
PHYSICAL REVIEW A 102, 013306 (2020)

Coherent optical nanotweezers for ultracold atoms
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There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials
for ultracold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous
in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes.
Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps
and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and
show that long-lived bound states are possible. This work allows for subwavelength control and manipulation of
ultracold matter, with applications in quantum chemistry and quantum simulation.
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Coherent manipulation of atoms using light is at the heart
of cold-atom-based quantum technologies such as quantum
information processing and quantum simulation [1,2]. The
most commonly used methods to trap atoms optically are
based on the ac-Stark shift induced in a two-level system
by an off-resonant laser field, which provides a conservative
potential that is proportional to laser intensity. The spatial
resolution of such a trapping potential is diffraction limited,
unless operated near surfaces [3–8]. In contrast, a three-level
system with two coupling fields offers more flexibility and
can generate a subwavelength optical potential even in the
far field: although the intensity profiles of both laser beams
involved are diffraction limited, the internal structure of the
state can change in space on length scales much shorter than
the wavelength λ of the lasers [9–20]. Such a subwavelength
internal-state structure can lead to subwavelength potentials
either by creating spatially varying sensitivity to a standard
ac-Stark shift [21–23] or by inducing a conservative subwave-
length geometric potential [24–26].

Subwavelength traps can be useful in atom-based ap-
proaches to quantum information processing [27,28], anyon
braiding [29], and quantum materials engineering, as well as
for efficient loading into traps close to surfaces [3–8]. The use
of dynamically adjustable subwavelength tweezers [30,31],
in which atoms can be brought together and apart, can also
enable controlled ultracold quantum chemistry [32–34].
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To trap atoms on a subwavelength scale, the optical po-
tential must provide a local minimum. The geometric scalar
potential associated with a laser-induced internal-state struc-
ture is always repulsive and increases in magnitude as its
spatial extent is reduced. This repulsive contribution must be
considered when engineering attractive subwavelength optical
potentials. A trap based on the combination of ac-Stark shift
and subwavelength localization [9–16,35–55] within a three-
level system was proposed in Ref. [21], but the geometric
potentials arising from nonadiabatic corrections to the Born-
Oppenheimer approximation [24,25] were not considered. In
this paper, we show that even with the repulsive nonadiabatic
corrections, attractive subwavelength potentials are still pos-
sible. We also propose two alternative schemes for the gen-
eration of traps that offer longer trapping times as compared
to the approach of Ref. [21]. We analyze the performance of
all three approaches and show that 14-nm-wide traps offering
100-ms trapping times are feasible. Compared with near-field
methods, our far-field approach not only avoids losses and de-
coherence mechanisms associated with proximity to surfaces,
but also provides more flexibility in time-dependent control
of the shape and position of the trapping potentials [56] and,
additionally, works not only in one and two dimensions but
also in three dimensions.

I. MODEL

We start with a single-atom Hamiltonian,

H = Hal (x) + p2

2m
, (1)

2469-9926/2020/102(1)/013306(6) 013306-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.013306&domain=pdf&date_stamp=2020-07-07
https://doi.org/10.1103/PhysRevA.102.013306


P. BIENIAS et al. PHYSICAL REVIEW A 102, 013306 (2020)

FIG. 1. (a) Level diagram for the EITscheme, showing a spatially
homogeneous field �p (solid blue bar) and a spatially varying
field �c(x) = �0(1 − e−x2/σ 2

)1/2 (red bar with gradient). � is the
linewidth of the excited state. (b) Level diagram for the blue-detuned
ac-Stark scheme. The intermediate state |r〉 is dressed by coupling it
to the excited state |e〉 with a spatially dependent �c(x) = �0(1 −
e−x2/σ 2

)1/2 and a large detuning � � �c, which gives rise to a
light shift �2

c (x)/� of state |r〉. The ground state |g〉 is coupled to
state |r〉 with a spatially uniform �p and detuning δ = 0. (c) Level
diagram for the red-detuned ac-Stark scheme [21]. The difference
from panel (b) is that �c(x) = �0e−x2/(2σ 2 ) is maximal at x = 0
and that |�| � �c, δ now indicates the amount of red detuning.
Moreover, the detuning δ = �2

0/� is chosen to exactly compensate
for the light shift of |r〉 at x = 0. (a’, b’) Sketches of the relevant
eigenstates (an atom depicted by a green ball is trapped in the blue
potential): (a’) for the (a) scheme; (b’) for the (b) scheme, which for
x < w is equivalent to the (c) scheme. Although E± are diffraction
limited, E0 has a subwavelength shape characterized by the width
w, which can be expressed using the enhancement factor defined as
s = σ/w.

where m is the mass, p is the momentum, and Hal describes
the atom-light interaction. We consider three schemes shown
in Fig. 1: (a) electromagnetically induced transparency (EIT),
(b) blue-detuned ac-Stark, and (c) red-detuned ac-Stark [21].
For the EITscheme (h̄ = 1),

Hal =

⎛
⎜⎝

δr 0 �c(x)
0 0 �p

�c(x) �p �

⎞
⎟⎠ (2)

in the basis of bare atomic states {|r〉, |g〉, |e〉}, where 2�p

and 2�c(x) are Rabi frequencies of a spatially homogeneous
probe field and a spatially varying control field, respec-
tively. For the two ac-Stark schemes, in the limit of large
single-photon detuning |�| � �c(x),�p, |δ| [see Figs. 1(b)
and 1(c)], the intermediate state |e〉 can be adiabatically

eliminated, resulting in an effective two-state Hamiltonian,

Hal =
(

δ − �2
c (x)
�

�p

�p 0

)
, (3)

in the {|r〉, |g〉} basis.
Within the Born-Oppenheimer approximation, we first

diagonalize Hal, which leads to position-dependent eigen-
states. Nonadiabatic corrections give rise to geometric scalar
U and vector A potentials, defined as U = R†∂2

x R and
A = iR†∂xR, where R is a unitary operator diagonalizing
Hal [24,25]. The resulting Hamiltonian is given by H ′ =
R†HR = R†HalR + U (x) + p2

2m − A(x)p
m . Below, we focus on

the potential R†HalR + U (x) experienced by three-level atoms
under three different schemes.

II. EIT SCHEME

In Refs. [24–26], subwavelength barriers were consid-
ered in the EITconfiguration assuming two-photon resonance,
i.e., δr = 0 in Fig. 1(a). The approximate dark state |D〉 ∝
�c(x)|g〉 − �p|r〉 then experiences only a repulsive geometric
potential 〈D|U |D〉. On the other hand, in the presence of
a finite detuning δr for state |r〉, the dark state |D〉 can
acquire a negative energy shift E0(x) with an absolute value
greater than the positive geometric potential. Moreover, we
see that, as we move from large to small x, the state |D〉
changes its character from |g〉 to |r〉 at x = w defined via
�c(w) = �p. Therefore, for �0 � �p, we can engineer sub-
wavelength traps with width w � σ . However, at first glance,
it is not obvious whether the additional contribution from
the repulsive geometric potential would cancel the attractive
potential. Moreover, the approximate dark state experiencing
the trapping potential can have a significant admixture of state
|e〉, leading to loss. Below, we address these two issues.

In the following, for simplicity, we set � = 0 because, for
a single trap in the EITconfiguration, nearly all results (except
the tunneling losses to the lower dressed-state |−〉) are �

independent. For |δr + U (x)| � �p, the bright states |±〉 are
well separated from the dark state. In this case, the ground
state is composed of the dark state with a small admixture of
bright states, so that the geometric potential and the energy
shift E0 can be calculated separately [see Fig. 1(a’)]. Note
that, for all schemes, we take into account the decay � of
state |e〉 perturbatively. We are interested in a spatially depen-
dent [57] control Rabi frequency �c(x) = �0(1 − e−x2/σ 2

)1/2.
For small x, �c ≈ �0x/σ , so that the total effective potential
Vtot = |〈D|r〉|2δr + UD is equal to

Vtot = δr

1 + x2/w2
+ 1

2mw2

1

(1 + x2/w2)2
, (4)

where we use UD = 〈D|U |D〉 = 1
2m ( �p ∂x�c (x)

�2
p+�2

c (x) )
2

and w =
σ�p/�0. We see explicitly that the trapping potential has the
subwavelength width w, which can be characterized by the
enhancement factor s = σ/w, and that UD is always repulsive.
In addition, we note that 〈D|A(x)|D〉 = 0 (see Ref. [25]).

To compare all three schemes, we start by considering traps
that have a specific width w and support a single bound state.
Furthermore, we assume that our maximum Rabi frequency
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�c(x) is limited to �0. In that case, if we drop factors of
order unity, our scheme supports a single bound state when
the kinetic energy Ew = 1/(2mw2) is equal to the depth of
the potential Vtot .

The leading source of loss comes from the admixture of the
short-lived state |e〉. There are two processes leading to this
admixture: (1) imperfect EIT due to δr 	= 0 and (2) nonadia-
batic off-diagonal corrections. Both processes admix |D〉 with
|±〉, which in turn have significant overlap with |e〉. Within
second-order perturbation theory, the loss rates from pro-
cesses (1) and (2) are �

(1)
D ∼ �V 2

tot/�
2
p and �

(2)
D ∼ �

|UD±|2
�2

p
∼

�
E2

w

�2
p
, respectively. Here UD± = 〈D|U |±〉 and we use the fact

that, for a trap with a single bound state, the off-diagonal [25]
terms of U are of the same order as Ew. Thus, up to factors of
order unity, the total losses are �D ∼ �

(1)
D + �

(2)
D ∼ �E2

w/�2
p.

We would like to note that we can modify the EITsetup
so that nonadiabatic corrections are further suppressed (see
Appendix A) and the only (and unavoidable) losses come
from imperfect EIT. The decay rate for the bound state can
be expressed using Eσ , �0, and s as �D ∼ �s6(Eσ /�0)2,
where Eσ ∼ 1/(2mσ 2). An additional constraint on available
widths w comes from the fact that our perturbative analysis
holds only for |Vtot| and Ew much smaller than the gap to the
bright states |±〉, leading to Ew � �p, which is equivalent to
s3 � �0/Eσ . Another source of losses is tunneling from the
subwavelength-trapped state [22] to state |−〉, which, based on
a Landau-Zener-like estimate (see Appendix B), is negligible
for s3 � �0/Eσ . The specific experimental parameters are
analyzed after the presentation of all three schemes.

III. BLUE-DETUNED ac-STARK SCHEME

The second scheme we propose is shown in Fig. 1(b)
and is described by the Hamiltonian (3) with δ = 0. Here,
the intermediate state |r〉 is dressed by coupling it to the
excited state |e〉 with a spatially dependent Rabi frequency
�c(x) = �0(1 − e−x2/σ 2

)1/2. Together with a large blue de-
tuning |�| � �c(x), this leads to a light shift �2

c (x)/� of
state |r〉. At large x, state |0〉 is equal to |g〉, whereas, at x = 0,
it is proportional to |g〉 − |r〉. The light shift E0 describing the
trapped state |0〉 is equal to

E0(x) = �p

(
1

2

( x

w

)2
−

√
1 + 1

4

( x

w

)4
)

, (5)

where the width w equals σ/s with

s =
√

�2
0

|�|�p
. (6)

Intuitively, the width w is equal to the distance at which the
ac-stark shift is equal to the coupling �p.

For this scheme, the nonadiabatic potential U is equal to

U =
(

α −β

β α

)
, (7)

with α = Ew
4w2x2

(4w4+x4 )2 and β = Ew
6x4−8w4

(4w4+x4 )2 . Note that the off-

diagonal terms are significantly greater than the diagonal ones
(i.e., α < |β|), especially for x � w, as shown in Fig. 2(a).

FIG. 2. Analysis of the blue-detuned ac-Stark scheme [Fig. 1(b)].
(a) The light shift E0(x), as well as the diagonal and off-diagonal
couplings coming from the nonadiabatic potential U in Eq. (7)
parametrized by α and β. (b) Properties of the ground state obtained
from the effective Hamiltonian and from the full Hamiltonian (see
main text for details). Figures are shown in units of w and Ew , making
them applicable to all s � 1.

For �p = Ew, which leads to a single bound state, we obtain
β on the order of the energy E0(x). Note that our derivation
works for arbitrary fractional probabilities fr = |ψr (x)/ψ(x)|,
whereas the method in Ref. [21] works only for fractional
probabilities fr � 1, where ψr = 〈r|ψ〉 is the r component
of the ground-state wave function ψ .

In order to analyze the impact of U , we compare the ground

state of the effective Hamiltonian Heff = E0(x) − ∂2
x

2m without
U with the exact solution of the full Hamiltonian given by
Eqs. (1) and (3). Even though |〈0|U |+〉| ∼ Ew ∼ �p is large
and on the order of the energy difference E+ − E0 ∼ �p, we
see in Fig. 2(b) that the probability densities (and therefore
the widths) of the ground states ψeff of Heff and ψGS of the full
Hamiltonian are nearly the same. However, from the compari-
son of components |g〉 and |r〉 of the ground state in Fig. 2(b),
we see that the trapped atoms are not exactly in the eigenstate
|0〉. This partially explains why the nonadiabatic corrections
do not influence the width of the ground state: the components
of the true ground state are smoother (spatial gradients are
smaller) than those of the ground state |0〉 of Hal, which leads
to weaker nonadiabatic corrections for the true ground state.
In summary, even though the nonadiabatic potential U can be
on the order of Ew for subwavelength traps, the width of the
ground state is only very weakly influenced by U .

We now turn to the analysis of the trap lifetime. The leading
contribution to losses comes from the admixture Pe of the
short-lived state |e〉. Pe is determined by the characteristic
coupling strength �c(w) ≈ �0/s within the trapped region
and by the detuning � as Pe ∼ [�0/(�s)]2 ∼ s6(Eσ /�0)2.
In principle, the condition � > �0 might give an upper
limit on s, which, based on Eq. (6), for �p = Ew, is s4 <

�0/Eσ . However, this is not a constraint for any of the results
considered here.

IV. RED-DETUNED ac-STARK SCHEME

Finally, we analyze the third scheme, which was proposed
in Ref. [21], where we take into account nonadiabatic cor-
rections for arbitrary fractional probabilities. This scheme
differs from the blue-detuned ac-Stark scheme in that, first,
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FIG. 3. (a) Atomic levels for the blue- and red-detuned ac-Stark
schemes in 171Yb. (b) Atomic levels for the EITscheme in bosonic Yb
atoms. In all schemes, the main limitation comes from the admixture
of levels outside the three-level system.

the control Rabi frequency is �c(x) = �0e−x2/(2σ 2 ) which,
for small x, is ≈�0[1 − x2/(2σ 2)]; second, the detuning
δ = �2

0/� is chosen to exactly compensate for the ac-Stark
shift at the center of the trap [60]; and third, the detuning
� now indicates the amount of red detuning. The resulting
E0 w, and s are identical to those in the blue-detuned ac-
Stark scheme, Eqs. (5) and (6). We find that, for x � w, the
nonadiabatic corrections have nearly exactly the same form
as in the blue-detuned ac-Stark scheme and differ only in the
sign of the off-diagonal terms: U = (

α β

−β α

)
.

To derive the lifetime of this trap, we can set �c(x) to �0

within the trapped region, which leads to Pe ∼ (�2
0/�

2) =
(s2�p/�0)2 = s8(Eσ /�0)2. This expression is identical to the
one in the EITand blue-detuned ac-Stark schemes, except for
the more favorable scaling with s (s6 vs s8). The intuition
behind the difference between the two schemes based on the
ac-Stark shift is the following: in the red-detuned ac-Stark
scheme, the atoms are trapped in the region of maximal scat-
tering from state |e〉, whereas, in our blue-detuned ac-Stark
scheme, atoms are trapped in the region of minimal scattering
from state |e〉.

V. ATOMIC LEVELS

Very well-isolated three-levels systems (either ladder type
or � type) are required for efficient implementation of these
subwavelength trapping schemes. The strong �c(x) beam can
off-resonantly couple |g〉 and |r〉 to states outside the three-
level system and can limit lifetimes in addition to provid-
ing undesired additional confinement for the atoms in these
subwavelength lattices [26,61]. This can significantly reduce
the upper bound on the magnitude of �c(x) [56,61] and
therefore limit the width of the traps that can be realized.
Here, in order to mitigate the issues discussed above, we
propose using metastable states 3P0 and 3P2 in Yb atoms for
the implementation of subwavelength trapping schemes.

For the blue- and red-detuned ac-Stark schemes, we use
|g〉 = |(6s2) 1S0, F = 1/2〉, |r〉 = |(6s6p) 3P2, F = 3/2〉, and
|e〉 = |(5d6s) 3D2〉 in 171Yb, as shown in Fig. 3(a). The hyper-
fine structure should not play a crucial role as �p only couples

| 1S0, F = 1/2〉 with | 3P2, F = 3/2〉 as allowed by dipole
selection rules and �c(x) is blue- or red-detuned relative to
the entire fine-structure manifold 3D2. Note that the transition
(6s2) 1S0 ↔ (6s6p) 3P2 is a weak, forbidden transition [62,63]
and requires a narrow, stable laser to address it.

For the EIT scheme, we use |g〉 = |(6s6p) 3P0〉, |r〉 =
|(6s6p) 3P2〉, and |e〉 = |(6s7s) 3S1〉 in bosonic Yb atoms, as
shown in Fig. 3(b). High-polarization purity of the light fields
is required for proper implementation of this scheme. In
addition, the lifetime of atoms in the subwavelength traps
for this scheme may be limited by fine-structure changing
collisions of atoms in 3P2 [64]. We note that all three schemes
can be generalized to two dimensions, whereas blue- and
red-detuned ac-Stark trapping schemes can be extended to
three dimensions.

VI. ACHIEVABLE TRAP PARAMETERS

We showed above that, for fixed �0, the two schemes pro-
posed here provide superior performance to the red-detuned
ac-Stark scheme due to the s6 vs s8 scaling of the losses.
We now discuss what widths of the trapping potentials are
achievable when we include fundamental limitations imposed
on the magnitude of �0. We set the trapping time T to be
equal to 100 ms. Depending on the scheme and on σ (equal to
λ/2π for the lattice, and to 3 μm for the tweezer; denoted by
subscripts λ and 3μm, respectively), we find maximal �0 and
s such that the off-resonant position-dependent light shifts are
less than 0.1Ew and that T �Pe ∼ 1:

Setup �0,λ

2π GHz
wλ

nm sλ
�0,3 μm

2π GHz
w3 μm

nm s3 μm

EIT 7.0 14.0 7.0 1.5 68.0 44.0

Blue-ac 2.3 16.0 20.0 0.75 48.0 63.0

Red-ac 0.85 42.0 7.0 0.19 190.0 16.0

We see that the EITand the blue-detuned ac-Stark schemes
allow for greater �0, which translates into narrower traps.
Note that narrower traps can be achieved, however, at the cost
of reducing the lifetime of atoms in these traps. We would like
to note that the presented results—for the sake of clarity and
brevity—are based on the estimates neglecting factors on the
order of the unity.

VII. APPLICATIONS

We now make a few remarks related to the applications
pointed out in the introduction. Note that, if one’s goal is
simply to use the expansion of a control field �c(x) around
its nodes to create traps with tight bound states with minimal
scattering, then our EITscheme has no advantages over a
simple two-level blue-detuned trap. Indeed, in our case, up
to an additive constant, the potential near a node is given
by V (x) ≈ δr�c(x)2/�2

p, while the population of the excited
state is given by Pe(x) ≈ δ2

r �
2
c (x)/�4

p. On the other hand, if
one uses the same field �c(x) to create a simple two-level
blue-detuned trap (with detuning �), one obtains V (x) ≈
�2

c (x)/� and Pe(x) ≈ �2
c (x)/�2. In other words, our scheme

is identical to the two-level scheme provided one replaces �

with �2
p/δr .
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However, our goal is not only to create a tight bound state
in a trap of subwavelength width w but also to make the
trapping potential nearly constant for |x| > w so that we can
make and possibly independently move several traps, or a full
lattice of traps, with subwavelength separations. In that case,
a simple two-level scheme will not work. Instead, one has to
use one of the subwavelength schemes we discuss here.

Recently, lattices of repulsive subwavelength barriers and
subwavelength spacings were proposed [56,65] and real-
ized [61] by time-averaging over different configurations of
a dynamically applied optical Kronig-Penney potential. By
extending the stroboscopic protocol [56,65] to lattices of sub-
wavelength traps, it may be possible to “paint” arbitrary time-
averaged potential landscapes for atoms with subwavelength
resolution.
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APPENDIX A: MODIFIED EIT SCHEME

Here, we show how to suppress nonadiabatic corrections
in the EITscheme. The idea is that �c(0) does not necessarily
have to go to zero and that the gradient of �c(x) around x = w

can be smaller than for linear �c(x) ∼ x�0/σ . Nonadiabatic
corrections can then be suppressed by using the following

control field [66]: �c(x) = �0[1 + ν − cos(kx)], which does
not go to zero as deeply and as sharply as the linear �c(x).

Expanding �c(x) around a minimum for ν > 0, we find

�c(x) = �p[η + (x/w)2], (A1)

with η = ν �0/�p and w = 1
k

√
2�p/�0, and which gives

rise to

Vtot = δr

[η + (x/w)2]2 + 1
+ 4Ew(x/w)2

{[η + (x/w)2]2 + 1}2
,

whose depth can be tuned to accommodate one or more bound
states. By operating at η > 0, we can use appropriate |δr | ∼
Ew to engineer trapping potentials with negligible nonadia-
batic potential U . Therefore, when it comes to losses, this
modified EIT scheme allows us to gain up to a factor of ∼2.

APPENDIX B: LANDAU-ZENER ESTIMATES OF LOSSES
TO LOWER DRESSED STATES

Another source of losses is tunneling from the single bound
state we consider to state |−〉. Note that, due to the conserva-
tion of energy, atoms in |−〉 will have large kinetic energy.
Following Ref. [22], the loss rate �LZ can be estimated using a
Landau-Zener-like argument, which, in our setup, leads to

�LZ ∼ Ewe−ν�0−/Ew , (B1)

where ν is a factor of order unity, and �0− is the energy dif-
ference between two dressed states involved in the tunneling.

In the EIT scheme, we have �0− ∼ |E−(0)| ∼ �p because
the tunneling occurs around x ∼ 0, where the gap between
ED and E− is smallest and where the atoms are trapped. This
leads to the condition 1 � �p/Ew = �c/(Eσ s3). Note that we
obtained the same condition from the requirement Ew � �p,
which enabled us to treat nonadiabatic potentials and light
shifts separately and perturbatively. We can further suppress
tunneling losses by working at � 	= 0.

In the blue-detuned ac-Stark scheme, �0− ∼ |E−| ∼
|�|, so this tunneling loss rate is strongly suppressed as
exp[−|�|/Ew].

In the red-detuned ac-Stark scheme, there is no state below
the state of interest and therefore no tunneling.
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P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 103, 123004 (2009).

[7] M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson,
J. I. Cirac, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 109,
235309 (2012).

[8] O. Romero-Isart, C. Navau, A. Sanchez, P. Zoller, and J. I.
Cirac, Phys. Rev. Lett. 111, 145304 (2013).

[9] G. S. Agarwal and K. T. Kapale, J. Phys. B: At., Mol. Opt. Phys.
39, 3437 (2006).

[10] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature (London)
426, 638 (2003).

[11] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Science 293,
663 (2001).

[12] A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D.
Lukin, Phys. Rev. Lett. 100, 093005 (2008).
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