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Abstract The study is aimed at revealing the decisive

factors for relative stabilities of acyclic p-electron systems

of polyenes, the carbon backbones of which are of different

type of branching. The systems are modeled as sets of

N weakly interacting double (C=C) bonds. The relevant

total p-electron energies are represented in the form of

power series containing members of even orders with

respect to the averaged resonance parameter of single (C–

C) bonds. For distinct isomers of the same polyene, both

zero-order energies and respective second-order correc-

tions are shown to take uniform values. Relative stabilities

of these isomers are then primarily determined by the

fourth-order member of the series that, in turn, consists of

two additive components of opposite signs, viz., of the

stabilizing component expressible as a sum of transferable

increments of individual triplets of linearly conjugated

C=C bonds [i.e., of the three-membered conjugated paths

(CPs)] and of the destabilizing component depending on

overall adjacencies (connectivity) of C=C bonds. Lower

stabilities of p-electron systems of branched and/or cross-

conjugated polyenes vs. the linear ones then follow from

comparative analyses of the relevant fourth-order energies,

and this destabilization is shown to originate either from

(a) a reduced number of CPs or from (b) higher adjacencies

of C=C bonds in the former isomers. An actual interplay of

both factors (c) also is rather common. The three cases (a)–

(c) are illustrated by specific examples.
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Introduction

Numerous computational methods are available nowadays

that allow us to calculate any molecular property almost as

accurately as it is required (see e.g. [1]). Meanwhile,

understanding of rules and laws governing these properties

lags behind [2–4] the extensive development of computa-

tions. To achieve the latter end, simplified approaches and

models of molecules should be invoked.

The present study addresses qualitative aspects of

thermodynamic stability of polyenes and especially the

dependence of this characteristic upon the extent and

type of branching of the carbon backbone. Recent

advances in synthesis of fully cross-conjugated polyenes

(dendralenes) [5, 6] followed by experimental investi-

gations of their intriguing properties [5, 7, 8] stimulate

an interest into the above-specified topic. The evident

importance of the structure/property relations themselves

also is among the underlying motives. Finally, polyenes

(including the branched ones) play the role of reference

structures in the Hess–Schaad group additivity

scheme [9, 10], as well as serve as archetypal systems
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for polyconjugated organic materials widely applied in

optoelectronics [8, 11].

Higher stabilities of (poly)conjugated compounds as

compared to appropriate reference structures (see e.g. [12,

13]) generally follow from experimental heats of formation

(e.g. two ethene molecules serve as a reference system for

1,3-butadiene). Moreover, the relevant difference is usually

entirely ascribed to formation of a more extended united p-

electron system and it is known as conjugation energy

(although corrections for protobranching and hyperconju-

gation have been recommended recently [14]). At the

Hückel level, total p-electron energies are commonly used

to evaluate the extents of conjugation in related compounds

and/or to rationalize the distinctions (see e.g. [10]).

Two alternative perspectives on the very polyene chain

deserve mention in this context that yield extreme Hückel-

type models of the relevant p-electron system. The first one

concentrates mostly on constitution of the carbon backbone

as a whole. Resonance parameters are assumed here to take

uniform values for all carbon–carbon bonds for simplicity.

The resulting model of polyene then coincides with the

molecular graph (see e.g. [15]), the vertices and edges of

which represent atoms and bonds, respectively. The rele-

vant studies of conjugation energies [4, 13, 16–20] are

carried out mostly by means of the chemical graph theory

[15]. In particular, analysis of the principal Kekulé valence

structure of polyene in terms of conjugated paths (CPs) of

various lengths (i.e., of linear fragments consisting of C=C

and C–C bonds alternately) [4, 21] appears to be fruitful in

this field. An additional invoking of the main concepts of

the valence bond (VB) theory (such as the Dewar reso-

nance structures) also yields important conclusions

concerning conjugation [13].

Another perspective on the same polyene chain consists

in consideration of the latter as a set of weakly interacting

double (C=C) bonds, where the single (C–C) bonds play

the role of the interaction. Resonance parameters are then

accordingly assumed to take significantly alternating val-

ues over the chain and perturbative approaches

(overviewed below) are consequently applied. Advantages

of this (perturbational) perspective over the former (graph–

theoretical) one are as follows: first, it is in line with the

chemical way of thinking about an involved compound as

consisting of quasi-transferable elementary fragments, as

well as with the classical definition of conjugation as an

interaction of unsaturated functional groups. Second, it is

compatible with the observed bond length alternation [12,

13] peculiar to polyenes of any size. Finally, application of

alternating resonance parameters yields a proper chain-

length dependence of the relevant excitation energies [22].

With this in mind, the present study is based on a pertur-

bative treatment of p-electron systems of polyenes.

Nevertheless, some concepts of graph–theoretical origin

also are invoked, in particular that of CPs [4, 21].

Accordingly, a considerable attention is paid to comparison

of predictions of both approaches.

Development of the perturbational perspective on

polyenes apparently started together with that of the well-

known simple PMO theory [23]. Later, more sophisticated

approaches to analysis of p-electron energies of polyene-

like systems have been suggested, e.g. those based on

perturbative treatments of configuration interaction (CI)

[24, 25] (besides, the second energy expansion was asser-

ted to converge [25] even in the case of uniform resonance

parameters). Since the authors of these studies ultimately

abandon many-electron wave functions and turn to inter-

acting atomic or bond orbitals (AOs or BOs) when looking

for chemically illustrative pictures of conjugation (delo-

calization) effects, the methods concerned may be regarded

(and referred to) as indirect ones. Again, a perturbative

expansion for total energies of molecules directly via cer-

tain submatrices (blocks) of the initial one-electron

Hamiltonian matrix (H) has been suggested recently [26–

28], where H was represented in the basis of either AOs or

BOs and no CI was invoked. The derivation of this series

was based on two points, viz., (a) the known interrelation

between the total energy being sought (E), the one-electron

Hamiltonian matrix of the system concerned (H) and the

relevant charge-bond order matrix (P) [E = Trace (PH)]

and (b) the direct method of obtaining the matrix P by

means of solution of the so-called commutation equation

[29]. Since submatrices (blocks) of the matrix H are

non-commutative quantities (as opposed to usual matrix

elements), the new perturbation theory (PT) has been

called the non-commutative Rayleigh–Schrödinger PT

(NCRSPT) [30, 31]. Application of this power series

allowed us to discriminate between stabilities of p-electron

systems of very similar constitution [28] in contrast to the

simple PMO theory [23].

Let us return to polyenes themselves. The reduced sta-

bilities of fully cross-conjugated polyenes (dendralenes) vs.

the respective linear isomers is a well-established fact [5, 7,

8, 12, 13, 16, 24]. The regular constitution of these chain-

like systems allows the relevant p-electron energies to be

expressed algebraically and analyzed in the general case

without specifying the number of carbon atoms [13, 16, 17,

24]. As a result, destabilization of dendralenes vs. linear

polyenes has been traced back to unfavorable conditions

for the so-called indirect delocalization in the cross-con-

jugated chain caused by specific orbital phase properties

[24]. Recently, the same phenomenon has been accounted

for by lower numbers of the Dewar resonance structures

[13].

Dendralenes, however, make only a small part of bran-

ched polyenes: the majority of the latter are of irregular

constitution and contain both linear and cross-conjugated

V. Gineityte

123



triplets of C=C bonds. As to theoretical studies, only a few

contributions are devoted to the effect of the branching

itself on the efficiency of p-conjugation. In this respect, the

most general conclusion follows from the chemical graph

theory, namely that ‘‘thermodynamic stability of polyenes

decreases with branching’’ [17]. More specifically, the

linear isomer H2C=(CH)n-2=CH2 was shown to have a

maximal p-electron energy among all acyclic polyenes

CnHn?2, whereas the 1,10-divinyl isomer [(H2C=CH)2-

C(CH)n-6=CH2] proved to take the second place [18].

Besides, predictions of relative stabilities of distinct iso-

mers were mostly under focus of these studies rather than

qualitative accounting for the results obtained.

The main aim of the present contribution consists in

application of the power series for total energies of Refs.

[26–28] to corroborate the reduced stabilities of p-electron

systems of branched polyenes, in general, and of fully

cross-conjugated ones, in particular, and to give an insight

into the nature of this destabilization. The paper consists of

two parts: the next (theoretical) section contains an over-

view of the principal points of the approach to be applied

regarding the particular case of polyenes. Thereupon,

specific examples are studied. Details concerning practical

application of the power series for total energies are given

in the ‘‘Appendix’’.

Theory

Qualitative models of p-electron systems (including the

standard Hückel (HMO) theory [32]) usually are formu-

lated in the basis of 2pz AOs of carbon atoms. To construct

an initial Hamiltonian matrix of polyenes, let us also start

with this basis set.

Let a certain polyene contain N uniform double (C=C)

bonds and thereby 2N carbon atoms. The respective p-

electron system will be then represented by an 2N-dimen-

sional basis set of 2pz AOs of these atoms {v}. The AOs will

be characterized by uniform Coulomb parameters (a) and the

equality a = 0 will be accepted. Further, let resonance

parameters between pairs of AOs of chemically bound atoms

only be taken into consideration. The basis set {v} may be

then divided into two N-dimensional subsets {v*} and {vo}

so that pairs of orbitals belonging to chemical bonds (C=C or

C–C) find themselves in different subsets. This implies the

non-zero resonance parameters to take place in the off-di-

agonal (intersubset) blocks of our initial Hamiltonian matrix.

Accordingly, zero submatrices stand in the diagonal (intra-

subset) positions of the latter (as is peculiar to alternant

hydrocarbons in general [32–34]). Finally, let us enumerate

the AOs in such a way that orbitals belonging to the same

C=C bond (say, to the Ith one) acquire the coupled numbers

i and N ? i as exemplified in Fig. 1. As a result, resonance

parameters of these strong bonds take the diagonal positions

in the intersubset blocks of our matrix. Uniform values of

these parameters (b) also are among natural assumptions

here. Let our (negative) energy unit coincide with b in

addition. The usual equality b = 1 then immediately fol-

lows. Similarly, the averaged resonance parameter of weak

(C–C) bonds will be denoted by c and supposed to be a

sufficiently small (i.e., first order) term vs. the above-speci-

fied energy unit.

As a result, the initial Hamiltonian matrix of our polyene

(H) is representable as a sum of the zero-order member

(H(0)) and of the first-order one (H(1)), including parame-

ters of C=C and C–C bonds, respectively, viz.,

H ¼ Hð0Þ þ H ð1Þ ¼
0 I
I 0

�
�
�
�

�
�
�
�
þ 0 cB

cBþ 0

�
�
�
�

�
�
�
�
; ð1Þ

where the orders are defined with respect to parameter c
and correspondingly denoted by subscripts (0) and (1).

Notation I here and below stands for the unit (sub)matrix

and the superscript ? designates the transposed (Hermi-

tian-conjugate) matrix. Unit off-diagonal elements of the

(sub)matrix B (Bij, i 6¼ j) correspond to C–C bonds,

otherwise these take zero values. Meanwhile, the diagonal

Fig. 1 Examples of polyenes of different types of branching, all of

them containing N C=C bonds: the linear chain (I) and its fully cross-

conjugated counterpart (II), as well as representatives of branched

chains (III–VI). Numberings of carbon atoms and/or their 2pz AOs

also are shown, where AOs under numbers 1, 2,…, N and N ? 1,

N ? 2,…, 2N belong to subsets fv�g and {vo}, respectively
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elements vanish (i.e., Bii = 0), because entire resonance

parameters of C=C bonds are included into the zero-order

matrix Hð0Þ. Besides, no need arises here to specify the

particular constitution of the given polyene. Thus, the

matrix H of Eq. (1) actually embraces the whole class of

these hydrocarbons.

The above-introduced subsets of AOs {v*} and {vo} are

characterized by a zero energy gap. Consequently, the

perturbative approach of Refs. [26–28] cannot be

straightforwardly applied to the matrix H of Eq. (1) and a

definite transformation of the basis set is required. To this

end, let us turn to the basis of bond orbitals (BOs) of C=C

bonds fug. The bonding BO (BBO) of the Ith C=C bond

and its antibonding counterpart (ABO) will be defined as a

normalized sum and difference, respectively, of the rele-

vant AOs vi
* and voNþi. These BOs will be correspondingly

denoted by uðþÞi and uð�Þi, where the subscript i refers to

the Ith bond. Finally, let us define the subset of BBOs

fuðþÞg and that of ABOs fuð�Þg. Passing from the initial

basis {v} to the new one fug may be then represented by

the following simple unitary matrix

U ¼ 1
ffiffiffi

2
p I I

I �I

�
�
�
�

�
�
�
�
; ð2Þ

which serves to transform the initial matrix H of Eq. (1).

The new Hamiltonian matrix is as follows

H0 ¼ H0
ð0Þ þH0

ð1Þ ¼
I 0
0 �I

�
�
�
�

�
�
�
�
þ S R

Rþ Q

�
�
�
�

�
�
�
�
; ð3Þ

where the superscript serves to distinguish between the

present matrix and that of Eq. (1), and S, Q and R are

submatrices proportional to the above-specified parameter

c, viz.

S ¼ �Q ¼ c
2
ðB þ BþÞ; R ¼ c

2
ðBþ � BÞ: ð4Þ

Thus, the transformed Hamiltonian matrix (H0) also

consists of a zero-order member (H0
ð0Þ) and of a first-order

one (H0
ð1Þ) with respect to the same parameter c, the former

containing one-electron energies of BBOs and of ABOs in

its diagonal positions (these correspondingly coincide with

1 and –1 in our energy units) and the latter embracing week

interactions between BOs of C=C bonds (interbond

resonance parameters). Again, the N 9 N-dimensional

submatrices of the matrix H0 refer to individual subsets

fuðþÞg and fuð�Þg and to their interaction. In particular,

elements of submatrices S, Q, and R of the first-order

member H0
ð1Þ represent the following types of the above-

mentioned interactions

Sij ¼ uðþÞi

D �
�
�Ĥ uðþÞj

�
�
�

E

; Qlm ¼ uð�Þl

D �
�
�Ĥ uð�Þm

�
�
�

E

;

Ril ¼ uðþÞi

D �
�
�Ĥ uð�Þl

�
�
�

E

;
ð5Þ

where the BOs concerned are shown inside the bra- and

ket-vectors. Proportionality of these elements to c seen

from Eq. (4) reflects the fact that the interaction between

C=C bonds takes place through C–C bonds. It is then no

surprise that non-zero values of the elements concerned

correspond only to pairs of BOs of C=C bonds connected

by C–C bonds (and referred to below as the first-neigh-

boring C=C bonds). Formally, the latter conclusion follows

from Eq. (4) after taking into account the above-mentioned

correspondence between non-zero elements of the (sub)-

matrix B and C–C bonds. Finally, the equality Bii = 0

along with Eq. (4) yields zero values for intrabond reso-

nance parameters Sii, Qii and Rii as exhibited below in

Eq. (7).

The main good of the above-performed transformation

is that the subsets fuðþÞg and fuð�Þg are now separated one

from another by a substantial energy gap (equal to 2) vs.

the intersubset interaction R. Thus, the matrix H0 of Eq. (3)

meets the requirements of the NCRSPT [30, 31] and

thereby the perturbative approach of Refs. [26–28] may be

applied. As a result, the total p-electron energy of polyenes

(E) may be represented in the form of power series, i.e., as

a sum of increments (E(k)) of various orders k with respect

to the avaged resonance parameter of C–C bonds (c). The

zero order member of this series (E(0)) coincides with the

total energy of N isolated C=C bonds (2 N) in accordance

with the expectation, whereas the first-order one (E(1))

vanishes [26]. Meanwhile, each subsequent increment E(k)

(k[ 1) is expressible via products of the entire submatrices

(blocks) S, Q, and R and consequently contains the

respective (kth) power (ck) of our parameter c. The overall

convergence of this series has been studied in Ref. [35].

Finally, analysis of formulae for E(k) [28] showed that non-

zero corrections of odd orders (k = 3, 5,…) arise for

(poly)cyclic systems only. That is why we will confine

ourselves here to the most important corrections of even

orders E(2) and E(4).

Before passing to these corrections, let us introduce the

following principal matrices [26, 31, 36]

Gð1Þ ¼ � 1

2
R;

Gð2Þ ¼ � 1

2
SGð1Þ � Gð1ÞQ
� �

¼ 1

4
SR � RQð Þ

¼ 1

4
SRþ RSð Þ;

ð6Þ

where the last relation is based on the equality Q = –S

seen from Eq. (4). Substituting Eq. (4) in Eq. (6) shows in

addition that matrices G(1) and G(2) correspondingly

contain factors c and c2 and thereby are of the first and

second orders as indicated by the subscripts (1) and (2).

Zero diagonal elements of the same matrices easily follow
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from their skew-Hermitian nature [35]. The overall result

concerning diagonal elements of our matrices takes then

the form

Sii ¼ Qii ¼ Rii ¼ G 1ð Þii ¼ G 2ð Þii ¼ 0: ð7Þ

Employment of matrices G(1) and G(2) allows the energy

corrections E(2) and E(4) to be represented in a compact and

chemically illustrative form. Thus, the second-order

member (E(2)) takes a rather simple form, viz.

Eð2Þ ¼ 4TrðGð1ÞG
þ
ð1ÞÞ[ 0; ð8Þ

whereas the fourth-order one (E(4)) consists of a sum of two

components [27] defined as follows

E
ðþÞ
ð4Þ ¼ 4Tr Gð2ÞG

þ
ð2Þ

� �

[ 0;

E
ð�Þ
ð4Þ ¼ �4Tr Gð1ÞG

þ
ð1ÞGð1ÞG

þ
ð1Þ

� �

\0:
ð9Þ

The notation Tr here and below stands for a trace of the

whole matrix product within parentheses. The second and

fourth orders of these corrections with respect to parameter c
may be easily verified using Eqs. (4), (6), (8), and (9). As is

seen from Eqs. (8) and (9), traces of positive-definite

matrices [37] of the type AA? stand in these relations.

This implies an a priori positive sign and thereby the

stabilizing nature of the second-order energy E(2) (the

negative energy unit should be recalled here). Meanwhile,

the components of the fourth-order correction E(4) are of

opposite signs as indicated by additional superscripts (?)

and (-). From Eq. (7) it follows also that both the second-

order energy E(2) and the positive component of the fourth-

order one (E
ðþÞ
ð4Þ ) contain no intrabond contributions. By

contrast, the matrix product Gð1ÞG
þ
ð1Þ determining the

negative component of the fourth-order energy (E
ð�Þ
ð4Þ ) is a

symmetric (Hermitian) matrix. Consequently, diagonal

elements ðGð1ÞG
þ
ð1ÞÞii take non-zero values and prove to be

responsible for a large part of this energy component [27].

Let us turn now to interpretation of the above-exhib-

ited expressions. As is seen from Eqs. (5) and (6), the

element G(1)il of the first-order matrix G(1) connects the

BBO uðþÞi and the ABO uð�Þl. Moreover, it is propor-

tional to the relevant interbond resonance parameter (Ril)

and inversely proportional to the energy gap between

BBOs and ABOs (equal to 2). The relevant implications

are then as follows: first, the element G(1)il represents the

direct (through-space) interaction between BOs uðþÞi and

uð�Þl. Second, non-zero values of these elements [i.e., of

G(1)il and of G(1)li] refer to BOs belonging to first-

neighboring C=C bonds as it was the case with resonance

parameters Ril and Rli. In other words, two significant

elements of the matrix G(1) correspond to any C–C bond

and/or to any butadiene-like fragment of the given

polyene [vanishing direct intrabond interactions G(1)ii

also are taken into consideration here (see Eq. 7)]. If we

invoke now the concept of the simplest conjugated path

[4, 21] embracing two C=C bonds and abbreviated below

as CP(2), an analogous two-to-one correspondence fol-

lows immediately between significant direct interbond

interactions and CP(2)s. Accordingly, the total number of

non-zero elements of the matrix G(1) coincides with the

twofold number of these paths in the given polyene.

Finally, the above-specified significant elements are local

in their nature and, consequently, take uniform values for

all CP(2)s. These simple rules are illustrated by specific

examples in the next section [see e.g. Eq. (11)].

Let us recall now that the matrix G(1) gives birth to the

positive (stabilizing) second-order energy of Eq. (8). All

CP(2)s of our polyene then contribute uniform increments

to this energy and the latter is consequently proportional to

the number of these paths. This, in turn, implies coinciding

second-order energies for distinct isomers of the same

polyene, usually containing uniform numbers of C–C

bonds and thereby of CP(2)s (see also the next section). It

is evident that fourth-order energies start to play the deci-

sive role in this case. Thus, let us now turn to second-order

matrices G(2) and Gð1ÞG
þ
ð1Þ underlying these important

increments.

Elements (G(2)il) of the matrix G(2) are interpretable as

indirect (through-bond) interactions of the same BOs (uðþÞi
and uð�Þl). Indeed, from Eq. (6) we obtain

Gð2Þil ¼
1

4

X

ðþÞj
SijRjl �

X

ð�Þm
RimQml

2

4

3

5; ð10Þ

where sums over (?)j and over (-)m correspondingly

embrace BBOs and ABOs of the given system. It is seen that

both BBOs (uðþÞj) and ABOs (uð�Þm) of other bonds play the

role of mediators here [note the j 6¼ i and m 6¼ l because of

Eq. (7)]. Since the matrix G(2) determines the positive (sta-

bilizing) component of the fourth-order energy as Eq. (9)

indicates, the interbond interactions concerned may be

referred to as stabilizing indirect interactions. Similarly, the

element ðGð1ÞG
þ
ð1ÞÞij of the matrix Gð1ÞG

þ
ð1Þ represents the

indirect interaction between two BBOs (uðþÞi and uðþÞj) via

ABOs of the remaining C=C bonds (uð�Þm). Accordingly, the

diagonal element ðGð1ÞG
þ
ð1ÞÞii may be interpreted as the

indirect self-interaction of the BBOuðþÞi via ABOs. As these

elements contribute to the destabilizing component of the

fourth-order energy [see Eq. (9)], we will call them desta-

bilizing indirect interactions.

Therefore, an additional stabilization (or destabilization)

of the p-electron system of a certain polyene vs. the rele-

vant second-order energy depends upon the outcome of an

interplay between the above-specified two types of indirect

interactions of BOs. That is why the interrelation becomes

of importance between relative efficiencies of these inter-

actions and constitution of the given hydrocarbon. To
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clarify this point, let us dwell now on conditions that

ensure significant values of the relevant matrix elements.

In the case of elements G(2)il defined by Eq. (10), the

orbitals uðþÞj and uð�Þm should overlap directly both with

uðþÞi and with uð�Þl to be efficient mediators. Hence, non-

zero values of the stabilizing indirect interactions may

correspond only to pairs of second-neighboring C=C bonds

possessing a common first neighbor. As opposed to the

first-order elements G(1)il, however, presence of such a

neighbor (say, of the Mth C=C bond in between the Ith and

the Lth one) is not sufficient for a significant element G(2)il

to arise: the mutual arrangement of the three involved C=C

bonds also plays an important role here. Given that the

whole fragment I–M–L is of a linear constitution, the

mediating effect of the BBO uðþÞm and that of the ABO

uð�Þm are added together and, consequently, a non-zero

element G(2)il (G(2)li) arises. Meanwhile, the analogous two

increments cancel out one another for the cross-conjugated

arrangement of bonds I, M, and L and the relevant element

vanishes (see the ‘‘Appendix’’ for details). In summary,

two non-zero elements (G(2)il and G(2)li) correspond to BOs

of the terminal bonds I and L of any linear hexatriene-like

fragment I–M–L and thereby to any CP embracing three

C=C bonds and abbreviated below as CP(3) [the remaining

elements G(2)ii, G(2)im and G(2)ml vanish because of

Eq. (7)]. Accordingly, the total number of non-zero ele-

ments of a certain matrix G(2) coincides with the twofold

number of CP(3)s in the relevant system. Uniform absolute

values of these significant elements also easily follow from

the definition of Eq. (10). Consequently, the stabilizing

component E
ðþÞ
ð4Þ of the fourth-order energy E(4) consists of

a sum of transferable increments of individual CP(3)s and

thereby it is determined by the total number of these paths.

Further, an element ðGð1ÞG
þ
ð1ÞÞij does not vanish, if in

the given system there is an ABO uð�Þm such that both

G(1)im and G(1)jm (Gþ
ð1Þmj) take non-zero values. Because of

the equality G(1)ii = 0 for any i [see Eq. (7)], ABOs uð�Þi
and uð�Þj are not able to play this role. Thus, the ABO

uð�Þm necessarily belongs to a third (Mth) C=C bond,

where M 6¼ I and M 6¼ J. Again, the bonds under numbers

I and M, as well as M and J should be first neighboring to

ensure non-zero elements G(1)im(G(1)mi) and G(1)jm (G(1)mj)

as discussed above. Thus, an off-diagonal element

ðGð1ÞG
þ
ð1ÞÞij (i 6¼ j) takes a non-zero value for any pair of

second-neighboring C=C bonds I and J possessing a

common first neighbor M (the mutual arrangement of the

three bonds plays no role here). This implies that the

higher is the total number of the second-neighboring pairs

of C=C bonds in the given polyene, the more significant is

the destabilizing component of the fourth-order energy.

Furthermore, a diagonal element ðGð1ÞG
þ
ð1ÞÞii (also con-

tributing to E
ð�Þ
ð4Þ [27]) is proportional to the number of

first neighbors of the respective (i.e., of the Ith) C=C

bond. The total absolute value of the negative (destabi-

lizing) energy component E
ð�Þ
ð4Þ may be then concluded to

be determined by overall adjacencies (connectivity) of

C=C bonds in the given polyene. As a result, an extra

destabilization of more compact isomers vs. the less

compact ones is anticipated.

It is seen, therefore, that differences in total fourth-order

energies of isomers of a certain polyene (if any) may

originate either (a) from distinct numbers of CP(3)s or

(b) from dissimilar adjacencies of C=C bonds. Manifesta-

tion of both factors simultaneously (c) also cannot be

excluded. These cases are exemplified in the next section.

Results and discussion

Let us start with the linear polyene (I) and its fully cross-

conjugated isomer (dendralene) (II), both of them con-

taining the same number of C=C bonds N (Fig. 1). The

relevant zero-order energies also are uniform [E(0)-

(I) = E(0)(II) = 2N] along with the numbers of C–C bonds

(N - 1) and thereby of CP(2)s. In respect of CPs of higher

orders, however, the systems I and II differ from one

another substantially, e.g. these contain N - 2 and zero

CP(3)s, respectively.

The principal first-order matrices (G(1)) representing the

linear polyenes (I) were shown to take a common form

valid for any N [28]. The same may be easily demonstrated

for dendralenes (II) as well. Let G(1)(I) and G(1)(II) stand

for these unified matrices. We then obtain

Gð1ÞðIÞ ¼ � c
4

0 1 0 0 . . .
�1 0 1 0 . . .
0 �1 0 1 . . .
0 0 �1 0 . . .
. . . . . . . . . . . . . . .

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

;

Gð1ÞðIIÞ ¼ � c
4

0 1 0 0 . . .
�1 0 �1 0 . . .
0 1 0 1 . . .
0 0 �1 0 . . .
. . . . . . . . . . . . . . .

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

;

ð11Þ

where a c-dependent factor (-c/4) is introduced in front of

matrices concerned for convenience (construction of these

matrices is exemplified in the ‘‘Appendix’’). It is seen that two

non-zero elements (e.g. G(1)12 and G(1)21, G(1)23 and G(1)32,

etc.) correspond to any pair of first-neighboring C=C bonds

(C1 = CN?1 and C2 = CN?2, C2 = CN?2 and C3 = CN?3,

etc.) in the above-exhibited matrices and thereby to any CP(2)

of our polyenes. These significant elements take uniform

absolute values in addition. Thus, constitutions of matrices

G(1)(I) and G(1)(II) are in line with expectations of the above

section. Furthermore, matrices of Eq. (11) resemble one

another except for signs of some elements. As a result, the
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second-order energiesE(2)(I) andE(2)(II) also are uniform and

proportional to the respective number of CP(2)s (N - 1), viz.,

these coincide with c2(N - 1)/2.

Similarly, the matrix products Gð1ÞG
þ
ð1Þ representing the

chains I and II also differ one from another only in signs of

their off-diagonal elements in accordance with the same

adjacencies of C=C bonds in the polyenes concerned.

Indeed, the terminal and the internal C=C bonds possess one

and two first neighbors, respectively, in both chains. Con-

sequently, diagonal elements of both matrices

Gð1ÞG
þ
ð1Þ(I) and Gð1ÞG

þ
ð1Þ(II) coincide with 1,2,2...2,1 (note

that c2=16 stands for the front factor in this case). Moreover,

non-zero off-diagonal elements (equal either to 1 or to –1)

occupy the second-neighboring positions [(i, i ? 2) and

(i - 2, i)] in the same matrix products, the total number of

these elements coinciding with 2(N - 2), i.e., with the

twofold number of second-neighboring pairs of C=C bonds

in the chains I and II [matrices of Eq. (18) serve here as

examples]. As a result, the relevant destabilizing compo-

nents of the fourth-order energies also are uniform, viz.

E
ð�Þ
ð4Þ ðIÞ ¼ E

ð�Þ
ð4Þ ðIIÞ ¼ � c4

64
4ðN � 2Þ þ 2� þ ½2ðN � 2Þ½ �f g

¼ � c4

32
ð3N � 5Þ;

ð12Þ

where the contributions of diagonal and of off-diagonal

elements are shown within first and second square brackets,

respectively.

Let us turn now to the remaining second-order matrices

G(2)(I) and G(2)(II) along with consequent stabilizing

fourth-order energy components. For the linear isomer I,

Eqs. (6), (9), and (11) yield the following formulae

Gð2ÞðIÞ ¼
c2

8

0 0 1 0 . . .
0 0 0 1 . . .
�1 0 0 0 . . .
0 �1 0 0 . . .
. . . . . . . . . . . . . . .

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

;

E
ðþÞ
ð4Þ ðIÞ ¼

4c4ðN � 2Þ
32

;

ð13Þ

where c2/8 is used now as a front factor. The expression for

G(2)(I) of Eq. (13) illustrates the above-concluded two-to-

one correspondence between non-zero elements of the

matrix G(2) and individual CP(3)s. Proportionality between

E
ðþÞ
ð4Þ ðIÞ and the number of these paths (N–2) also is seen.

The fact that both G(2)(I) and E
ðþÞ
ð4Þ ðIÞ vanish for the CP(3)-

free butadiene (N = 2) causes no surprise here. The total

fourth-order energy of the chain I (E(4)(I)) is shown in

Table 1 and proves to be proportional to N–3. Thus, the

correction E(4)(I) is a positive quantity for N[ 3 owing to

predominance of its stabilizing component E
ðþÞ
ð4Þ ðIÞ over the

destabilizing one E
ð�Þ
ð4Þ ðIÞ. This implies the sufficiently long

linear polyenes to be additionally stabilized vs. the sum

E(0)(I) ? E(2)(I) due to the fourth-order energy. By con-

trast, the alternating signs of elements when passing from

one line of the matrix G(1)(II) of Eq. (11) to another gives

birth to a zero matrix G(2)(II) for dendralenes in accordance

with absence of CP(3)s in these chains. As a result, the

stabilizing fourth-order energy component E
ðþÞ
ð4Þ ðIIÞ van-

ishes. The total correction E(4)(II) then coincides with

E
ð�Þ
ð4Þ ðIIÞ of Eq. (12) and takes a negative value for any N.

Therefore, the above results support lower relative sta-

bilities of p-electron systems of dendralenes [5, 7, 8, 12,

13, 16, 24] as compared to those of linear polyenes.

Moreover, the destabilization concerned is unambiguosly

traced back to the absence of CP(3)s in the cross-conju-

gated chain in contrast to the linear one. An analogous

conclusion easily follows also from the simple CP model

[4, 21]. In contrast to the latter, however, an additional

destabilizing factor is now revealed to manifest itself in

both systems under comparison that is related to connec-

tivity (adjacencies) of C=C bonds. Only because of the

above-established coincidence of the relevant energy

increments E
ð�Þ
ð4Þ ðIÞ and E

ð�Þ
ð4Þ ðIIÞ, the destabilizing factor

becomes irrelevant when comparing relative stabilities of

linear and cross-conjugated polyenes. Besides, an alterna-

tive viewpoint to the same results also is possible:

destabilization of a certain dendralene (II) vs. the linear

isomer (I) [coinciding with E
ðþÞ
ð4Þ ðIÞ of Eq. (13)] is pro-

portional to the number (N–2) of cross-conjugated triplets

of C=C bonds and/or of branching sites, each of them

contributing 4c4=32. An analogous proportionality fol-

lowed also from the chemical graph theory [17].

Let us turn now to isomers of less regular constitution also

containing N C=C bonds. Let us start with a single-branched

chain III (Fig. 1), consisting of the main linear N - 1-mem-

bered subchain and of a vinyl group (C1 = CN?1) attached to

the second carbon atom of the former. It is evident that the

system III contains N - 1 C–C bonds and thereby N–1 CP(2)s

as previously. Thus, both the zero-order energy of this new

system and the relevant second-order correction coincide with

Table 1 Stabilizing (E
ðþÞ
ð4Þ ) and destabilizing (E

ð�Þ
ð4Þ ) fourth-order

energy components for isomers I–VI along with the relevant total

values (E(4))

Isomer CP(3)s E
ðþÞ
ð4Þ E

ð�Þ
ð4Þ E(4) E(4) (N = 10)

I N–2
4c4ðN�2Þ

32
� c4ð3N�5Þ

32

c4ðN�3Þ
32

7c4

32

II 0 0 � c4ð3N�5Þ
32

� c4ð3N�5Þ
32

� 25c4

32

III N–3
4c4ðN�3Þ

32
� c4ð3N�5Þ

32

c4ðN�7Þ
32

3c4

32

IV N–2
4c4ðN�2Þ

32
� 3c4ðN�1Þ

32

c4ðN�5Þ
32

5c4

32

V N–3
4c4ðN�3Þ

32
� 3c4ðN�1Þ

32

c4ðN�9Þ
32

c4

32

VI N–1
4c4ðN�1Þ

32
� c4ð3Nþ1Þ

32

c4ðN�5Þ
32

5c4

32

The respective numbers of CP(3)s and an example of E(4) for the case

N = 10 are shown in the second and the last columns, respectively
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the former values for I and II. Moreover, an analogous coinci-

dence (seen from Table 1) may be easily proven for

destabilizing components of the fourth-order energies. This

result causes little surprise if we bear in mind the same adja-

cencies of C=C bonds in the chains I, II, and III. Meanwhile, the

number of CP(3)s is lower in the single-branched chain III and

coincides withN–3. This implies a reduced number of non-zero

elements in the matrix G(2)(III) as compared to G(2)(I) of

Eq. (13) (the BOs of bonds C1 = CN?1 and C3 = CN?3 are

characterized by zero elementsG(2)13 andG(2)31 in the chain III

in contrast to I). As a result, the relevant stabilizing component

E
ðþÞ
ð4Þ ðIIIÞ is proportional to N–3 and proves to be reduced by

4c4=32 as compared to E
ðþÞ
ð4Þ ðIÞ of Eq. (13). Finally, the total

fourth-order correction E(4)(III) contains a factor N–7 and also

is lowered analogously vs. E(4)(I).

Thus, the single-branched isomer III is predicted to be

destabilized vs. the linear one (I) for the same reason, i.e.,

due to the reduced number of CP(3)s. The relevant extent

of destabilization now equals to 4c4=32 and coincides with

the above-discussed increment of a single triplet of cross-

conjugated C=C bonds.

Let us now consider another example (IV) of single-

branched chains, where the vinyl group is ‘‘shifted’’ from

the second carbon atom of the main subchain to the third

one. This system (Fig. 1) also contains N C=C and N–1 C–

C bonds. Thus, let us turn immediately to the relevant

second-order matrices and fourth-order energies.

The matrix G(2)(IV) involves 2(N–2) non-zero off-diag-

onal elements as it was the case with the matrix G(2)(I) of

Eq. (13). This result is not surprising if we bear in mind

coinciding numbers of CP(3)s in the chains IV and I. Con-

sequently, the relevant stabilizing components of fourth-

order energies E
ðþÞ
ð4Þ ðIVÞ and E

ðþÞ
ð4Þ ðIÞ also are uniform and

proportional to N–2. Meanwhile, matrices Gð1ÞG
þ
ð1Þ(IV) and

Gð1ÞG
þ
ð1Þ(I) differ one from another significantly: first, the

matrix Gð1ÞG
þ
ð1Þ(IV) contains elements 1,3,1,2,2…2,1 in its

principal diagonal instead of 1,2,2…2,1 of the above-con-

sidered matrixGð1ÞG
þ
ð1Þ(I). This fact reflects distinct numbers

of first neighbors for bonds C2 = CN?2 and C3 = CN?3 in

the chains concerned. Second, the total number of non-zero

off-diagonal elements is higher in the matrix Gð1ÞG
þ
ð1Þ(IV) as

compared to Gð1ÞG
þ
ð1Þ(I) because of the growing number of

second-neighboring pairs of C=C bonds when passing from I

to IV. As a result, the sum of squares of all elements of the

matrix Gð1ÞG
þ
ð1Þ(IV) exceeds that of Gð1ÞG

þ
ð1Þ(I). The desta-

bilizing component of the fourth-order energy of the chain

IV is then as follows

E
ð�Þ
ð4Þ ðIVÞ ¼ � c4

64
f½4ðN � 4Þ þ 9 þ 3� þ ½2ðN � 1Þ�g

¼ � 3c4

32
ðN � 1Þ; ð14Þ

and its absolute value is increased by 2c4=32 as compared

to that of Eq. (12) (the square brackets correspondingly

contain contributions of diagonal elements and of off-di-

agonal ones as previously). As a result, the total correction

E(4)(IV) is proportional to N–5. Hence, the relative stability

of the system IV also is lower as compared to the linear

isomer I. The underlying reason of this destabilization,

however, proves to be entirely different from the above-

established one and coincides now with growing connec-

tivity (adjacencies) of C=C bonds when passing from I to

IV.

Let us turn finally to double-branched polyene chains

containing two triplets of cross-conjugated C=C bonds.

The total number of these bonds coincides with N as

previously.

Let us start with the system V (Fig. 1) and note imme-

diately an evident analogy between the couple V and III, on

the one hand, and that of IV and I, on the other hand.

Implications of this analogy are as follows: first, the

numbers of CP(3)s are uniform inside both couples of

polyenes (these are correspondingly equal to N - 3 and

N - 2). Second, adjacencies of C=C bonds grow when

passing from III to V, as it was the case with I and IV. The

same relations reveal themselves also when comparing the

relevant fourth-order energy components. Thus, we obtain

that E
ðþÞ
ð4Þ ðVÞ coincides with E

ðþÞ
ð4Þ ðIIIÞ, both of them being

proportional to N–3 (see Table 1). Meanwhile, the absolute

value of E
ð�Þ
ð4Þ ðVÞ exceeds that of E

ð�Þ
ð4Þ ðIIIÞ by 2c4=32 (the

same distinction followed also from comparison of

E
ð�Þ
ð4Þ ðIVÞ to E

ð�Þ
ð4Þ ðIÞ). The total fourth-order energy E(4)(V)

is then proportional to N–9. Hence, the double-branched

chain V is destabilized by 2c4=32 relatively to its single-

branched counterpart III in accordance with the expecta-

tion. As with the above-considered passing from I to IV,

the present destabilization also may be accounted for by

growing adjacencies of C=C bonds. If we compare the

double-branched chain V to the linear polyene I in addi-

tion, the overall destabilization of the former equals to

6c4=32 and proves to be due to both factors, viz., to low-

ering of the number of CP(3)s and to the increasing

adjacencies of C=C bonds.

Another (and the last) example (VI) contains two vinyl

groups (C3 = CN?3 and C4 = CN?4) attached to the third

and fourth carbon atoms of the main N - 2-membered

subchain. Among examples of Fig. 1, this particular system

contains the highest number of CP(3)s, namely N–1. The

consequent fourth-order stabilizing energy component also

accordingly takes a maximal value. An enhanced stability

of the chain VI expected from the increased number of

CP(3)s, however, is partially cancelled by the growing

destabilizing component of the same energy equal to
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E
ð�Þ
ð4Þ ðVIÞ ¼ � c4

64
f½4ðN � 5Þ þ 16 þ 4� þ ½2ðN þ 1Þ�g

¼ � c4

32
ð3N þ 1Þ ð15Þ:

Comparison of this expression to the above ones indi-

cates the component E
ð�Þ
ð4Þ ðVIÞ to be of the highest absolute

value too. This result may be traced back to much higher

adjacencies of C=C bonds in the most compact polyene VI.

Indeed, the bond C2 = CN?2 possesses four first neighbors

here and this fact is accompanied by an exclusively high

matrix element (Gð1ÞG
þ
ð1Þ)22. Moreover, the number of

second-neighboring pairs of C=C bonds now equals to

N ? 1. The total fourth-order energy of our double-bran-

ched polyene VI is then ultimately proportional to N - 5.

As is seen from Table 1, the corrections E(4)(IV) and

E(4)(VI) take the same value in spite of distinct particular

components due to both different numbers of CP(3)s and

dissimilar adjacencies of C=C bonds. This implies that p-

electron systems of isomers under comparison are isoen-

ergetic to within fourth-order terms inclusive. Thus,

members of the sixth order of the same power series [38]

should be invoked to discriminate them.

The whole set of fourth-order energies (E(4)) shown in

Table 1 (it is additionally exemplified by the particular

case N = 10) yields the following order of relative stabil-

ities of p-electron systems of the above-studied isomers:

I[ IV, VI[ III[V[ II. Thus, the linear isomer (I) and

the cross-conjugated one (II) are of the highest and lowest

stabilities, respectively, whereas the remaining isomers

(III–VI) take intermediate places.

Conclusions

Application of the power series for total energies of mole-

cules [26–28] to p-electron systems of polyenes (undertaken

in the present study) provides us with an efficient tool for

qualitative evaluations and predictions of relative stabilities

of isomers of different extent of branching, as well as for

rationalization of their distinct stabilities (if any).

The fourth-order member of the series is shown to play

the decisive role in the formation of the total p-electron

energies of polyenes. This member, in turn, consists of a

sum of two components of opposite signs. As a result, the

actual stability of a certain p-electron system proves to be

generally determined by the outcome of an interplay

between two factors of opposite nature, viz., (a) of the

stabilizing influence of linear conjugated fragments con-

taining three C=C and two C–C bonds alternately (CP(3)s)

and (b) of destabilization proportional to the overall

connectivity (adjacencies) of C=C bonds. If we recall here

that the first factor only is taken into consideration in the

simple CP model(s) [4, 21], the above-mentioned principal

conclusion of the present study may be regarded as an

extension of the important concept of conjugated paths.

The above-obtained results corroborate lower stabilities

of fully cross-conjugated p-electron system of dendralenes

(II) vs. the linear ones of usual polyenes (I) and indicate

this phenomenon to be entirely due to the absence of

CP(3)s in the former case. An analogous conclusion easily

follows also from the qualitative CP model(s). The present

analysis yields an accounting for such a success of this

simple model: The reason is that the increments related to

connectivity of C=C bonds are uniform owing to the same

adjacencies of these bonds in the chains under comparison.

Destabilization of p-electron systems due to reduced

numbers of CP(3)s is found also for some partially cross-

conjugated polyenes [e.g., for III (Fig. 1)], the adjacencies

of C=C bonds of which coincide with those of I and/or II.

The above-concluded generalized nature of the approach

applied vs. the CP model(s) becomes especially evident

when passing to more compact branched isomers of

polyenes, wherein C=C bonds possessing three and/or four

neighbors also are present (e.g., the last three examples of

Fig. 1). The point is that adjacencies (connectivity) of C=C

bonds generally are higher in these systems and, conse-

quently, the second (destabilizing) factor starts to play an

equally important (or even a decisive) role in the formation

of the actual stabilities of the relevant p-electron systems.

As a result, some compact isomers of polyenes are pre-

dicted to be destabilized (vs. the linear chain I or another

reference structure) even if the systems under comparison

contain the same number of CP(3)s. In particular, the first

representatives are expected to be less stable vs. the second

ones in such couples of polyenes as IV and I, as well as V

and III (Fig. 1) in spite of uniform numbers of CP(3)s equal

to N–2 and N–3, respectively.

Appendix: Construction of the principal matrices.
An example of hexatriene

Application of the above-suggested approach to a certain

polyene consists of the following steps: first, we enumerate

the initial AOs {v} in the above-described manner. Second,

we construct the relevant matrix B and derive matrices

S(-Q) and R using Eq. (4). Finally, we find matrices G(1)

and G(2) on the basis of Eq. (6) and substitute them into

expressions for energy corrections of Eqs. (8) and (9). To

illustrate the construction of the above-enumerated prin-

cipal matrices, let us dwell on the linear (VII) and branched

(VIII) isomers of hexatriene (Fig. 2), coinciding with par-

ticular cases of chains I and II for N = 3. The relevant
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initial matrices B(VII) and B(VIII) (see Eq. (1)) are as

follows:

BðVIIÞ ¼
0 0 0

1 0 0

0 1 0

�
�
�
�
�
�

�
�
�
�
�
�

; BðVIIIÞ ¼
0 0 0

1 0 1

0 0 0

�
�
�
�
�
�

�
�
�
�
�
�

ð16Þ

and contain two unit elements in accordance with two C–C

bonds present in both isomers (Numberings of 2pz AOs are

shown in Fig. 2).

Application of Eq. (4), in turn, yields

SðVIIÞ ¼ �QðVIIÞ ¼ SðVIIIÞ ¼ �QðVIIIÞ ¼ c
2

0 1 0

1 0 1

0 1 0

�
�
�
�
�
�
�

�
�
�
�
�
�
�

;

RðVIIÞ ¼ c
2

0 1 0

�1 0 1

0 �1 0

�
�
�
�
�
�
�

�
�
�
�
�
�
�

;

RðVIIIÞ ¼ c
2

0 1 0

�1 0 �1

0 1 0

�
�
�
�
�
�
�

�
�
�
�
�
�
�

:

ð17Þ

It is seen that the isomers VII and VIII are characterized by

uniform blocks S and Q. Meanwhile, (sub)matrices R(VII)

and R(VIII) differ one from another in signs of some off-

diagonal elements. Because of the simple proportionality

between matrices R and G(1) seen from Eq. (6), the same

distinction refers also to the principal matrices G(1)(VII)

and G(1)(VIII) [the latter evidently are particular cases of

G(1)(I) and G(1)(II) of Eq. (11)]. Similarly, off-diagonal

elements of opposite signs arise in the matrix products

Gð1ÞG
þ
ð1Þ(VII) and Gð1ÞG

þ
ð1Þ(VIII), viz.

Gð1ÞG
þ
ð1ÞðVIIÞ ¼

c2

16

1 0 �1

0 2 0

�1 0 1

�
�
�
�
�
�

�
�
�
�
�
�

;

Gð1ÞG
þ
ð1ÞðVIIIÞ ¼

c2

16

1 0 1

0 2 0

1 0 1

�
�
�
�
�
�

�
�
�
�
�
�

:

ð18Þ

By contrast, the overall extent of dissimilarity of

matrices G(2)(VII) and G(2)(VIII) is much higher. Indeed,

from Eqs. (6) and (17) we obtain

Gð2ÞðVIIÞ ¼
c2

8

0 0 1

0 0 0

�1 0 0

�
�
�
�
�
�

�
�
�
�
�
�

; Gð2ÞðVIIIÞ ¼ 0: ð19Þ

Thus, the distinction now consists in the non-zero and

zero values, respectively, of elements G(2)13 and G(2)31,

referring to BOs of the terminal bonds C1 = C4 and

C3 = C6. To account for this important peculiarity, let us

recall that matrix products SR and -RQ (=RS) of Eq. (6)

are correspondingly responsible for mediating increments

of BBOs and of ABOs to particular elements of the matrix

G(2) [see also Eq. (10) along with the discussion nearby

and note that the product -RQ coincides with RS due to

the first relation of Eq. (4)]. For the isomers concerned,

these products are as follows

SRðVIIÞ ¼ c2

16

�1 0 1

0 0 0

�1 0 1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

; RSðVIIÞ ¼ c2

16

1 0 1

0 0 0

�1 0 �1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

;

SRðVIIIÞ ¼ c2

16

�1 0 �1

0 2 0

�1 0 �1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

; RSðVIIIÞ ¼ c2

16

1 0 1

0 �2 0

1 0 1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

:

ð20Þ

It is seen that contributions of products SR and RS to

decisive elements G(2)13 and G(2)31 are of the same and of

opposite signs for isomers VII and VIII, respectively.

Hence, the mediating effects BOs uðþÞ2 and uð�Þ2 of the

central bond C2 = C5 to the above-mentioned elements are

added together (cancel out one another) for the linear

(branched) hexatriene and this fact causes the distinction

between matrices G(2) (VII) and G(2)(VIII) shown in

Eq. (19). The same state of things evidently refers also to

individual triplets of linear and cross-conjugated C=C

bonds in extended polyenes.
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