interpulse time τk(q) is a slowly �uctuating function of the
arguments k and q. In such case transition from the occurrence number k to the actual
time t according to the relation dt = τkdk yields the probability distribution density
Pt(τk) of τk in the actual time t,

Pt(τk) = Pk(τk)τk/τ̄ . (152)

The signal averaged over the time interval τk according to Eq. (86) is I = ā/τk.
Therefore, the distribution density of the intensity of the point process (86) averaged
over the time interval τk is

P (I) =
āĪ

I3
Pk

( ā
I

)
. (153)

If Pk(τk) ' const when τk → 0 (the condition for the exhibition for the pure 1/f
noise in the point process model) the distribution density of the signal is

P (I) ∼ I−3. (154)

For the generalized multiplicative processes (86), (131), and (139) we have from
Eqs. (148) and (153) the power-law distribution density of the signal intensity

P (I) =
λ− 1

τλ−1
max − τλ−1

min

āλ−1

Iλ
, λ = 3 + α. (155)

The power-law distribution of the signals is observed in a large variety of systems,
ranging from earthquakes to the �nancial time series ( [31, 132, 157, 181, 182, 183, 184,
38,32,39,43,185,186,187,124,188,189] and references herein).

In Figure 7 we present the distribution density of the signals, calculated from the
point processes described by Eq. (147) with the transition from the point process to
the stochastic signal using rectangular pulses (as in Section 5.5).
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Figure 7. Distribution density P (I) of the signal (86). The parameters used are the
same as in Fig 5. The solid lines represent the analytical results according to Eq. (155).

3.7 Correlation function

The correlation function C(s) of the point process (86) may be found from the Wiener-
Khintchine relations or expressed as

C(s) =

〈
1

T

tf−s∫
ti

I(t)I(t+ s)dt

〉
=

〈
ā2

T

∑
k,q

δ(∆(k; q)− s)

〉

= āĪ
∑

q

+∞∫
−∞

Ψq[∆(q)]δ(∆(q)− s)d∆(q) = āĪ
∑

q

Ψq(s), (156)

where the brackets 〈. . .〉 denote the averaging over the realizations of the process and
over time (index k) as well. Such averaging coincides with the averaging over the
distribution of the time di�erence ∆(q), Ψq[∆(q)]. For approximation (123) expression
(156) for the correlation function is

C(s) ' āĪ
∑

q

〈δ(τkq − s)〉 . (157)

Averaging over realizations of the process 〈. . .〉 coincidences with the averaging over the
distribution of time di�erences τk, i.e.,

C(s) ' āĪ
∑

q

∞∫
−∞

Pk(τk)δ(τkq − s)dτk = āĪδ(s) + āĪ
∑
q 6=0

Pk

(
s

q

)
1

|q|
. (158)

Replacing the summation in Eq. (158) by the integration we have the approximate
expression for the correlation function of the point processes (86) and (96) or (131)

C(s) ' āĪ

∞∫
0

Pk

(
s

q

)
dq

q
, s ≥ 0, C(−s) = C(s). (159)

For the Gaussian distribution of the interevent time τk, Eq. (121), the correlation
function (158) reads as

C(s) =
āĪ√
2πστ

∑
q

exp

{
−(s− qτ̄)2

2σ2
τq

2

}
1

|q|
. (160)
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It should be noted that the deviation of the variance σ2
∆ for large q from the quadratic

dependence (124) and the approach to the linear function σ2
∆ = 2Dtk |q| ensures the

convergence of sums (158) and (160) and, consequently, results in the Lorentzian power
spectrum at f → 0 [60, 57, 61]. Here Dtk is the �di�usion� coe�cient of the pulse
occurrence time tk, related with the variance σ2

τk
of the pulse occurrence time as σ2

τk
=

2Dτk
k. For the model (96), Dtk = σ2/2γ2.
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4 SUPERPOSITION OF SIGNALS WITH LINEAR

RELAXATIONS

4.1 Lorentzian spectrum

Consider a signal Il(t) generated of the stochastic di�erential equation with the relax-
ation time τ rel

l = 1/γl,
İl = −γl(Il − Īl) + σlξl(t). (161)

Here Īl is the average value of the signal component Il , ξl(t) is the white noise source
with zero expectation and unit variance, and σl is the intensity (standard deviation) of
the white noise. Solution of di�erential equation (161) is

Il(t) =

t∫
0

e−γl(t−t′)[γlĪl + σlξl(t
′)]dt′. (162)

When observation time T → ∞ Eq. (162) results in the expression for the correlation
function of the signal

Cl(s) = lim
T→∞

〈
1

T

tf−s∫
ti

Il(t)Il(t+ s)dt

〉
=

σ2
l

2γl

e−γls + Īl
2
, s > 0. (163)

According to Wiener-Khintchine relations the correlation function (163) yields the
power spectrum of the signal Il

Sl(f) = 2 lim
T→∞

T∫
−T

Cl(s)e
i2πfsds =

2σ2
l

γ2
l + (2πf)2

+ 2δ(f)Īl
2
. (164)

The steady-state solution of the stationary Fokker-Planck equation corresponding
to stochastic Eq. (161) yields distribution density of the signal Il

Pl(Il) =
1

√
2πσ

(l)
I

exp

{
−(Il − Ī)2

2σ
(l)2
I

}
, (165)

which is the Gaussian distribution with σ(l)
I = σl/

√
2γl.

To generate a Lorentzian signal we can rewrite di�erential equation (161) in the
recurrent form

I
(k)
l = I

(k−1)
l − γl(I

(k−1)
l − Īl)∆t+ σlε

(k)
l

√
∆t. (166)

Using the recurrent relation (166), we can generate signal I(k)
l (k∆t), k = 1, . . . , N − 1.

We choose initial signal value equal to the signal average I(0)
l = Īl and the signal

duration time then is T = N∆t.
In Figure 8 a sample signal, numerically generated according to Eq. (166), is pre-

sented and the signal's distribution density, calculated numerically from the signal and
calculated from Eq. (165), are compared. As we can see, both distribution densities are
in good agreement.

47



 18

 19

 20

 21

 22

 23

 0  2000  4000  6000  8000  10000

I l(
t)

t

a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 16  17  18  19  20  21  22  23  24

P l
(I l

)

Il

b)

Figure 8. a) Signal (161) sample; and b) the signal (161) distribution density (open
circles), numerically calculated according to Eq. (166) with parameters σl = 0.1, γ = 0.01,
and Ī = 20. The signal was generated from NI = 106 points with ∆t = 1. Solid line in b)
represents distribution density according to Eq. (165).

When we have the generated signal in constant time intervals I(k)
l (k∆t) we can calcu-

late the power spectral density of the signal by replacing integration by the summation,

Sl(f) =
2

N∆t

∣∣∣∣∣∣
N∆t∫
0

Il(t)e
−i2πftdt

∣∣∣∣∣∣
2

=
2∆t

N

∣∣∣∣∣
N−1∑
k=0

I
(k)
l e−i2πfk∆t

∣∣∣∣∣
2

. (167)
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Figure 9. The power spectral density calculated for signal (166) using Fast Fourier
Transform (167) � (169) and averaged over n = 100 realizations (open circles). The solid
line represents the power spectral density calculated according to Eq. (164).

For calculation of the sum in Eq. (167) we can use libraries for the Fast Fourier
Transform for a complex variables calculation. Fast Fourier Transform

xj =
N−1∑
k=0

zke
−i2πjk/N (168)

calculates complex values {xj} in discrete constant intervals from the sequence {zk}
of the stochastic variable zk. Libraries allow to calculate the discrete power spectral
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density Sl(fj),

Sl(fj) =
2∆t

N

∣∣∣∣∣
N−1∑
k=0

I
(k)
l e−i2πjk/N

∣∣∣∣∣
2

, (169)

at discrete points fj = j∆f = j/N∆t, where j = 0, . . . , N/2.
In Figure 9 the comparison of power spectral density obtained by numerically gen-

eration of the signal according to Eq. (166) and applying Fast Fourier Transform (167)
� (169) with the power spectral density calculated according to analytical Eq. (164) is
shown.

4.2 Superposition of the Lorentzian spectra

1/f noise is often modeled as the superposition of the Lorentzian spectra with the
appropriate weights of a wide range distribution of the relaxation times τ rel. It should
be noted that the summation of the spectra is allowed only if the processes with di�erent
relaxation times are isolated one from another [72,68,69,70,71,53,190,83,191,192]. For
construction of the signal I(t) with 1/f noise spectrum from the stochastic equations
with a wide range distribution of the relaxation times, one should express the signal as
a sum of uncorrelated components [63]

I(t) =
∑

l

Il(t) (170)

where every component Il satis�es the stochastic equation (161).
The distribution density P (I) of the signal I(t), Eq. (170), expressed as a sum of

uncorrelated Gaussian components, is Gaussian as well,

P (I) =
1√
2πσ

exp

{
−(I − Ī)2

2σ2

}
, (171)

with the average value Ī and the variance σ2 expressed as

Ī =
∑

l

Īl, σ2 =
∑

l

σ2
l

2γl

. (172)

Therefore, the Bernamont-Surdin-McWhorter model based on the sum of signals
with a wide range distribution of the relaxation times, always results in the Gaussian
distribution of the signal intensity. However, not all signals exhibiting 1/f noise are
Gaussian [13, 14, 16, 17]. Some of them are non-Gaussian, exhibiting power-law distri-
bution or even fractal [31, 38,32,39,43].

When observation time T → ∞ Eqs. (162) and (170) results in the expression for
the correlation function of the signal:

C(s) = lim
T→∞

〈
1

T

tf−s∫
ti

I(t)I(t+ s)dt

〉
=
∑

l

[
σ2

l

2γl

e−γls + Īl
2

]
, s > 0. (173)

Introducing the distribution of the relaxations rates, g(γ), we can replace the summation
in Eq. (173) by the integration

C(s) =

γmax∫
γmin

g(γ)

[
σ2(γ)

2γ
e−γs + Ī2(γ)

]
dγ, s > 0, (174)
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where γmin and γmax are minimal and maximal values of relaxation rate, respectively.
Then the correlation function (174) yields the power spectral density of the signal (170)

S(f) =

γmax∫
γmin

2σ2(γ)g(γ)

γ2 + (ω)2
dγ =

1

πf

γmax/ω∫
γmin/ω

σ2(ωx)g(ωx)

1 + x2
dx, ω = 2πf. (175)

Eq. (175) yields the 1/f power spectral density only in case when
σ2(ωx)g(ωx) = σ2(γ)g(γ) = A = const. In such case we can integrate (175) and �nd
approximate power spectral density

S(f) =
A

πf

[
arctan

(γmax

ω

)
− arctan

(γmin

ω

)]
' A

2f
, γmin � ω � γmax. (176)

When condition σ2(ωx)g(ωx) = const is met the correlation function (174) may be
expressed as

C(s) '
γmax∫

γmin

e−γsdγ

γ
=

τmax∫
τmin

e−s/τrel dτ rel

τ rel
, (177)

were τmin = 1/γmin and τmax = 1/γmax.
On the other hand, after replacing the summation in Eq. (159) by the integration

we have the expression for the correlation function of the point process (85)

C(s) ' āĪ

∞∫
0

Pk

(
s

q

)
dq

q
, s > 0. (178)

We see the similarity of expressions (178) and (177) for the correlation function of
the point process model and that of the sum of signals with di�erent relaxation rates,
respectively. In general, however, di�erent distributions Pk(τk) of the interpulse time
τk when Pk(0) 6= 0, e.g., exponential, the Gaussian and continuous distributions with
the slowly �uctuating interpulse time τk may result in 1/f noise. Therefore, the point
process model is, in some sense, more general than the model based on the sum of the
Lorentzian spectra.

For the signal expressed not as a sum (170) but as an average of N uncorrelated
components,

Ia(t) =
1

N

N∑
l=1

Il(t), (179)

all characteristics (171) � (177) are similar, except that the average value Īa of the
averaged signal (179) is N times smaller than that according to Eq. (172), while the
expressions for the correlation function C(s), Eq. (177), for the power spectral density
S(f), Eqs. (175) and (176), and for the variance σ2

a, Eq. (172), should be divided by
N2, i.e.,

Īa =
1

N

∑
l

Īl, σ2
a =

1

N2

∑
l

σ2
l

2γl

, (180)

Sa(f) ' A

2N2f
, (181)
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Ca(s) =
1

2N2

γmax∫
γmin

e−γs

γ
σ2(γ)g(γ)dγ. (182)

When replacing the summation in Eqs. (170), (172) � (175) and (179) � (182) by the
integration, the distribution density of the relaxation rates, g(γ), should be normalized
to the number of uncorrelated components N ,

γmax∫
γmin

g(γ)dγ = N. (183)
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Figure 10. a) Signal distribution density; and b) power spectral density calculated
for signal (179) from N = 10 components with A = σ2(γ)g(γ) = 10.8574 and uniform
distribution of lg γ of γ values in the interval 10−4 − 10 with the parameter Ī = 20, open
circles. Signals were generated from NI = 106 points, averaged over n = 100 realizations,
and Fast Fourier Transformation was used for numerical calculation of the power spectral
density. Solid lines represent the distribution density, calculated according Eqs. (171) and
(180); and the power spectral density, calculated according to approximation (181).

In Figure 10 the example of the signal distribution density and of the power spectral
density generated from the superposition of the averaged (179) Lorentzian signals (161)
are presented. To create a resulting signal, we used 10 Lorentzian signals with Īl = 20
and di�erent γ values, but we preserved condition σ2(γ)g(γ) = const. We see the
similarity of the spectra with the spectra of the point process Figure 3, but a very
di�erent distribution of the intensity of the signal: the signal of the sum of Lorentzians
is Gaussian, while that of the point process is of the power-law type.

4.3 Monofractality of signals with linear relaxations

In this section we present numerical investigation of fractality of the signal I(t), ex-
pressed as an average of uncorrelated components, Eq. (179). We numerically calculate
the GHCF functions Fq(t), Eq. (129) and Hurst exponents, Eq. (130).

In Figure 11 a) we present the GHCF as a function of the time interval t. In
Figure 11 b) we show a Hurst exponents, calculated from GHCF, using linear regression
dependence on 1/q. From the picture we clearly see that Hurst exponent Hq does not
depend on q and that the signal (179) is monofractal.
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Figure 11. a) Generalized height-height correlation function Fq(t) versus time t for the
signal (179) with q = 0.5, 1, 1.5, . . . , 5 from bottom to top. The signal of NI = 106 points
was generated from N = 10 components. Parameters used are the same as in Figure 10.
b) The generalized Hurst exponents Hq versus 1/q for the corresponding GHCF in a) in
the scaling regime 1 < t < 1000.

4.4 Di�erent slopes of power spectral density

Using the sum of di�erent Lorentzian signals we can generate not only a signal with
the pure 1/f spectrum but also the signal with any prede�ned slope β of 1/fβ power
spectral density. Indeed, let us investigate the case when

σ2(γ)g(γ) = Aγη, (184)

where A and η are some parameters. Substitution of Eq. (184) into Eq. (175) yields
the power spectral density

S(f) =
A

πf

γmax/ω∫
γmin/ω

(ωy)η

1 + y2
dy =

A

ω1−η

{[γmax

ω

]η+1

Φ

(
−
[γmax

ω

]2
, 1,

η + 1

2

)

−
[γmin

ω

]η+1

Φ

(
−
[γmin

ω

]2
, 1,

η + 1

2

)}
(185)

where Φ(z, s, a) is a Lerch's Phi transcendent. In the limit when γmin → 0 and γmax →
∞ we can approximate the power spectral density (185) as

S(f) ' (2π)ηA

2 cos(πη/2)

1

f 1−η
, (186)

i.e., we have the generalization of the result (176).
For the average signal (179) we have

Sa(f) ' (2π)ηA

2N2 cos(πη/2)

1

f 1−η
. (187)

In order to obtain an arbitrary β of the 1/fβ power spectral density, we should
choose in Eq. (184) η = 1− β.
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The distribution density Pa(Ia) of the average signal Ia(t) is Gaussian

Pa(Ia) =
1√

2πσa

exp

{
−(I − Īa)

2

2σ2
a

}
(188)

with the variance σ2
a expressed as

σ2
a =

1

2N2

γmax∫
γmin

σ2(γ)g(γ)

γ
dγ =

A(γη
max − γη

min)

2N2η
. (189)

The correlation function in such a case according to Eq. 182 is

Ca(s) =
A

2N2

γmax∫
γmin

e−γsγη−1dγ =
A

2N2sη
[Γ(η, γmins)− Γ(η, γmaxs)] (190)

where Γ(a, z) is an incomplete gamma function.
Figure 12 demonstrates the possibility to generate stochastic signals, exhibiting sim-

ilar 1/fβ power spectral densities with di�erent slopes β by the summation of signals
with di�erent relaxation rates and according to the multiplicative point process model.
The distribution densities of the corresponding signals are, however, completely di�er-
ent.

4.5 Conclusions of Sections 3 and 4

The generalized multiplicative point processes (86), (87), (131), and (147) may gener-
ate time series, exhibiting the power spectral density S(f) ∼ 1/fβ with 0.5 . β . 2,
Eqs. (138), (141), (144), and (149), i.e., with the slope observable in a large variety
of systems. Such spectral density is caused by the stochastic di�usion of the inter-
pulse time, resulting in the power-law distribution. The power-law distribution of the
interpulse, interevent, interarrival, recurrence or waiting times is observed in di�erent
systems ranging from physics, astronomy and seismology to the Internet, �nancial mar-
kets, neural spikes, and human cognition (e.g, [31, 176, 149, 148, 177, 178, 18, 24] and
references herein).

Furthermore, the power-law distribution of the interpulse time results in the power-
law distribution of the stochastic signal, P (I) ∼ I−λ with 2 . λ . 4, i.e., the phe-
nomenon observable in a large variety of processes, from earthquakes up to the �nancial
time series.

The proposed model relates and connects the power-law autocorrelation and spectral
density with the power-law distribution of the signal intensity into the consistent the-
oretical approach. The generated time series of the model are fractal since they jointly
exhibit the power-law probability distribution and the power-law autocorrelation of the
signal.

In addition, we have analysed the relation of the point process model with the
Bernamont-Surdin-McWhorter model of 1/f noise, representing the signal as a sum
of the appropriate signals with the di�erent rates of the linear relaxation. From the
analysis performed we can conclude that the multiplicative point process model of 1/f
noise, when the signal, consisting of pulses with a stochastic motion of the interpulse
time is more general and complementary to the model, based on the sum of signals with a
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Figure 12. Power spectral density: a) numerically calculated for signal (161), (179) and
(184) from NI = 106 points, averaged over n = 100 realizations, consisting of N = 10
components with Ī = 20, A = 10.8574, η = −0.25, open circles, and η = 0.25, open
squares, in comparison with theoretical results (187), solid line; b) for the point process
(86), (87), and (147) with the parameters ā = 1, µ = 0.5, σ = 0.02, and γ = 0.0001, open
circles, and γ = 0.0003, open squares, averaged over n = 100 realizations of Nτ = 106

pulse sequences in comparison with the theoretical results (149), solid lines. c) and d) show
numerically calculated distribution densities of the corresponding signals in comparison
with the theoretical results (188), (189), and (155), respectively, solid lines.

wide-range distribution of the relaxation times. In contrast to the Gaussian distribution
of the intensity of the sum of the uncorrelated components, the point process model
generating 1/f noise exhibits the power-law distribution of the intensity of the signal.
Moreover, it is free from the requirement of a wide-range distribution of the relaxation
times. Obviously, the multiplicative point process model of 1/fβ noise may be used
for modeling and analysis of stochastic processes in di�erent systems, exhibiting the
pulsing signals.
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5 STOCHASTIC SIGNAL MODEL

5.1 Signal as a sequence of pulses of �nite duration

In real life we usually have to deal with signals in physical systems varying in time
rather then with discrete point processes. In this section we will investigate a signal,
consisting of a sequence of di�erent pulses, Eq. (85). Thus, the power spectral density
of the signal can be written as

S(f) = lim
T→∞

〈
2

T

∑
k,k′

eiω(tk−tk′ )

tf−tk∫
ti−tk

du

tf−tk′∫
ti−tk′

du′Ak(u)Ak′(u
′)eiω(u−u′)

〉
, (191)

where ω = 2πf . We assume that pulse shape functions Ak(u) decrease su�ciently fast
when |u| → ∞. Since T → ∞, the bounds of the integration in Eq. (191) can be
changed to ±∞. We also assume that time moments tk are not correlated with the
shape of the pulse Ak. Then the power spectrum is

S(f) = lim
T→∞

2

T

∑
k,k′

〈
eiω(tk−tk′ )

〉〈 +∞∫
−∞

du

+∞∫
−∞

du′Ak(u)Ak′(u
′)eiω(u−u′)

〉
. (192)

After the introduction of the functions [193]

Ψk,k′(ω) =

〈 +∞∫
−∞

duAk(u)e
iωu

+∞∫
−∞

du′Ak′(u
′)e−iωu′

〉
(193)

and
χk,k′(ω) =

〈
eiω(tk−tk)

〉
(194)

the spectrum can be written as

S(f) = lim
T→∞

2

T

∑
k,k′

χk,k′(ω)Ψk,k′(ω). (195)

5.2 Stationary process

Equation (195) can be further simpli�ed assuming that the process is stationary. In the
stationary case all averages can depend only on k − k′. Then

Ψk,k′(ω) ≡ Ψk−k′(ω) (196)

and
χk,k′(ω) ≡ χk−k′(ω). (197)

Equation (195) then reads

S(f) = lim
T→∞

2

T

∑
k,k′

χk−k′(ω)Ψk−k′(ω). (198)
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Introducing a new variable q ≡ k − k′ and changing the order of summation, yields

S(ω) = lim
T→∞

2

T

kmax−kmin∑
q=1

kmax−q∑
k=kmin

χq(ω)Ψq(ω) + lim
T→∞

2

T

−1∑
q=kmin−kmax

kmax∑
k=kmin−q

χq(ω)Ψq(ω)

+ lim
T→∞

2

T

kmax∑
k=kmin

Ψ0(ω). (199)

Now we can introduce N = kmax − kmin, then

S(f) = 2Ψ0(ω)ν̄ + lim
T→∞

4
N∑

q=1

(
ν̄ − q

T

)
Reχq(ω)Ψq(ω) (200)

where

ν̄ = lim
T→∞

〈
N + 1

T

〉
(201)

is the mean number of pulses per unit time.
If the sum 1

T

∑N
q=1 qReχq(ω)Ψq(ω) → 0 when T →∞, then the second term in the

sum (200) vanishes and the spectrum is

S(f) = 2ν̄Ψ0(ω) + 4ν̄
∞∑

q=1

Reχq(ω)Ψq(ω) = 2ν̄
∞∑

q=−∞

χq(ω)Ψq(ω). (202)

5.3 Fixed shape pulses

When the shape of the pulses is �xed (k-independent) then the function Ψk,k′(ω) does
not depend on k and k′ and, therefore, Ψk,k′(ω) = Ψ0,0(ω). Then equation (195) yields
the power spectrum

S(f) = Ψ0,0(ω) lim
T→∞

2

T

∑
k,k′

χk,k′(ω) ≡ Ψ0,0(ω)Sδ(ω). (203)

This is the spectrum of one pulse, multiplied by the spectrum of the sequence (86) of
δ-shaped pulses Sδ(ω).

5.4 Transition from the point process to the continuous signal

using the Gaussian pulses

Let us construct a real time signal by substituting δ-functions in (86) with some arbi-
trary shape equal pulses Ak(t− tk), for example, Gaussian-like pulses. In such case we
can rewrite Eq. (86) as

I(t) = ā
∑

k

1√
2πσp

exp

{
−(t− tk)

2

2σ2
p

}
, (204)
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where {tk} is calculated according to Eq. (96). Using (204) we can calculate power
spectral density of the signal. After some algebra we derive

S(f) = lim
T→∞

〈
2

T

∣∣∣∣∣∣
tf∫

ti

I(t)e−i2πftdt

∣∣∣∣∣∣
2〉

= lim
T→∞

〈
2ā2

T

∣∣∣∣∣∑
k

e−i2πftke−2π2f2σ2
p

∣∣∣∣∣
2〉

= lim
T→∞

〈
2ā2

T

∣∣∣∣∣∑
k

e−i2πftk

∣∣∣∣∣
2〉

e−(2πfσp)2 . (205)

We can compare expression (205) with the power spectral density Sδ(f) of the point
process signal, constructed from the sum of the δ-functions, Eq. (87), and notice that

S(f) = Sδ(f)Sσ(f). (206)

Here

Sδ(f) = lim
T→∞

〈
2ā2

T

∣∣∣∣∣∑
k

e−i2πftk

∣∣∣∣∣
2〉

(207)

and
Sσ(f) = Ψ0,0(f) = e−(2πfσp)2 . (208)
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Figure 13. a) Sample signal I(t) generated according to Eqs. (96) and (204) from
Nτ = 106 {τk} points with parameters τ̄ = 1, σ = 0.01, γ = 0.0001, ā = 1 and σp = 2; and
b) the power spectral density. Open circles represent the power spectral density, calculated
using Fast Fourier Transform from numerically generated signal (204) of NI = 106 points,
averaged over n = 100 realizations; the solid line corresponds to the numerical integration
of Eq. (113) with g(q) from Eq. (106), dashed line represents the analytical result (206).

Figure 13 a) shows sample signal, generated from the point process, using the Gaus-
sian pulses according to Eq. (204). As we see, the signal intensity has sharp peaks in
some time points. In Figure 13 b) we compare the power spectral density of the point
process, generated with δ-functions, Eq. (96), and the signal, numerically generated
using the same point process {tk} values, but with the Gaussian pulses, Eq. (204).
We see that the Gaussian pulses of �nite duration in�uence the high frequency region
and introduce the exponential cut-o� according to the Eq. (206). However, the power
spectral density at low frequency remains the same as in the point process.
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5.5 Transition from the point process to the stochastic signal

using rectangular pulses

We can construct continuous real time signal from the point process in a number of
di�erent ways. We should not restrict ourselves to the identical pulses Ak(t−tk), but we
should require that the �contribution� of each pulse to the overall signal should remain
constant. This could be achieved by requiring that areas of the pulses are equal,

∞∫
−∞

Ak(t, tk)dt = Ac, (209)

for each k, and Ac is some arbitrary constant. The simplest way to construct the signal
would be to use rectangular pulses

Ak(t, tk) = fk(tk−1, tk)/τk, (210)

where function fk(tk−1, tk) is a window function

fk(tk−1, tk) =

{
1, tk−1 < t 6 tk

0, elsewhere
(211)

and τk = tk − tk−1. The corresponding signal can be written as a sum

I(t) = ā
∑

k

fk(tk−1, tk)/τk. (212)

Now we can calculate the distribution density of the signal intensity P (I). From
Eq. (212) we see that the signal at the arbitrary time t, except a discrete set of points
{tk}, equals I(t) = ā/τ , where τ = τ(t) = τk is a continuous time function, when
tk−1 < t 6 tk. At points t 6= tk di�erential dτ equals

dτ = − ā

I2
dI. (213)

The probability that τ ′ is in the range τ 6 τ ′ < τ + dτ is equal to P (τ)dτ . Transition
from the occurrence number k to the actual time t according to the relation dt = τkdk
yields the probability distribution density Pt(τk) of τk in the actual time t,

Pt(τk) = Pk(τk)τk/τ̄ . (214)

Taking into account that we already have found probability density Pk(τk), Eq. (121),
from Eq. (214) we derive the signal probability density P (I),

P (I) =
āĪ

I3
Pk

( ā
I

)
. (215)

For a point process (96) the distribution density of the intensity of the signal according
to Eqs. (115), (121) and (215) then is

P (I) =
KĪ2

√
πI3

exp

{
−γā

2

σ2

(
1

Ī
− 1

I

)2
}
. (216)
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Restricting the di�usion of the interpulse time τk by the re�ective boundary condi-
tion at τmin > 0 and for τmin → 0, we have the truncated distribution density of the
signal intensity

Pr(I) =
2KĪ2

√
π[1 + erf(K)]

exp

{
−K2

(
1− Ī

I

)2
}

1

I3
, I > 0. (217)

In the asymptotic I � Ī and I � 2K2Ī from Eq. (217) we obtain

Pr(I) ' αr
H

Ī2

I3
∼ 1

I3
, (218)

i.e., the power-law distribution density of the signal. Here

αr
H =

αH

1 + erf(K)
. (219)

The restriction of motion of τk by the re�ective boundary condition at τk = 0 reduces
the e�ective (average) value of Pk(0) = 1

2
[Pk(τk → +0) + Pk(τk → −0)] in Eq. (128)

and, consequently, the power spectral density approximately 2 times compared to the
theoretical result (115), obtained without the restriction, because Pk(τk → −0) = 0 for
the restricted motion. To be more exact, in such case the power spectral density may
be expressed by Eq. (115) with αr

H instead of αH , i.e.,

Sr(f) = Ī2α
r
H

f
. (220)
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Figure 14. a) Distribution density of the signal, generated using rectangular pulses
according to Eq. (212) from NI = 106 points, with ā = 1 and {τk} generated for Nτ = 106

points, according to Eq. (96) with parameters τ̄ = 1, σ = 0.01 and γ = 0.0001, open
circles, compared with the theoretical result (217), solid line; and b) the power spectral
density of this signal calculated using Fast Fourier Transform and averaged over n = 100
realizations, open circles, compared with power spectral density, calculated according to
Eq. (220), solid line.

From Eqs. (215) and (121) we �nd that at I � ā distribution density P (I) ∼ 1/I3.
In Figure 14 we present a numerically calculated distribution density of the signal,

generated using rectangular pulses. We can see that at higher signal amplitude I values,
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P (I) is proportional to power function 1/I3 as expected from Eq. (218). In Figure 14 we
compare power spectral density, calculated using Fast Fourier Transform for a signal
(212) with the theoretical power spectral density of the original point process (86),
calculated according to Eq. (220).

We can compare Figure 14 with Figure 10 and notice that signals with completely
di�erent signal distribution densities, i.e., Gaussian for the superposition of Lorentzian
signals and power-law for a signal, generated using rectangular pulses on a point process
result in the same 1/f power spectral density.

5.6 Uncorrelated pulses

When the pulses are uncorrelated and k 6= k′ then from Eq. (193)

Ψk−k′(ω) =

〈 +∞∫
−∞

Ak(u)e
iωudu

〉〈 +∞∫
−∞

Ak′(u
′)e−iωu′du′

〉
= |〈Fk(ω)〉|2, (221)

where

Fk(ω) =

+∞∫
−∞

Ak(u)e
iωudu. (222)

is the Fourier transform of the pulse Ak. When k = k′ then

Ψ0(ω) =
〈
|Fk(ω)|2

〉
. (223)

From Eq. (202) we obtain the spectrum

S(f) = 2ν̄
〈
|Fk(ω)|2

〉
+ 4ν̄|〈Fk(ω)〉|2

∞∑
q=1

Reχq(ω). (224)

When the interevent times τk = tk − tk−1 are random and uncorrelated then

χq(ω) =
〈
eiω(tk+q−tk)

〉
=
〈
eiωτk

〉q ≡ χτ (ω)q. (225)

From Eq. (224) we obtain

S(f) = 2ν̄
〈
|Fk(ω)|2

〉
+ 4ν̄|〈Fk(ω)〉|2 Re

χτ (ω)

1− χτ (ω)
. (226)

Here

ν̄ =

[
−i dχτ (ω)

dω

∣∣∣∣
ω=0

]−1

. (227)

We assume that the pulse sequences are stationary and ergodic, while the interevent
times and the shapes of di�erent pulses are independent. If the occurrence times of
the pulses tk are distributed according to Poisson process, then the interevent time
probability distribution is P (τ) = 1

τ̄
exp{− τ

τ̄
}. The characteristic function obeys the

equality Re χτ (ω)
1−χτ (ω)

= 0 and the spectrum is

S(f) = 2ν̄
〈
|Fk(ω)|2

〉
. (228)
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5.7 Pulses of variable duration

Let us assume that the only random parameter of the pulse is the duration. We take
the form of the pulse as [193]

Ak(t) = T ρ
kA

(
t

Tk

)
, (229)

where Tk is the characteristic duration of the pulse. The value ρ = 0 corresponds to
�xed height pulses; ρ = −1 corresponds to constant area pulses. Di�erentiating the
�xed area pulses we obtain ρ = −2. The Fourier transform of the pulse (229) is

Fk(ω) =

+∞∫
−∞

T ρ
kA

(
t

Tk

)
eiωtdt = T ρ+1

k

+∞∫
−∞

A(u)eiωTkudu ≡ T ρ+1
k F (ωTk). (230)

From Eq. (228) the power spectrum for the pulses, distributed according to Poisson
process is

S(f) = 2ν̄
〈
T 2ρ+2

k |F (ωTk)|2
〉
. (231)

Introducing the probability density P (Tk) of the pulses durations Tk we can write

S(f) = 2ν̄

∞∫
0

T 2ρ+2
k |F (ωTk)|2P (Tk)dTk. (232)

If P (Tk) is a power-law distribution, then the expressions for the spectrum are similar
for all ρ.

5.8 Spectrum at small frequencies

For small frequencies we expand the Fourier transform of the pulse into Taylor series.
The �rst coe�cients are

F (0) = ā,
dF (0)

dω
= iā〈t〉, d2F (0)

dω2
= −ā〈t2〉, (233)

where

ā =

+∞∫
−∞

A(t)dt (234)

is the area of the pulse,

〈t〉 =
1

ā

+∞∫
−∞

tA(t)dt, 〈t2〉 =
1

ā

+∞∫
−∞

t2A(t)dt. (235)

Then the spectrum from Eq. (232) is

S(f) ' 2ν̄ā2

∞∫
0

T 2ρ+2
k (1−∆t2ω2T 2

k )P (Tk)dTk, (236)
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where ∆t2 = 〈t2〉 − 〈t〉2. We obtain

S(f) = 2ν̄ā2〈T 2ρ+2
k 〉(1−∆t2ω2〈T 2ρ+4

k 〉), (237)

where

〈T ξ
k 〉 =

∞∫
0

T ξ
kP (Tk)dTk. (238)

5.9 Power-law distribution of the pulse duration

We take the power-law distribution of pulse durations

P (Tk) =

{
α+1

T α+1
max −T α+1

min

Tα
k , Tmin ≤ Tk ≤ Tmax,

0, otherwise.
(239)

From Eq. (232) we have the spectrum

S(f) = 2ν̄
α+ 1

Tα+1
max − Tα+1

min

∞∫
0

Tα+2ρ+2
k |F (ωTk)|2dTk

=
2ν̄(α+ 1)

ωα+2ρ+3(Tα+1
max − Tα+1

min )

ωTmax∫
ωTmin

uα+2ρ+2|F (u)|2du. (240)

When α > −1 and 1
Tmax

� ω � 1
Tmin

then the expression for the spectrum can be
approximated as

S(f) ≈ 2ν̄(α+ 1)

ωα+2ρ+3(Tα+1
max − Tα+1

min )

∞∫
0

uα+2ρ+2|F (u)|2du. (241)

If α+ 2ρ+ 2 = 0 then in the frequency domain 1
Tmax

� ω � 1
Tmin

the spectrum is

S(f) ≈ 2ν̄(α+ 1)

ω(Tα+1
max − Tα+1

min )

∞∫
0

|F (u)|2du. (242)

We obtained 1/f spectrum. The condition α + 2ρ + 2 = 0 is satis�ed, e.g., for the
�xed area pulses (ρ = −1) and uniform distribution of pulse durations or for �xed
height pulses (ρ = 0) and uniform distribution of inverse durations γ = T−1

k , i.e. for
P (Tk) ∝ T−2

k .
If α+ 2ρ+ 4 = 0 then in the frequency domain 1

Tmax
� ω � 1

Tmin
the spectrum is

S(f) ≈ 2ν̄(α+ 1)ω

(Tα+1
max − Tα+1

min )

∞∫
0

|F (u)|2du
u2
. (243)

Such a spectrum can be obtained after di�erentiation of the signal exhibiting 1/f spec-
trum.
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5.10 Rectangular constant area pulses distributed according to

the Poisson process

As an example we will obtain the spectrum of rectangular constant area pulses. The
duration of the pulse is Tk. The Fourier transform of the pulse is

F (ωTk) = ā

1∫
0

eiωTkudu = ā
eiωTk − 1

iωTk

= āei
ωTk

2
2 sin

(
ωTk

2

)
ωTk

. (244)

Then the spectrum according to Eqs. (232), (239)) and (244) is

S(f) =
4ν̄a2(α+ 1)(Tα−1

max − Tα−1
min )

ω2(α− 1)(Tα+1
max − Tα+1

min )
+

4ν̄ā2(α+ 1)

ωα+1(Tα+1
max − Tα+1

min )

× Re
{
i1−α [Γ(α− 1, iωTmax)− Γ(α− 1, iωTmin)]

}
, (245)

where Γ(a, z) is an incomplete gamma function, Γ(a, z) =
∫∞

z
ua−1e−udu.
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Figure 15. A typical signal I(t) a) and the power spectral density of the signal, calculated
using Fast Fourier Transform b), open circles. The signal consists of the NT = 103 �xed
area rectangular pulses (ρ = −1) with uniformly distributed durations. The time intervals
between the pulses are distributed according to the Poisson process with the average
τ̄ = 5. The used parameters are Tmin = 0.01, Tmax = 100, and the signal was calculated
from NI = 106 points. The solid line represents the power spectral density according to
Eq. (248).

When −1 < α < 1 then the term with Γ(α−1, iωTmax) is small and can be neglected.
We also assume that Tmin � Tmax and when α > −1 we neglect the term (Tmin/Tmax)

α+1.
Then we have

S(f) ' −4ν̄ā2(α+ 1)

ωα+1Tα+1
max

cos
[π
2
(α− 1)

]
Γ(α− 1). (246)

For α = 0 we have the uniform distribution of the pulses duration. Using the result of
the limit

lim
α→0

cos
[π
2
(α− 1)

]
Γ(α− 1) = −π

2
, (247)

we obtain 1/f spectrum

S(f) ' ν̄ā2

fTmax

. (248)
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The spectrum was also obtained from numerical calculations. Typical signal of the
rectangular �xed area pulses is shown in Figure 15 a) and the power spectral density
in Fig. 15 b).

5.11 Transition from the discrete point process to the continu-

ous signal by counting pulses

We can use even simpler method to construct continuous time signal from the discrete
point process (96) by dividing total time T =

∑
k τk into d constant length ∆td intervals

∆td = T/d. (249)

and de�ning signal values to be constant in equal time intervals ([k−1]∆td, k∆td), where
k = 2, . . . , N , and proportional to the number of events, which occurred in that time
intervals. This method is widely used in the analysis of �nancial markets [165, 44, 45]
and other large amounts of data, such us the Internet tra�c.

Let us introduce a new function fc(t), which counts how many elementary events
δ(t− tk) occurred until arbitrary �xed time t,

fc(t) = k, (250)

where integer number k should meet the following conditions:{∑k
l=1 τl > t∑k−1
l=1 τl < t.

(251)
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Figure 16. Power spectral density of the point process (87), with the parameters τ̄ = 1,
σ = 0.01, and γ = 0.0001, generated from Nτ = 106 points and averaged over n = 100
realizations, open circles, and the power spectral density of signal (252) generated with
td = 1, ā = 1 and calculated using Fast Fourier Transform, solid line.

Function fc can be easily calculated numerically for every t, once we have the gen-
erated {τk} set. Now we can de�ne the signal as

I(t) = ā
∑

k

{fc(k∆td)− fc([k − 1]∆td)}fk([k − 1]∆td, k∆td), (252)

where function fk(t1, t2) is de�ned according to Eq. (211).
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In Figure 16 we compare power spectral densities of the point process (96) and the
signal generated according to (252). We see that the method of counting pulses allows
to calculate better spectral density match at high frequencies, because there are no
distortions due to the pulse shapes. The �gure demonstrates a very good agreement
between the two methods of the power spectral density.

5.12 Transition from the stochastic signal to the point process

As it has been shown in the previous sections, having a point process we can use a
number of di�erent methods to construct a stochastic real time signal from the original
point process. Here we will try to go in the opposite direction � from the stochastic
signal we will construct a point process (86), described by {tk} sequence (96) which
would have similar power spectral density as the original stochastic process.

First of all, we construct the positive signal, Ip(t), for all time interval [tmin, tmax].
In order to do that, we have to �nd minimal value, Imin, of the signal I(t) and add |Imin|
to the initial signal I(t),

Ip(t) = I(t) + |Imin|. (253)

Adding a constant to a signal at all points t will not change the power spectral density
of the signal. Then, having a positive at all times t signal Ip(t), we can calculate
corresponding {tk} sequence. If we want to have {tk} sequence made from N points,
we should require that the integrals of both signals are equal,

tf∫
ti

Ip(t)dt = ā
N∑

k=1

tf∫
ti

δ(t− tk)dt = āN, (254)

where ti and tf is the initial and the �nal times of the signal. Equation (254) de�nes ā
value. Having ā value we can numerically integrate the signal Ip(t) and �nd {tk} using
the following relations:

t1∫
ti

Ip(t)dt = ā,

t2∫
t1

Ip(t)dt = ā,

· · ·
tf∫

tN−1

Ip(t)dt = ā. (255)

This method is called the integrate-and-�re method [31] and have been used in the
spectral analysis of the EKG signals for the predictions of the sudden cardiac death [194].
Once we calculated all {tk} values, we can use Eq. (87) to calculate the power spectral
density of the point process and compare it with the power spectral density of the
original signal.

In Figure 17 a) we compare the distribution density (121) of the original point
process (96) with the distribution density of the point process, which was numerically

65



 0

 0.5

 1

-1 -0.5  0  0.5  1  1.5  2  2.5  3

P k
(τ

k)

τk

a)

10-2

10-1

100

101

102

103

104

105

10-5 10-4 10-3 10-2 10-1 100

S(
f)

f

b)

Figure 17. a) Distribution density of τk of the point process, generated according to
Eqs. (255) from the stochastic signal, which, on the other hand, was generated using the
Gaussian pulses with σp = 2 and NI = 106 from the original point process (96), with
the parameters τ̄ = 1, σ = 0.01, and γ = 0.0001, generated from Nτ = 106 points and
averaged over n = 100 realizations, open circles, compared with the distribution density
(121), solid line; and b) the power spectral density of the point process according to
Eqs. (253) � (255), open circles, solid line represents the power spectral density of the
original point process (96), calculated by integrating Eq. (113); dashed line shows the
power spectral density of stochastic signal, calculated according to Eq. (206).

calculated using Eqs. (255) from the stochastic signal, which, on the other hand, was
calculated from the original point process, covered by the Gaussian pulses according
to Eq. (204). We can compare distribution density Pk(τk) with the original point
process distribution density, Figure 2. The main di�erence in distributions is that the
distribution density of the integrated point process is shifted to the higher τk values.
This shift can be explained: the Gaussian pulses are not as �sharp� as δ-functions,
which the original point process is made of, and the in�uence of one pulse on the signal
splits into neighboring area. In Figure 17 b) the power spectral densities of the original
point process (96), of the signal, generated using the Gaussian pulses (204), and of
the resulting point process (253) � (255) are presented. We see that the Gaussian
pulses result in the power spectral density cut-o� at higher frequencies. However, by
performing integration on the signal, we loose information about the pulses' shape and,
therefore, power spectral density of point process, calculated from the signal at high
frequencies approaches power spectral density of the original point process and yields
the shot noise.

5.13 Signals represented by the �uctuating intensity

In this section the �uctuating signals generated by the stochastic di�erence equations
for the amplitude of the signal will be presented and analyzed.

We can change the point process (96) to avoid the negative interevent times, but
leave relaxation rate γ unchanged [195],

τk = |τk−1 − γ(τk−1 − τ̄) + σεk| . (256)

Then we introduce the rate of the signal as νk = 1/τk. From Eq. (256) we obtain the
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recurrent equation for the rate

νk =
νk−1

|1− γ(1− ν̄−1νk−1) + σνk−1εk|
. (257)

Here ν̄ = 1/τ̄ and the occurrence time tk of the signal νk should be calculated as

tk =
k∑

l=1

τl =
k∑

l=1

ν−1
l . (258)

Actual time signal can be calculated using the rectangular pulses as

I(t) = ā
∑

k

fk(tk−1, tk)νk, (259)

where function fk(tk−1, tk) is de�ned by Eq. (211).
For linearization of Eq. (257) we can use the rule for transformation of the variable

in It�o stochastic equation [161]:

df [x(t)] =

{
h[x(t), t]f ′[x(t)] +

1

2
g[x(t), t]2f ′′[x(t)]

}
dt+ g[x(t), t]f ′[x(t)]dW (t), (260)

where x(t) is the solution of stochastic di�erential equation

dx = h(x, t)dt+ g(x, t)dW (t), (261)

h(x, t) and g(x, t) are some known functions, dW (t) = ξ(t)dt is a di�erential of the
Wiener process, and ξ(t) is δ-correlated, 〈ξ(t)ξ(t′)〉 = δ(t − t′), white noise. The lin-
earization results in the stochastic di�erence equation

νk =
∣∣νk−1 + γνk−1(1− ν̄−1νk−1) + σ2ν3

k−1 + σν2
k−1εk

∣∣ . (262)

From Eq. (262) we derive the nonlinear It�o stochastic di�erential equation for ν(t)
as a function of the actual time t, i.e.,

dν

dt
= γν2(1− ν̄−1ν) + σ2ν4 + σν5/2ξ(t). (263)

The intensity of the signal is then I(t) = ν(t).
Therefore, the appropriate nonlinear stochastic di�erential equation may generate

the signal with the 1/f power spectral density, the same as the point process (96) with
the �uctuating interevent time.

In Figure 18 a) and b) we present the power spectral densities of signals, generated
according to Eqs. (259) and (262), respectively. We can notice that by using this
method, we still have 1/f like behavior of power spectral density. As we can see,
the power spectral density is about 2 times smaller then the power spectral density,
calculated according to Eq. (220). This is due to the reduced e�ective (averaged) value
of the distribution density Pk(0) as discussed in section 5.5.
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Figure 18. a) Power spectral density of the signal (259) generated according to Eq. (257)
with parameters τ̄ = 1, σ = 0.01, and γ = 0.0001 from Nν = 106 points, converted using
rectangular pulses into NI = 105 points real time signal and averaged over n = 100
realizations, open circles. b) Power spectral density generated according to Eq. (262) with
mirroring boundary at ν = 103 and the same parameters as in a), open cirles. Solid lines
represent power spectral density according to Eq. (220).

5.14 Stochastic nonlinear di�erential equation generating 1/f
noise

In this section we will derive a stochastic di�erential equation for the signal, the solution
of which exhibits 1/f noise. For this purpose, we will investigate the point process case
Eq. (86) with no relaxation rate γ = 0 [196]. Recurrent equations for the transit time
then can be written according to Eq. (96) as

tk = tk−1 + τk, (264)

τk = τk−1 + σεk (265)

with the appropriate boundary conditions, restricting the di�usion of τk in the �nite
interval [τmin, τmax]. In Eq. (265), εk are normally distributed uncorrelated random
variables with a zero expectation and unit variance, i.e., a white noise, and σ is a
standard deviation of the white noise.

The signal (86) generated according to Eqs. (264) and (265), depending on the
parameter σ and the interval [τmin, τmax], exhibits 1/f noise in any desirable wide range
of frequency. According to the general theory [57, 60, 61, 62, 63], the power spectral
density of such point process for f . τ−1

max and τmin → 0 may be estimated as

S(f) ∼ ā2

τ 2
max

1

f
. (266)

We rewrite Eq. (265) as a di�erential It�o stochastic equation, interpreting k as a
continuous variable, i.e.,

dτk
dk

= σξ(k). (267)

Here ξ(k) is a Gaussian white noise, satisfying the standard condition

〈ξ(k)ξ(k′)〉 = δ(k − k′). (268)
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Then we rewrite Eq. (267), using the occurrence time. Transition from the occurrence
number k to the actual time t according to the relation dt = τkdk yields the equation

dτ

dt
=

σ√
τ
ξ(t). (269)

The signal averaged over the time interval τk according to Eq. (86) is

x =
ā

τk
. (270)

In order to transform variables from τ to x, we use the rule for transformation of It�o
equation (260). Applying Eq. (261) to Eq. (269) we �nd functions h(x, t) = h(τ, t) = 0
and g(x, t) = g(τ, t) = σ/

√
τ . Therefore, Eq. (270) results in the stochastic di�erential

It�o equation
dx

dt
=
σ2

ā3
x4 +

σ

ā3/2
x5/2ξ(t). (271)

Equation (271) can be rewritten in a form that does not contain any parameters. In-
troducing the scaled time

ts =
σ2

ā3
t, (272)

we obtain from Eq. (271) an equation

dx

dts
= x4 + x5/2ξ(ts). (273)

Then we apply the stationary Fokker-Plank equation Eq. (120) and �nd the steady-
state solution with the appropriate re�ective boundary conditions and zero �ow, ob-
tained from Eq. (273), which is of the power-law form,

P (x) =
C

x3
, (274)

where C has to be de�ned from the normalization.
Because of the divergence of the power-law distribution and the requirement of the

stationary of the process, the stochastic equation (273) should be analyzed together with
the appropriate restrictions of the di�usion in some �nite interval xmin / x / xmax. Such
restrictions may be introduced as some additional conditions to the iterative solution
of the stochastic di�erential equation. Similar restrictions, however, may be ful�lled
by introducing some additional terms into Eq. (273), corresponding to the restriction
of the di�usion in some �potential wall�. According to the general theory [161], the
exponentially restricted di�usion with the di�usion density

P (x) ∼ 1

x3
exp

{
−
(xmin

x

)m

−
(

x

xmax

)m}
(275)

generates the stochastic di�erential equation

dx

dts
=
m

2

(
xm

min

xm−4
− xm+4

xm
max

)
+ x4 + x5/2ξ(ts). (276)

Here m is some parameter.
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Since the point process Eqs. (86) and (96) gives the signal with 1/f noise, the signal
obtained from Eqs. (273) and (276) should also result in 1/f noise in some frequency
interval. When xmax →∞, from Eq. (266) we estimate the power spectral density as

S(f) ∼ x2
min

1

f
. (277)

Such conclusion is con�rmed by the numerical solution of Eq. (276).
We solve Eq. (273) and (276) using the method of discretization. When the vari-

able step of integration is ∆ts = hi, the di�erential equation (276) transforms to the
di�erence equation

xi+1 = xi +
m

2

(
xm

min

xm−4
i

− xm+4
i

xm
max

)
hi + x4

ihi + x5/2
√
hiεi. (278)

We can solve Eq. (278) numerically with the constant step, hi = const, when ti+1 =
ti + h. However, one of the most e�ective methods of solution of Eq. (278) is when the
change of the variable xi in one step is proportional to the value of the variable. We
take the integration steps hi from the equation x

5/2
i

√
hi = κxi, with κ � 1 being a

small parameter. As a result, we have the system of equations

xi+1 = xi + κ2xi

[
1 +

m

2

(
xm

min

xm
i

− xm
i

xm
max

)]
+ κxiεi,

ti+1 = ti +
κ2

x3
i

. (279)
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Figure 19. a) Distribution density of the variable x, open circles, compared with
Eq. (274), where C is found from normalization, solid line; and b) power spectral den-
sity, obtained from the numerical solution of Eq. (279), open circles. Parameters used are
xmin = 1, xmax = 103, m = 1, and κ = 0.1. Signal was calculated from Nx = 106 points
and averaged over n = 100 realizations. Solid line in b) represents power spectral density,
calculated according to Eq. (277).

The distribution density P (x) of the variable x, obtained by numerical simulation
of Eq. (279), is shown in Fig. 19 a). We see that our method of solution gives good
agreement with the power law distribution (274) in the interval xmin . x . xmax. The
power spectral density S(f) numerically calculated according to Eq. (279) is shown in
Fig. 19 b). It shows that Eq. (276) indeed gives a signal, exhibiting 1/f noise in a wide
frequency interval.
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5.15 Generalization for class of stochastic equations

By analogy with the Section 5.14 from the multiplicative equation (147)

τk+1 = τk + γτ 2µ−1
k + στµ

k εk (280)

we can obtain the class of the stochastic nonlinear di�erential equations

dx

dt
= (σ2 − γ)

x4−2µ

a3−2µ
+
σx5/2−µ

a3/2−µ
ξ(t). (281)

Introducing the scaled time

ts =
σ2

ā3−2µ
t (282)

and the new parameters

η =
5

2
− µ, Γ = 1− γ

σ2
(283)

we obtain the class of equations

dx

dts
= Γx2η−1 + xηξ(ts) (284)

which should generate the signals with the power-law distributions of the signal intensity

P (x) ∼ 1

xλ
, λ = 2(η − Γ) (285)

and 1/fβ noise,

S(f) ∼ 1

fβ
, β = 2− 2Γ + 1

2η − 2
. (286)

The exponentially restricted di�usion should generate the stochastic di�erential equa-
tion

dx

dts
=
m

2

(
xm

min

xm+1−2η
− xm−1+2η

xm
max

)
+ Γx2η−1 + xηξ(ts), (287)

where m is some parameter.
For the numerical solution of Eq. (287) we can take the integration steps from the

equation xη
i

√
hi = κxi, with κ � 1 being a small parameter. As a result, we have the

system of equations

xi+1 = xi + κ2xi

[
Γ +

m

2

(
xm

min

xm
i

− xm
i

xm
max

)]
+ κxiεi,

ti+1 = ti +
κ2

x2η−2
i

. (288)

The distribution densities P (x) of the variable x, obtained by numerical simulation of
Eq. (288), are shown in Figures 20 a) and c). Power spectral densities S(f) are shown in
Figures 20 b) and d). Numerical simulation of distribution densities and power spectral
densities are in good agreement with approximate expressions, Eq. (285) and Eq. (286),
respectively. We can compare power spectral densities in Figure 20 b) with Figure 6 a)
open circles, and Figure 20 d) with Figure 6 b) open triangles, since the respective point
process power spectral densities were simulated using the same parameters as in the
corresponding stochastic di�erential equations. We notice that solution of stochastic
di�erential equation does not result in a shot noise in a high frequency limit.

Generalized di�erential equation (284) results in power spectral density S(f) = 1/fβ

with a di�erent slopes β in a wide frequency interval.
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Figure 20. a) Numerically simulated distribution density of the variable x, open circles,
compared with expected distribution density, Eq. (285), solid line; and b) power spectral
density, obtained from the numerical solution of Eq. (288), open circles. Parameters used
are xmin = 1, xmax = 103, m = 1, Γ = 0.75, η = 2, and κ = 0.1. Signal was calculated
from Nx = 106 points and averaged over n = 100 realizations. Solid line in b) represents
power spectral density, calculated according to Eq. (286). c) and d) represent distribution
density and power spectral density, respectively, with the parameters m = 1, Γ = −0.2,
η = 1.5, and κ = 0.01.
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6 HAMILTONIAN SYSTEMS AND 1/f NOISE

In this section we will try to demonstrate a possibility of occurrence of 1/f noise in the
dynamical Hamiltonian systems, exhibiting transition from regular to chaotic dynamics.

6.1 Standard map

We will start with the investigation of the oscillator with two degrees of freedom and
with a Hamiltonian H not depending on time [197,198,199,200]. We assume that this
system can be integrated and, therefore, we can introduce action-angle variables

H(J1, J2) = E, (289)

where E is a persisting energy of the system, J1 and J2 are the integrals of the motion.
Persisting energy lets us to lower phase space dimension from four to three. Persistence
of one of the action variables yields decreasing of the phase space dimension to two-
dimensional surface in a three-dimensional space of constant energy. Motion on this
surface can be written using frequencies, corresponding to both degrees of freedom

θ1 = ω1t+ θ10,

θ2 = ω2t+ θ20, (290)

where angle variables are de�ned mod 2π.
Motion of the given system can be visualized as a motion on a torus in a phase

space with actions J1 and J2 being the two radius of the torus. Fixing one of the action
variable J1 according to Eq. (289), de�nes the other action J1, as well as de�nes an
invariant surface in the phase space and also the relation

α =
ω1

ω2

, (291)

because ω1 = ω1(J1, J2) and ω2 = ω2(J1, J2). When α = r/s, where r and s are integers,
motion on the torus becomes motion along a periodic trajectory, which closes after r
rotations of angle variable θ1 and s rotations of θ2. In a common case α is an irrational
digit and the trajectory covers all surface of the torus.

For investigation of the phase trajectories, especially, in a case of two degrees of
freedom, it is very convenient to use the Poincar�e maps. For the Hamiltonian (289)
we can choose plane (J1, θ1) (θ2 = const) to be the Poincar�e surface. Time interval
between two successive crossings of the plane (J1, θ1) is then equal to ∆t = 2π/ω2

with J1 = const (motion on the torus). During this time ∆t variable θ1 increases by
ω1∆t = 2πα(J1), where α is the number of rotations. Because action J2 depends only
on the energy E and action J1, J2 = J2(J1, E), and energy E persists, we can consider
that α depends only on J1. In the following equation of transition from k to k + 1
crossing of the plane and in order to simplify the equations we will omit index 1 and
the result is a twist mapping

Jk+1 = Jk,

θk+1 = θk + 2πα(Jk+1), (292)
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where we have written α to be a function of Jk+1 instead of Jk. This follows from the
phase space property that two-dimensional twist mapping should preserve area

∂(Jk+1, θk+1)

∂(Jk, θk)
≡ [Jk+1, θk+1] = 1. (293)

If α is an irrational digit, any trajectory continuously covers the circle in the Poincar�e
plane when k →∞. On the other hand, if α is a rational digit α = r/s, where r and s
are integers, we will have periodic trajectories with the period of s iterations.

We will consider a small perturbation on an integrable system with two degrees of
freedom (289). In this case Hamiltonian depends on angle variables,

H(J1, J2, θ1, θ2) = H0(J1, J2) + εH1(J1, J2, θ1, θ2). (294)

On the crossing plane θ2 = const twist mapping will change to perturbed twist mapping

Jk+1 = Jk + εf(Jk+1, θk),

θk+1 = θk + 2πα(Jk+1) + εg(Jk+1, θk), (295)

where f and g are periodic functions in θ. Because this twist map is derived from
Hamiltonian equations, it should preserve area (293). We have chosen functions f and
g depending on Jk+1 instead of Jk in order the area preservation to be written in a very
simple form. Indeed, equation (295) then can be derived using generating function

F = Jk+1θk + 2πA(Jk+1) + εG(Jk+1, θk), (296)

where

α =
dA
dJk+1

,

f = − ∂G
∂θk

,

g =
∂G
∂Jk+1

, (297)

and
∂f

∂Jk+1

+
∂g

∂θk

= 0, (298)

which leads to the area preservation.
If f depends on Jk+1, then Jk+1 in Eq. (295) can be calculated by using Newton

tangent method or using iterations in which new iteration value J (i)
k+1 is calculated

by putting previous value J (i−1)
k+1 into function f . Both methods result in the fast

convergence.
The cases where f does not depend on J and g ≡ 0 have been analysed most

frequently. We will investigate this particular case more deeply. Eq. (295) then can be
written as

Jk+1 = Jk + εf(θk),

θk+1 = θk + 2πα(Jk+1). (299)
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We will linearize second equation in (299) near stable point Jk+1 = Jk = J0, for
which α(J0) is an integer, i.e.,

Jk = J0 + ∆Jk. (300)

Introducing a new action variable

Ik = 2πα′∆Jk (301)

results in the general standard map

Ik+1 = Ik +Kf ∗(θk),

θk+1 = θk + Ik+1, (302)

where
K = 2πα′εfmax (303)

is an indicator of stochastic in the system and f ∗ = f/fmax is the change of the angle
variable, normalized to unity. In the case where f ∗ = sin θk the general standard map
transforms to the standard map, known as Chirikov map,

Ik+1 = Ik +K sin θk,

θk+1 = θk + Ik+1. (304)

Chirikov [201] and Greene [202] used standard map Eq. (304) to investigate transition
from regular to stochastic motion.

6.2 Rotor a�ected by the periodic kicks

One of the simplest systems which shows chaotic behavior in time, is a rotor with a
friction, a�ected by the periodic kicks [203], shown in Figure 21. Equation of motion

ϕ

F

Figure 21. Rotor, a�ected by the periodic force F , motion of which is described by the
di�erential equation (305).

for the kicked rotor is

ϕ̈+ Γϕ̇ = F ≡ Kf(ϕ)
∞∑

n=0

δ(t− nT ), (305)

75



where dots mean derivatives in time, n is an integer, Γ is a measure of friction, T is a
period between kicks, f is the power, striking the rotor and an inertia momentum is
considered to be equal to 1. After the following transformation of variables

x = ϕ,

y = ϕ̇,

z = t, (306)

Eq. (305) is transformed to the system of independent non-linear di�erential equations
of the �rst order

ẋ = y, (307)

ẏ = −Γy +Kf(x)
∞∑

n=0

δ(z − nT ), (308)

ż = 1. (309)

The integration of the equations (307) � (309) results in two-dimensional map for the
variables (xk, yk) = limε→0[x(kT − ε), y(kT − ε)]. When (k + 1)T − ε > t > kT − ε,
general solution of Eq. (308) is

y(t) = yke
−Γ(t−kT ) +K

∞∑
n=0

f(xn)

t∫
kT−ε

dt′eΓ(t′−t)δ(t′ − nT ) (310)

and
yk+1 = e−ΓT [yk +Kf(xk)]. (311)

Integrating Eq. (307) and using Eq. (311) yield

xk+1 = xk +
1− e−ΓT

Γ
[yk +Kf(xk)]. (312)

Equations (311) and (312) transform initial three-dimensional system of di�erential
equations to the two-dimensional discrete map.

We will investigate in greater detail a special case with no friction (Γ → 0). In this
case Eqs. (311) and (312) write as

yk+1 = yk +Kf(xk),

xk+1 = xk + Tyk+1. (313)

Assuming that external power f(xk) = sinxk and period T = 1, we obtain

yk+1 = yk +K sin xk,

xk+1 = xk + yk+1, (314)

which is a standard map, Eq. (304).
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Figure 22. Phase spaces of the standard map Eqs. (304) with the parameters a) K = 0.96,
b) K = 1.07, and K = 1.03. Initial action-angle values are y0 = 10 and x0 = 1.302,
N = 105 iterations are ful�lled.

6.3 Numerical simulation of the rotor's dynamics

In this section we present the results of numerical simulations of the standard map,
Eq. (304), and investigate appearance of stochasticity in the system. It is a very well
investigated transition from the regular to the chaotic motion in the standard map (304)
and (314). It occurs at K = Kc ≈ 1. In Figure 22 we present three phase space maps,
the �rst one is for K < 1, and we see that the motion is deterministic, however, when
K > 1, the second phase space, we see the layers of chaotic motion. In the third �gure
we see the map for K close to Kc, with the intermediate motion between deterministic
and chaotic state.

Hamiltonian of the rotor with no friction, Eqs. (305) and (314), can be written
as [203]

H(xk, yk) =
y2

k

2
+K cos(xk)

∞∑
n=0

δ(t− nT ). (315)

Angular velocity of the rotor is found from the Hamiltonian equations [198]

ωk =
∂H

∂yk

= yk. (316)

Therefore, the period of the rotation after n strikes

Tk =
2π

ωk

=
2π

yk

. (317)
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In analogy of the heartbeat intervals [143, 144] we construct a signal in k space, where
values of the signal are Tk.
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Figure 23. a) Signal density and b) power spectral density, calculated using Fast Fourier
Transform, for a signal, generated from standard map, Eqs. (304), with the parameter
K = 1.03. Initial action-angle values are I = 12.6 and θ = π/6, N = 106 iterations are
ful�lled. A dashed line shows approximation S(f) ∼ 1/fβ .

Signal distribution density and power spectral density of the signal are presented in
Figure 23. As we see, the period of the rotor can exhibit 1/fβ noise with 1 ≤ β ≤ 1.5
when parameter K ≈ 1.

6.4 One-dimensional classical hydrogen atom in a monochro-

matic �eld

Further we will consider interaction and chaotic dynamics of the classical hydrogen
atom in an electromagnetic �eld.

A classical hydrogen atom in a monochromatic �eld is one of the simplest real
nonlinear systems, whose dynamics may by regular or chaotic [204,205], depending on
the relative �eld strength and frequency. Even a one-dimensional classical model of a
highly excited atom yields results su�ciently close to the experimental �ndings. For
theoretical analysis approximate mapping equations of motion, rather than di�erential
equations, are most convenient [205, 206, 207, 208, 209, 210]. Here a two-dimensional
map (for the scaled energy and for relative phase of the �eld) [206] is generalized for
the two-dimensional hydrogen atom, i.e. we calculate energy and angular momentum
changes of the atom, interacting with the electromagnetic �eld.

However, we start from the one-dimensional hydrogen atom in monochromatic �eld.
The Hamiltonian of the classical hydrogen atom in a linearly polarized monochromatic
electromagnetic �eld (in atomic units) is [210,207,211]

H =
1

2

(
P +

1

c
A

)2

− 1

r
. (318)

Here P is the generalized momentum, c is the light velocity,

A = −cF
ω

sin(ωt+ ϑ) (319)
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is the vector potential of the �eld, F, ω and ϑ are the �eld strength amplitude, �eld
frequency and phase, respectively. The change of the electron energy can be obtained
from the Hamiltonian equations of motion [212]

Ė = −ṙ · F cos(ωt+ ϑ). (320)

One can introduce the scaled energy Es = E/ω2/3 and the scaled �eld strength
Fs = F/ω4/3. However, it is convenient [205, 206, 210, 209, 208, 207] to introduce the
positive scaled energy ε = −2Es and the relative �eld strength F0 = Fs/ε

2
0, with ε0

being the initial scaled energy.
Integration of Eq. (320) over the period of time between two subsequent passages

of the electron at the apocenter results in the change of the electron energy [206,210]

εj+1 = εj − πF0ε
2
0h(εj+1) sinϑj, (321)

where

h(εj+1) =
4

εj+1

J′sj+1
(sj+1). (322)

Here s = ε−3/2 = ω/(−2E)3/2 is the relative frequency of the �eld, i.e. the ratio of the
�eld frequency to the electron Kepler orbital frequency and J′s(s) is the Anger function

Js(z) =
1

π

π∫
0

cos(sξ − z sin ξ)dξ (323)

derivative

J′s(z) =
1

π

π∫
0

sin(sξ − z sin ξ) sin ξdξ, (324)

when parameter s = z.
Introducing a generating function G(εj+1, ϑj) [200,213]

G(εj+1, ϑj) = εj+1ϑj − 4πε
−1/2
j+1 − πF0ε

2
0h(εj+1) cosϑj (325)

from the equations

εj =
∂G

∂ϑj

,

ϑj+1 =
∂G

∂εj+1

, (326)

one can calculate the phase ϑ change over the period

ϑj+1 = ϑj + 2πε
−3/2
j+1 − πF0ε

2
0η(εj+1) cosϑj, (327)

where

η(εj+1) =
dh(εj+1)

dεj+1

. (328)

It is easy to show that a generating function, (325), ful�lls the requirement to preserve
phase space area, Eq. (293), i.e.,

∂(εj+1, ϑj+1)

∂(εj, ϑj)
= 1. (329)
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Figure 24. Trajectories (ε, ϑ) for the map (321) and (327) with the parameter a) πF0ε
2
0 =

0.06 and initial conditions ϑ0 = π, ε0 = 1.9− 0.05i (i = 0, 1, 2, . . .) and b) πF0ε
2
0 = 0.0035

and initial conditions ϑ0 = π, ε0 = 0.35− 0.003i (i = 0, 1, 2, . . .).

Equations (321) and (327) describe the changes of the energy and phase in time.
This map greatly facilitates numerical investigation of dynamics and ionization process.
We use the following expressions for the derivative of Anger function

J′s(s) =

{
1+ 5

24
s2

2π(1−s2)
sin(πs), s ≤ 1

b
s2/3 − a

5s4/3 − sin(πs)
4πs2 , s� 1

(330)

where

a =
21/3

32/3Γ(2/3)
' 0.4473, b =

22/3

31/3Γ(1/3)
' 0.41085. (331)

Trajectories for the map (321) and (327) are shown in Figure 24 and ionization threshold
�eld dependence on the relative frequency is shown in Figure 25.
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Figure 25. Ionization threshold �eld dependence on the relative frequency for a) small
frequencies s0 and b) for high frequencies, calculated using variation of the initial phase
ϑ0.

Period of the electron in atomic units is expressed as [197]

T = π

√
1

2|E|3
. (332)
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After introducing the scaled period Ts = ωT/(2π) we have

Ts = ε−3/2 = s. (333)

In Figure 26 we present signal distribution density and power spectral density, calculated
for a signal, constructed from Ts in j-space. As we can see, it might exhibit 1/f noise.
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Figure 26. a) Signal density and b) power spectral density, calculated using Fast Fourier
Transform for a signal generated from map Eqs. (321) and (327) with the parameter
πF0ε

2
0 = 0.0035 and initial conditions ϑ0 = π, ε0 = 0.21. N = 106 iterations are ful�lled.

A dashed line shows approximation S(f) ∼ 1/fβ .

6.5 Two-dimensional atom in a monochromatic �eld

For the two-dimensional atom in a monochromatic �eld, Fig. 27, Hamiltonian (318) can
be written as

y

x

y’

x’

F

ξ

r

φ

v

Figure 27. Two-dimensional atom in the electromagnetic �eld.

H =
m

2
ṙ2 + r2ξ̇2 − rF cos(ξ + ϕ) cos(ωt+ ϑ)− 1

r
. (334)
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The change of the electron energy is then equal to

Ėk = −Fvx cos(ωt+ ϑ). (335)

For the calculation of the energy change of the arbitrary orientated two-dimensional
atom in the electromagnetic �eld, one should perform the transformation of the coor-
dinates, shown in Fig. 27 [212,207,208],

x = x′ cosϕ− y′ sinϕ,

y = x′ sinϕ+ y′ cosϕ,
(336)

and use elliptic coordinates

r = a(1− e cos ξ),

t =

√
ma3

γ
(ξ − e sin ξ),

x′ = a(cos ξ − e),

y′ = a
√

1− e2 sin ξ,

(337)

where ξ is a parameter, and going round the ellipsis results in 2π change of ξ, a and e
are semi-major axis and eccentricity respectively, and γ describes central �eld strength,
which in atomic units equals to one, γ = 1. We use the following notations

s = ω
√
ma3, z = es. (338)

During the period when an electron moves from the closest to the nucleus trajectory
point, apocenter, to the most distance point, pericenter, the parameter ξ changes in the
interval (0, π), the energy change can by found by integrating Eq. (335) and applying
transformation of the coordinates Eqs. (336) and (337),

εj+1 = εj +
2πF0ε

2
0

εj+1

{−[J′s(z) sinϑj + E′s(z) cosϑj] cosϕ

+

√
1− e2

e

[(
Js(z)−

sin(sπ)

sπ

)
cosϑj −

(
Es(z)−

1− cos(sπ)

sπ

)
sinϑj

]
sinϕ

}
, (339)

where Es(z) is a Weber function,

Es(z) =
1

π

π∫
0

sin(sξ − z sin ξ)dξ, (340)

and E′s(z) is its derivative,

E′s(z) = − 1

π

π∫
0

cos(sξ − z sin ξ) sin ξdξ. (341)

The change of the angular momentum of the atom follows from the Hamiltonian
Eq. (334) and the Hamiltonian equations of motion

Ṁ = −∂H
∂ξ

= −rF sin(ξ + ϕ) cos(ωt+ ϑ). (342)
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By analogy with the scaled energy, we introduce the scaled angular momenta Ms =
Mω1/3 and µ = 2Ms. To calculate the change of the scaled angular momentum, we
need expressions for the second derivatives of Anger and Weber functions, which can
be obtained by di�erentiating �rst derivatives, Eqs. (324) and (341) and integrating by
parts,

J′′s(z) = Js(z)

[
1

e2
− 1

]
− 1

z
J′s(z) +

sin(sπ)

πz

[
1− 1

e

]
, (343)

and

E′′s(z) = Es(z)

[
1

e2
− 1

]
− 1

z
E′s(z) +

1

πz

[(
1

e
− 1

)
cos(sπ)−

(
1 +

1

e

)]
. (344)

Using expressions (343) and (344) integration of Eq. (342) yields

µj+1 = µj +
2πF0ε

2
0

εj+1

{√
1− e2

e

[(
Js(z)−

sin(sπ)

sπ

)
sinϑj

+

(
Es(z)−

1− cos(sπ)

sπ

)
cosϑj

]
cosϕ+

[(
−J′s(z) + (1 + e)

sin(sπ)

π

)
cosϑj

+

(
E′s(z) + (1 + e)

cos(sπ)

π
+

1− e

π

)
sinϑj

]
sinϕ

}
. (345)

Eqs. (339) and (345) show energy and momentum change while electron travels from
apocenter to pericenter. Following the same path, we can �nd energy and momentum
changes while electron moves from pericenter to apocenter. This corresponds to the
integration in the interval (−π, 0),

εj+1 = εj +
2πF0ε

2
0

εj+1

{[−J′s(z) sinϑj + E′s(z) cosϑj] cosϕ

+

√
1− e2

e

[(
Js(z)−

sin(sπ)

sπ

)
cosϑj +

(
Es(z)−

1− cos(sπ)

sπ

)
sinϑj

]
sinϕ

}
, (346)

and

µj+1 = µj +
2πF0ε

2
0

εj+1

{√
1− e2

e

[(
Js(z)−

sin(sπ)

sπ

)
sinϑj

−
(
Es(z)−

1− cos(sπ)

sπ

)
cosϑj

]
cosϕ+

[(
−J′s(z) + (1 + e)

sin(sπ)

π

)
cosϑj

−
(
E′s(z) + (1 + e)

cos(sπ)

π
+

1− e

π

)
sinϑj

]
sinϕ

}
. (347)

Energy and momentum changes are not periodical, therefore, the changes when the
parameter ξ changes in the interval (π, 2π) will not be equal to the changes in the interval
(−π, 0). In order to �nd changes in the interval (π, 2π), we have to �nd expressions for
second derivatives of Anger and Weber functions with a negative parameter,

J′′−s(z) = J−s(z)

[
1

e2
− 1

]
− 1

z
J′−s(z)−

sin(sπ)

πz

[
1 +

1

e

]
, (348)
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E′′−s(z) = E−s(z)

[
1

e2
− 1

]
− 1

z
E′−s(z) +

1

πz

[(
1

e
+ 1

)
cos(sπ) +

(
1− 1

e

)]
. (349)

Integration in the interval (π, 2π) and the use of expressions (348) and (349) yields the
changes of the energy

εj+1 = εj +
2πF0ε

2
0

εj+1

{[
−J′−s(z) sin(sπ + ϑj) + E′−s(z) cos(sπ + ϑj)

]
cosϕ

+

√
1− e2

e

[(
J−s(z)−

sin(sπ)

sπ

)
cos(sπ + ϑj)

+

(
E−s(z) +

1− cos(sπ)

sπ

)
sin(sπ + ϑj)

]
sinϕ

}
, (350)

and momentum

µj+1 = µj +
2πF0ε

2
0

εj+1

{√
1− e2

e

[(
J−s(z)−

sin(sπ)

sπ

)
sin(sπ + ϑj)

−
(
E−s(z) +

1− cos(sπ)

sπ

)
cos(sπ + ϑj)

]
cosϕ

+

[(
−J′−s(z) + (e− 1)

sin(sπ)

π

)
cos(sπ + ϑj)

+

(
−E′−s(z) + (e+ 1 + 2/e)

cos(sπ)

π
− 1

π
(e− 1 + 2/e)

)
sin(sπ + ϑj)

]
sinϕ

}
. (351)

Having expressions for the energy and momentum changes in half period, Eqs. (339),
(345), (346), and (347), allows us to calculate those changes in the whole period (−π, π)
when starting point is apocenter,

εj+1 = εj +
4πF0ε

2
0

εj+1

{−J′s(z) sinϑj cosϕ

+

√
1− e2

e

[
Js(z)−

sin(sπ)

sπ

]
cosϑj sinϕ

}
, (352)

µj+1 = µj +
4πF0ε

2
0

εj+1

{√
1− e2

e

[
Js(z)−

sin(sπ)

sπ

]
sinϑj cosϕ

+

[
−J′s(z) + (1 + e)

sin(sπ)

π

]
cosϑj sinϕ

}
. (353)

In order to calculate those changes in the whole period (0, 2π) when a starting point is
pericenter, we need expressions for coupling Anger and Weber functions with negative
and positive parameters,

Js(z) = J−s(z) cos(sπ)− E−s(z) sin(sπ), (354)

Es(z) = E−s(z) cos(sπ) + J−s(z) sin(sπ). (355)
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Using expressions (354) and (355), and Eqs. (346), (347), (350), and (351) we can �nd
energy and momentum changes in the interval (0, 2π),

εj+1 = εj +
4πF0ε

2
0

εj+1

{
−J′−s(z) sin(sπ + ϑj) cosϕ

+

√
1− e2

e

[
J−s(z)−

sin(sπ)

sπ

]
cos(sπ + ϑj) sinϕ

}
, (356)

µj+1 = µj +
4πF0ε

2
0

εj+1

{√
1− e2

e

[
J−s(z)−

sin(sπ)

sπ

]
sin(sπ + ϑj) cosϕ

+

[(
−J′−s(z) + (e− 1)

sin(sπ)

π

)
cos(sπ + ϑj)

+
(1 + 1/e) cos(sπ) + 1− 1/e

π
sin(sπ + ϑj)

]
sinϕ

}
. (357)

We will investigate thoroughly electron motion between the two passings of the
apocenter. Energy change is described by Eq. (352). In analogy with Eq. (325), we
introduce a generating function for a two-dimensional hydrogen atom

G(εj+1, ϑj) = εj+1ϑj − 4πε
−1/2
j+1 − 4πF0ε

2
0

εj+1

{J′s(z) cosϑj cosϕ

+

√
1− e2

e

[
Js(z)−

sin(sπ)

sπ

]
sinϑj sinϕ

}
. (358)

Eqs. (326) results in the phase change,

ϑj+1 = ϑj + 2πε
−3/2
j+1 − 4πF0ε

2
0

∂

∂εj+1

(
1

εj+1

{J′s(z) cosϑj cosϕ

+

√
1− e2

e

[
Js(z)−

sin(sπ)

sπ

]
sinϑj sinϕ

})
. (359)

6.5.1 Approximation for high relative frequency s

When s� 1 and (1− e) � 1 we can use approximations [207]

Js(se) = Js(s)− s(1− e)J′s(s) + o
(
(1− e)2

)
,

J′s(se) = J′s(s) + (1− e)J′s(s) + o
(
(1− e)2

)
.

(360)

Asymptotic form of the Anger function when s� 1 is

Js(s) =
a

s1/3
+

sin(sπ)

2πs
− b

70s5/3
. (361)

The asymptotic form of the derivative of the Anger function and constants a and b are
de�ned by Eqs. (330) and (331).
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Substituting asymptotic forms (330) and (361) into approximations (360) and these
approximations into energy and phase expressions (352) and (359), respectively, yields
mapping equations for the energy

εj+1 = εj + πF0ε
2
0

{
(e− 2)

[
4b− 4a

5
εj+1 −

sin(ε
−3/2
j+1 π)

π
ε2

j+1

]
sinϑj cosϕ

+

√
1− e2

e

[
4aε

−1/2
j+1 −

2 sin(ε
−3/2
j+1 π)

π
ε
1/2
j+1 −

2b

35
ε
3/2
j+1

+(e− 1)

(
4bε

−3/2
j+1 − 4a

5
ε
−1/2
j+1 −

sin(ε
−3/2
j+1 π)

π
ε
1/2
j+1

)]
cosϑj sinϕ

}
(362)

and phase

ϑj+1 = ϑj + 2πε
−3/2
j+1 + πF0ε

2
0

{
(2− e)

[
4a

5
−

3 cos(ε
−3/2
j+1 π)

2
ε
−1/2
j+1

+
2 sin(ε

−3/2
j+1 π)

π
εj+1

]
cosϑj cosϕ+

√
1− e2

e

[
2aε

−3/2
j+1 − 3 cos(ε

−3/2
j+1 π)ε−2

j+1

+
sin(ε

−3/2
j+1 π)

π
ε
−1/2
j+1 +

3b

35
ε
1/2
j+1 + (e− 1)

(
6bε

−5/2
j+1

−2aε
−3/2
j+1 −

3 cos(ε
−3/2
j+1 π)

2
ε−2

j+1 +
sin(ε

−3/2
j+1 π)

2π
ε
−1/2
j+1

)]
sinϑj sinϕ

}
(363)

for motion between two apocenters.
In Figure 28 (ε, ϑ) maps are shown for the two-dimensional hydrogen atom, calcu-

lated according to Eqs. (362) and (363) with di�erent parameters πF0ε
2
0 and di�erent

values of orientation angle ϕ. We can compare maps a) and b) with the corresponding
one-dimensional hydrogen maps in Figure 24 a) and b), plotted with the same initial
conditions ε0, ϑ0, and the same parameters πF0ε

2
0 and notice that in a two-dimensional

case phase trajectories are similar. However, introduction of an orientation angle be-
tween vector potential of the �eld and the ellipsis major axis results in distortion of
continuous phase trajectories and increasing of the chaotic region.

Figure 29 shows ionization threshold �eld dependence on the relative frequency for
di�erent angles ϕ. We see that increasing orientation angle results in increasing of the
ionization threshold �eld.

Power spectral densities of the two-dimensional hydrogen atom for di�erent orien-
tation angles are shown in Figure 30. Figure 28 shows that an increase of orientation
angle results in an increase of chaotic region, which, on the other hand, results in an
increase of power spectral density slope.

6.5.2 Approximation for very extended orbits

Further we investigate the energy and momentum changes of the hydrogen atom in a
monochromatic �eld in the period, when starting point of motion is apocenter and e ≈ 1.
In the limit e→ 1 we should recover results for one-dimensional atom. We approximate
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Figure 28. Trajectories (ε, ϑ) for the two-dimensional hydrogen atom map (362) and
(363) with the parameters a) πF0ε

2
0 = 0.06, e = 0.7, ϕ = 0, and initial conditions ϑ0 = π,

ε0 = 1.9 − 0.05i (i = 0, 1, 2, . . .) and b) πF0ε
2
0 = 0.0035, e = 0.7, ϕ = 0, and initial

conditions ϑ0 = π, ε0 = 0.35 − 0.003i (i = 0, 1, 2, . . .). Maps c) and d) are plotted with
the same parameters as a) and b), accordingly, but the angle between vector potential of
the �eld and the major axis of the ellipse is ϕ = π/6.

equations for energy and momentum (352) and (353) in the power of β =
√

1− e2,

εj+1 = εj +
4πF0ε

2
0

εj+1

{
−
(
1 + β2

)
J′s(s) sinϑj cosϕ

+β

[
Js(s)−

sin(sπ)

sπ

]
cosϑj sinϕ

}
, (364)

µj+1 = µj +
4πF0ε

2
0

εj+1

{
β

[
Js(s)−

sin(sπ)

sπ

]
sinϑj cosϕ

+

[
−
(
1 + β2

)
J′s(s) +

(
2− β2

) sin(sπ)

π

]
cosϑj sinϕ

}
(365)

From the equation (364) we can notice that in the limit β → 0 we recover results for
one-dimensional hydrogen atom, Eq. (321).

6.5.3 Approximation for almost circular orbits

When eccentricity e = 0 we will obtain a circular orbit. We will �nd energy and
momentum change when e ≈ 0. To accomplish this, we should approximate Eqs. (352)
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Figure 29. Ionization threshold �eld dependence on the relative frequency s0 for a two-
dimensional hydrogen atom with the eccentricity e = 0.7 and orientation angle ϕ = 0,
solid line, and ϕ = π/6, dashed line, calculated using variation of the initial phase ϑ0.
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Figure 30. Power spectral density calculated using Fast Fourier Transform for a signal
generated from the map Eqs. (362) and (363) with the parameter πF0ε

2
0 = 0.0035 and

initial conditions ϑ0 = π, ε0 = 0.21, and a) ϕ = 0, b) ϕ = π/6. N = 106 iterations are
ful�lled. Solid lines show approximation S(f) ∼ 1/fβ .

and (353) in the power of e, but we cannot calculate derivatives in the point e = 0,
because a denominator turns into zero. Therefore, for each term we should integrate
equations (335) and (342), but before that, we should di�erentiate them and substitute
e = 0. After some algebra we obtain

εj+1 = εj +
4F0ε

2
0 sin(sπ)

εj+1

{[
e

2
+

3
4
e2s2 − 1

1− s2
+

1
2
es2

4− s2
−

3
4
e2s2

9− s2

]
sinϑj cosϕ

+s

[
1− 1

4
e2(s2 − 4)

1− s2
− e

4− s2
+

1
4
e2s2

9− s2

]
cosϑj sinϕ

}
, (366)
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µj+1 = µj +
4F0ε

2
0 sin(sπ)

εj+1

×
{
s

[
−e

2
+

1− e2(1 + 1
4
s2)

1− s2
+
e(1− 1

2
s2)

4− s2
+

1
4
e2s2

9− s2

]
sinϑj cosϕ

+

[
3e

2
+
s2(1

2
e2(1 + 1

2
s2)− 1)

1− s2
−

1
2
es2

4− s2
+

1
2
e2s2(3− 1

2
s2)

9− s2

]
cosϑj sinϕ

}
. (367)

Equations (366) and (367) are not valid in the points, where s = 1, 2, 3.

6.6 Two-dimensional atom in a circular polarized �eld

In the case when a two-dimensional hydrogen atom is placed in a circular polarized
electromagnetic �eld, di�erential equation (320) can be written as

Ė = −eF (vx cos(ωt+ ϑ)± vy sin(ωt+ ϑ)) , (368)

where signs ± corresponds to the left and right circular polarizations, respectively.
Using similar calculations as in monochromatic �eld, after some algebra we �nd the

energy and momentum changes between two apocenters when ξ changes in the interval
(−π, π),

εj+1 = εj +
4πF0ε

2
0

εj+1

{
−J′s(z)∓

√
1− e2

e

[
Js(z)−

sin(sπ)

sπ

]}
sin(ϑj ∓ ϕ), (369)

µj+1 = µj +
4πF0ε

2
0

εj+1

{√
1− e2

e

[
Js(z)−

sin(sπ)

sπ

]
∓
[
−J′s(z) + (1 + e)

sin(sπ)

π

]}
sin(ϑj ∓ ϕ), (370)

and two pericenters when ξ changes in the interval (0, 2π),

εj+1 = εj +
4πF0ε

2
0

εj+1

{
−J′−s(z)∓

√
1− e2

e

[
J−s(z)−

sin(sπ)

sπ

]}
sin(sπ+ϑj ∓ϕ), (371)

µj+1 = µj +
4πF0ε

2
0

εj+1

{[√
1− e2

e

(
J−s(z)−

sin(sπ)

sπ

)
∓
(
−J′−s(z) + (e− 1)

sin(sπ)

π

)]
sin(sπ + ϑj ∓ ϕ)

±(1 + 1/e) cos(sπ) + 1− 1/e

π
cos(sπ + ϑj ∓ ϕ)

}
. (372)

It should be noted, that expression in the curly brackets in Eq. (371) coincides
with the expression in the quasi-classical radial dipole matrix element in the velocity
representation [208]

D±
p =

1

s

{
J′−s(z)±

√
1− e2

e

[
J−s(z)−

sin(sπ)

sπ

]}
. (373)
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This correspondence, however, takes place only for the interaction of the hydrogen
atom with the circularly polarized microwave �eld and for the integration of the equa-
tions of motion between the two subsequent pericenters. In general, the energy [206,207]
and angular momentum changes depend on the integration interval. So, for the mo-
tion of the electron between two subsequent apocenters, i.e., the most distant from
the nucleus points, where the electron's energy change is minimal, the energy change
is described by the expression similar to Eq. (371) but instead of J−s(es) and J′−s(es)
we have the Anger function and its derivative of the positive order, Js(es) and J′s(es).
This interval has been used in [206,209,210] for the derivation of the Kepler map for a
one-dimensional hydrogen atom.

Therefore, analytical expressions for the energy and angular momentum changes of
the two-dimensional hydrogen atom in linearly and circularly polarized electromagnetic
�elds are derived. It should be noted that in general the expressions are rather com-
plicated. The approximate expressions for limiting cases of the parameters are more
convenient for analytical and numerical analysis of the dynamics.

The derived expressions are suitable for a three-dimension hydrogen atom as well,
and may be generalized for the analysis of the chaotic motion (due to the Jupiter
perturbations) of comets and asteroids in the solar system.
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7 PROGRAMS FOR NUMERICAL SIMULATIONS

AND CALCULATIONS

All numerical simulations in the framework of this research have been performed using a
set of programs, which were written in C++ programming language and were executed
under Linux operating system. In particular, GNU C++ compiler g++ version 3.2.2
was used to compile and link di�erent parts of the code. The source code of the programs
has been written in a platform independent way and can be easily moved and compiled
under di�erent platforms and di�erent C++ compilers.

Random number generation for the point processes and signals as well as Fast Fourier
Transform, used to calculate power spectral density from the signals, were accomplished
by linking programs to GNU Scienti�c Library (GSL). GSL provides a well-de�ned C
language Applications Programming Interface (API) for common numerical functions,
while allowing wrappers to be written for very high level languages. The routines have
been written from scratch by the GSL team in ANSI C. Using of GSL random number
generators allows us to overcome shortcomings of random number generators, which
usually persist in C compilers. We can �seed� initial state of the generator and we can
get random numbers, distributed according various prede�ned distributions.

Programs are written in a strict Object Orientated Programming (OOP) manner.
For example, to calculate interevent times for point processes, we use �Distribution�
parent class, which de�nes only variables and methods (functions), common for di�erent
calculation algorithms. Here we present a header �le of �Distribution� class:

#ifndef _DISTRIBUTION_H_

#define _DISTRIBUTION_H_

#include <valarray>

#include <iostream>

#include <fstream>

#include <ctime>

#include <gsl/gsl_randist.h>

#include <gsl/gsl_histogram.h>

/**************************************************************************/

/** class Distribution **/

/** **/

/** Parent class. Makes recurrent times sequence distributed according **/

/** different distributions. Needs children classes. **/

/** **/

/**************************************************************************/

class Distribution

{

public:

std::valarray<double> *sequence;

Distribution();

Distribution(long ln);

Distribution(long ln, long lsorted, double lsigma, double lgamma,
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double lbeta);

virtual ~Distribution();

void Mirroring_Boundary(double ltau_min, double ltau_min);

void Cutoff_Boundary(double ltau_min);

void Module_Boundary();

void Build_Recurrent_Sequence();

void Add_Constant_Tau(double ltau_c);

void Change_To_Taus();

void Out(char *filename);

void Taus_Out(char *filename);

protected:

long n;

double sigma;

double gamma;

double beta; /* extra parameter */

double tau_first;

gsl_rng* r;

double (Distribution::*Boundary_Function)(double tau);

void Set_Tau_First(double ltau_first);

private:

long sorted;

double tau_min;

double tau_max;

/* Different tau distributions defined in child classes */

virtual double Recurrent_Function(double tau_old) = 0;

/* Boundary conditions */

double Remain_Tau(double tau);

double Mirroring_Boundary_Function(double tau);

double Cutoff_Boundary_Function(double tau);

double Module_Boundary_Function(double tau);

};

#endif /* _DISTRIBUTION_H_ */

This approach allows us to have di�erent child classes, which correspond to di�erent
point processes interevent time distributions and extend parent Distribution class to in-
clude additional features. Here follows the example of header �le of AdditiveDistribution
child class, derived from parent Distribution class.

#ifndef _ADDITIVE_H_

#define _ADDITIVE_H_

#include "distribution.h"

/**************************************************************************/
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/** class AdditiveDistribution : public Distribution **/

/** **/

/** Children class. Makes recurrent times sequence with tau distributed **/

/** according additive iterations. **/

/** **/

/**************************************************************************/

class AdditiveDistribution : public Distribution

{

public:

AdditiveDistribution(long ln, long lsorted, double lsigma, double lgamma,

double ltau_mean);

AdditiveDistribution(long ln, long lsorted, double lsigma, double lgamma,

double ltau_mean, double lupper_restriction);

private:

double tau_mean;

/* Different recurrent function when this parameter is 1 */

double upper_restriction;

double Recurrent_Function(double tau_old);

};

#endif /* _ADDITIVE_H_ */

Virtual functions, as given in the example above, allow us easily to overload some
methods of the program, without changing the existent structure. This might seem to
be complicated, but, on the contrary, this allows us to maintain the logical structure of
the algorithm as simple as possible.

Programming in OOP approach makes it easy to modularize a code writing process.
We write di�erent, independent parent classes for point processes, signals generation,
distribution density, power spectral density calculation, then it is easy to expand by
adding child classes with di�erent methods and properties. Code, written in OOP is
easier to debug and �nd the exact place of the error in case such error occurs.

Number of points in point processes or signal length in case of signals, which can
handle computer, are completely de�ned by the random access memory (RAM) of the
computer. We have used personal computer with 256Mb of RAM and this allowed us
to generate sequences of up to ten millions of numbers without computer crash.

Programs, used in numerical simulations, are easily portable into other systems and
can be compiled and linked using common Make�le.
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8 SUMMARY OF THE RESULTS AND CONCLU-

SIONS

1. We present a simple point process model of 1/fβ noise, covering di�erent values
of the exponent β. The interevent times of the signal stochastically di�use in
some interval, resulting in the power-law distribution. The model is free from the
requirement of a wide distribution of relaxation times and from the power-law
forms of the pulses. It contains only one relaxation rate and yields 1/fβ power
spectral density in a wide range of frequency.

2. We investigate McWhorter model, representing the signals as a superposition of
the uncorrelated components, and show that a signal, consisting of the super-
position of signals with the linear relaxation rates γ, distributed according to
the power-law, results in 1/fβ power spectral density with di�erent slopes β.
We analyse the relation of the point process model with the McWhorter model.
The point processes are multifractal, whereas those of the McWhorter model are
monofractal.

3. We show that a point process, consisting of discrete set of Dirac delta functions,
can be transformed, using di�erent shapes of the pulses into a continuous signal
and back to the point process, while preserving initial power spectral density at
low frequencies.

4. We present a model where a signal, represented as the sequences of random pulses
of �xed area with random duration, distributed uniformly in a wide interval,
produces 1/f behavior of the power spectral density in a wide range of frequency.

5. The interrelation between the point process signals, shown as consisting of pulses
and stochastic signals and represented by the �uctuating intensity, is analysed.
It is demonstrated how one type of the signal may be transformed into another
type of the signal with the same power spectral density at low frequencies.

6. We derive a stochastic nonlinear di�erence and di�erential equation for the signal,
exhibiting 1/fβ noise in any desirable wide range of frequency. The solutions of
the equations exhibit the power-law distribution of the signal intensity.

7. We show that the period of motion of a rotor without a friction, a�ected by the
periodic strikes, exhibits 1/fβ noise in transition from regular to chaotic motion.

8. One-dimensional classical hydrogen atom in a linearly polarized monochromatic
electromagnetic �eld and a two-dimensional atom in monochromatic �eld exhibit
stochastic motion and can result in 1/fβ noise.

9. The expressions for energy and angular momentum changes of the hydrogen atom
due to the interaction with the electromagnetic �eld during the period and halves
of the period of the electron motion in the Coulomb �eld are derived. It is shown
that it is only energy change for the motion between two subsequent passings
of the pericenter that is related to the quasi-classical dipole matrix element for
transitions between the excited states.
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10. During the research process various programs, generating di�erent stochastic
point processes and signals of various distributions, calculating power spectral
densities of di�erent processes and analysing statistics of the signals were written,
tested and applied.
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