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ABSTRACT: The block diagonalization problem for a Fockian or a Huckel-type model
Ž .Hamiltonian matrix H of molecule originating from the Brillouin theorem and

Ž .determining the noncanonical molecular orbitals NCMOs has been studied. An
alternative form of the problem, viz. the so-called eigenblock equation for the matrix H,
has been suggested, which formally resembles the usual secular equation for certain
two-dimensional matrix. The operator analog of the eigenblock equation also has been
derived, and it acquired the form of the usual secular problem for an operator. However,
the multidimensional eigenblocks of the matrix H, playing the role of eigenvalues in this
new equation, do not commute with the respective multidimensional eigenfunctions. A

Ž .noncommutative Rayleigh]Schrodinger perturbation theory PT has been developed for¨
the solution of operator problems of the above-mentioned type. It has been shown that
the PT used previously when obtaining the NCMOs of saturated organic molecules on

w Ž . Ž .xthe basis of the Brillouin theorem V. Gineityte, J. Mol. Struct. Theochem 343, 183 1995
Ž .actually corresponds to the case of two eigenfunctions eigenvalues of the

noncommutative Rayleigh]Schrodinger PT. On the whole, search for NCMOs of¨
molecules is shown to be related to a nontrivial generalization of a two-level problem,

Ž .where multidimensional noncommutative characteristics stand for the usual ones. Q
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Introduction

lectronic structures of molecules are mostE commonly studied in terms of molecular or-
Ž .bitals MOs resulting from the canonical Har-

Ž . w xtree]Fock HF equation 1, 2 . Since the MOs are
usually sought in the form of linear combination of

w Ž .xcertain basis functions e.g., atomic orbitals AOs ,
the canonical HF equation resolves itself into the
diagonalization problem for the Fockian matrix.
Owing to the relation of eigenvalues of this matrix

Žto ionization potentials of molecule the Koopmans
w x. Ž .theorem 3 , the canonical MOs CMOs are espe-

cially popular in molecular spectroscopy.
The set of CMOs, however, is not the only

wpossible set of one-electron states of molecule 1, 2,
x Ž4 . Moreover, certain advantages of other i.e., non-

.canonical MOs against the CMOs are known.
Thus, orbitals localized mostly on separate frag-

Žments of molecule including chemical bonds and
.lone electron pairs may be found just among
Ž . w xnoncanonical MOs NCMOs 4, 5 . As a result,

relations may be established between the classical
Žchemical concepts such as that of localized two-

.electron bond and quantum chemical characteris-
w Ž . xtics localized MOs LMOs , respectively . The pos-

sibility of deriving common expressions for NC-
MOs of large sets of similar molecules discussed
below, and the relation between the NCMO repre-
sentation matrix and the one-electron density ma-

w xtrix 6]9 also rank among the advantages of the
NCMOs.

Constitution and properties of LMOs have been
Žstudied extensively for various molecules see, e.g.,

w x.10, 11 , but this does not refer to NCMOs in
general. Moreover, the greater popularity of the
indirect ways of obtaining LMOs from CMOs gave

w xrise to an opinion 5 of LMOs being of a sub-
sidiary nature vs. CMOs. However, the possibility
of obtaining NCMOs directly from the Brillouin

w xtheorem 5]8, 12]14 speaks against such an opin-
ion.

Among particular forms of the Brillouin theo-
rem there is a zero value requirement for an off-di-
agonal element of the Fockian operator referring to

w xan occupied and a vacant MO 1 . In its matrix
form, the requirement resolves itself into the zero-
matrix condition for the occupied]vacant off-diag-

Ž .onal block submatrix of the total Fockian matrix
w xin the basis of NCMOs being sought 6]8, 12]14 .

Hence, the block diagonalization problem for the

Fockian matrix arises and it may be evidently
w xtraced back to the noncanonical HF equation 1 . In

this context, the alternative way of interpretation
of electronic structures in terms of NCMOs seems
to be a more general approach as compared to the
canonical one.

Investigations in this field started with a contri-
w xbution 12 where the existence of nonorthogonal

LMOs containing a single strictly localized bond
Ž .orbital BO and tails consisting of vacant BOs

have been proved. Moreover, explicit algebraic ex-
pressions for these tails in terms of elements of the
initial Huckel-type Hamiltonian matrix have been

w xobtained using a perturbative approach 12]14
Žwhere interorbital interactions resonance parame-

.ters were included into the perturbation matrix.
The more general nature of the noncanonical

approach vs. the canonical one becomes especially
evident if we look for a common quantum chemi-
cal description of a class of molecules as a whole
w x w x6]8 , e.g., of alkanes 7, 8 . Indeed, the diagonal-
ization problem underlying the canonical approach
may be solved for a particular matrix only. It is no
surprise, therefore, that the early attempts in de-
velopment of the electronic structure theory of

Ž .saturated molecules including alkanes based on
the canonical one-electron problem in the frame-

w xwork both of the Huckel-type models 15]19 and
w xof the extended Huckel theory 20 did not avoid

certain specifying of the structure of particular
compound, to say nothing of more sophisticated
Ž . w xself-consistent approaches 21]23 .

Alternatively, the block diagonalization prob-
lem proved to be solvable in terms of entire

Ž .submatrices blocks of the initial matrix without
specifying either the structures and dimensions of
submatrices themselves or the nature of approxi-
mations used when constructing the initial matrix
w x6]8 . Such a solution actually refers to certain
class of matrices. As a result, common expressions
have been derived for orthogonal NCMOs of satu-

w xrated organic molecules in general 6 and of al-
w xkanes in particular 7, 8 in the framework of the

Huckel model using a certain matrix form of per-
Ž .turbation theory PT . Zero-order resonance pa-

rameters between either two occupied BOs or two
w xvacant ones were allowed in Ref. 6 in contrast to

w xprevious investigations 7, 8, 12]14 .
In the framework of the above-mentioned PT

Ž .the entire representation matrix of NCMOs C in
the basis of BOs has been sought in the form of

w xpower series 6 . It is noteworthy that no explicit
expressions have been obtained for separate cor-
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Ž .rections C of this series in contrast to the usualŽk .
w xRayleigh]Schrodinger PT 2, 24, 25 . In their place,¨

matrix equations determining separate blocks of
these corrections have been derived.

This promotes an expectation that certain non-
trivial generalization corresponds to the problem
under discussion vs. diagonalization of a particu-
lar matrix by means of the usual PT. This study
deals with investigation of the nature of this gen-
eralization.

wThe standard Rayleigh]Schrodinger PT 2, 24,¨
x25 is commonly applied to secular equations for

Hamiltonian operators. Hence, to compare the PT
w xof Ref. 6 to the conventional Rayleigh]Schro-¨

dinger PT, a new form of the Brillouin theorem is
required, which would resemble a secular equa-
tion for an operator as closely as possible.

To this end, we reformulate the block diagonal-
ization problem into the so-called eigenblock equa-
tion at first, so that the new equation looks like the
secular problem for certain two-dimensional ma-

Ž .trix second section . Thereupon, we rewrite the
Žeigenblock equation into an operator form third

.section which formally resembles the usual secu-
lar equation for an operator; however, the multi-
dimensional analog of the eigenvalue does not
commute with that of the respective eigenfunction.
Then we develope a generalized version of the PT
Ž .fourth section suitable for solution of operator
equations of the above-mentioned type. And fi-

w xnally, we make sure that the PT of Ref. 6 corre-
sponds to the two-level case of the noncommuta-
tive Rayleigh]Schrodinger PT.¨

Alternative Form of the Block
Diagonalization Problem

Let us consider a molecule containing 2n elec-
� 4trons and a set of p orthogonal basis orbitals w ,i

i s 1, 2, . . . , p. In accordance with the Brillouin
w x � 4theorem 1, 12]14 , turning from the basis w toi

� 4the relevant set of NCMOS c may be carried outj
by transforming the initial Fockian or Huckel-type
Hamiltonian matrix H of our molecule into the
following block-diagonal form:

Žn=n.E 01y1 Ž .H9 s C HC s , 1Ž s=s.0 E2

where C is the transformation matrix. The super-
Ž .scripts of submatrices blocks E and E indicate1 2

Žtheir dimensions n coincides with the number of
occupied NCMOs, whereas s s p y n stands for

.the number of vacant NCMOs .
Let us assume now that the initial matrix H

Ž .may be divided at least formally into four sub-
matrices, viz.

Žn=n. Žn=s.H H11 12 Ž .H s . 2Ž s=n. Ž s=s.H H21 22

Then the matrix C being sought also may be repre-
Ž .sented as shown in Eq. 2 . As a result, an analogy

Ž .may be traced between the problem of Eq. 1 and
the diagonalization problem for a two-dimensional
matrix h, the latter corresponding to the case n s s
s 1. Given that an additional unitarity condition is
imposed on the matrix C, i.e.,

q Ž .C C s I, 3

the above-mentioned analogy allows the problem
Ž .of Eq. 1 to be rewritten in the form

Ž .HC s CE 4

where E stands for the total block-diagonal matrix
Ž . Ž .of the right-hand side of Eq. 1 . Equation 4

resembles the eigenvalue problem for the matrix h,
w xand it has been called the eigenblock equation 7 .

The secular problem for a two-dimensional ma-
trix is known to be solvable algebraically in terms
of matrix elements. This fact along with the anal-

Ž .ogy between Eq. 4 and the secular problem for
the matrix h promotes an expectation that a gen-

Ž .eral solution of Eq. 4 and thereby of the block
diagonalization problem in terms of entire subma-
trices HŽn=n., HŽn=s., HŽ s=n., and HŽ s=s. is feasible,11 12 21 22
and it may be found without specifying the inter-
nal constitution of submatrices. Then the submatri-
ces are likely to play the role of usual matrix
elements.

Such a solution, however, has been obtained for
a particular case only. This case corresponds to
saturated organic molecules where two subsets of
basis orbitals separated by a large energy gap vs.
the intersubset interactions have been revealed

w xwithin the initial basis set 6 . The first subset
Ž .contained the bonding bond orbitals BBOs along

Ž .with lone pair orbitals if any , while the second
Ž .one consisted of antibonding BOs ABOs . As a

result, first-order magnitude of the off-diagonal
Žn=s. Ž s=n. Ž .blocks H and H of Eq. 2 vs. the diagonal12 21

ones HŽn=n. and HŽ s=s. has been assumed. The11 22
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latter, in turn, have been represented as sums of
respective zero-order terms E and E and ofŽ0.1 Ž0.2
the respective first-order terms T and Q. Then the

Ž .total Hamiltonian Fockian matrix H takes the
form

Ž .H s H q V, 5Ž0.

where

E 0Ž0.1 Ž .H s 6Ž0. 0 EŽ0.2

and

T R Ž .V s 7qR Q

are the zero-order and first-order matrices, respec-
tively; R stands for the off-diagonal block HŽn=s.,12
and the superscript q designates the Hermitian
conjugate matrix.

Ž . Ž .The form of the matrix H shown in Eqs. 5 ] 7
allowed a perturbative approach to be applied

Ž .when solving Eq. 4 . As a result, the solution of
the eigenblock equation has been obtained in terms
of entire submatrices E , E , T, R, and Q. ThisŽ0.1 Ž0.2
solution will be discussed later.

Operator Form of the Brillouin
Theorem

It is well-known that the eigenvalue equations
for matrices may be reformulated into those for

w xrespective operators 2 . For example, the operator
of the form

2
ˆ < : ² < Ž .h s w h w 8Ý i i j j

i , js1

corresponds to any two-dimensional matrix h con-
Ž . < :taining the elements h i, j s 1, 2 , and w andi j i

² <w are basis functions of the two-level system inj
the form of ket and bra vectors, respectively.
Moreover, the secular equation

ˆ< : < : Ž .h c s c e 9m m m

is the operator analog of the matrix problem

Ž .hc s c e , 10m m m

ˆ< :where c is an eigenfunction of the operator h,m
e is the respective eigenvalue, and c stands form m

Ž .the column matrix of two coefficients c k s 1, 2k m
contained within the linear combination

2

< : < : Ž .c s w c . 11Ým k k m
ks1

Let us look now for the operator form of the
Ž .eigenblock equation of Eq. 4 . To this end, let us

define n- and s-dimensional row matrices consist-
ing of basis functions w , w , . . . , w and w ,1 2 n nq1
w , . . . w , in accordance with the partition of thenq2 p

Ž .matrix H shown in Eq. 2 . These row matrices will
be called multiorbitals and will be designated by

< : < :ket vectors F and F . Then the bra vectors1 2
² < ² <F and F coincide with column matrices con-1 2
taining the respective complex-conjugate basis or-
bitals.

Ž .The total matrix H of Eq. 2 may be considered
as consisting of four multidimensional elements

Ž .H i, j s 1, 2 , each of them corresponding to ai j
submatrix. Let us define an operator

2
ˆ < : ² < Ž .H s F H F 12Ý i i j j

i , js1

where

ˆ² < < : Ž .H s F H F 13i j i j

and

² < : Ž .F F s Id 14i j i j

is the respective orthonormalization condition.
It is evident that after substituting a column

² <and a row matrix for the bra and ket vector Fi
< : Ž .and F , respectively, into Eq. 13 , a multidimen-j

sional Hamiltonian matrix element results. Ac-
² : Ž .cordingly, the product F N F of Eq. 14 yieldsi j

the relevant overlap matrix of basis orbitals. Fur-
< :thermore, projectors into the multiorbitals F1

< :and F may be defined2

n
ˆ < :² < < :² < Ž .P s F F ' w w 15aÝ1 1 1 i i

is1
p

ˆ < :² < < :² < Ž .P s F F ' w w . 15bÝ2 2 2 i i
isnq1

ˆ ˆIt is seen that P and P coincide with projectors1 2
into subspaces of basis orbitals w , w , . . . , w and1 2 n
w , w , . . . , w .nq1 nq2 p
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Let us consider the operator equation of the
form

ˆ < : < : Ž .H C s C E , 16m m m

< :where C is a row matrix either of occupied orm
of vacant NCMOs, and it may be called the multi-
eigenfunction. Accordingly, E stands for the re-m
spective eigenblock playing the role of a multidi-
mensional eigenvalue. It is evident that E doesm

< : Ž .not commute with C within Eq. 16 .m
Ž .It may be easily verified that Eq. 16 is the

operator form of the Brillouin theorem being
Ž .sought. To this end, Eq. 12 along with the multi-

< :eigenfunction C in the form of linear combina-m
tion

2

< : < : Ž .C s F C 17Ým k k m
ks1

containing the multidimensional coefficients Ck m
Ž . Ž .should be substituted into Eq. 16 and Eq. 14

should be used.
Let us dwell now on the particular case of the

Ž . Ž .matrix H shown in Eqs. 5 ] 7 . From these expres-
sions it follows that

Ž .H s H q V 18i j Ž0. i j i j

for any i and j. Hence, zero- and first-order
Hamiltonian operators may be introduced:

2
ˆ < : ² < Ž .H s F H F 19ÝŽ0. i Ž0. i j j

i , js1

2
ˆ < : ² < Ž .V s F V F , 20Ý i i j j

i , js1

ˆand the total operator H consists of a sum of these
operators.

Therefore, the eigenblock equation for the ma-
trix H has been rewritten into an equation for the

ˆoperator H. The eigenblocks of the matrix H and
row matrices containing separate sets of NCMOs
play the role of eigenvalues and eigenfunctions,
respectively, in this new problem. As a result,
noncommutativeness between any multidimen-
sional eigenvalue and the respective multieigen-
function proves to be the main distinctive feature
of this operator problem.

In the next section we are about to formulate a
generalized version of the PT suitable for the solu-

Ž .tion of operator equations like that of Eq. 16 .

Noncommutative
Rayleigh]Schrodinger Perturbation¨
Theory

Let us start with the following operator prob-
lem:

ˆ < : < : Ž .H C s C E , 21a a a

ˆwhere H stands for the initial Hamiltonian opera-
tor, E designates a multidimensional eigenvalue,a

< :and C is the respective row matrix being calleda
the multieigenfunction. The only difference of Eq.
Ž . Ž .21 from Eq. 16 consists in the allowance for an
arbitrary number of multieigenvalues and multi-
eigenfunctions.

ˆFurthermore, the operator H is supposed to
ˆconsist of the zero-order term H and of theŽ0.

ˆfirst-order term V, the latter being called the per-
turbation operator, i.e.,

ˆ ˆ ˆ Ž .H s H q V . 22Ž0.

We will assume also that the zero-order operator
Ĥ complies with the respective zero-order equa-Ž0.
tion

ˆ < : < : Ž .H C s C E . 23Ž0. Ž0. i Ž0. i Ž0. i

< :The zero-order multieigenfunctions C are sup-Ž0. i
posed to be orthonormalized, i.e.,

² < : Ž .C C s Id . 24Ž0.m Ž0. i im

w xAs with the usual PT 2, 24, 25 , let us represent
ˆ< :the multieigenfunction C of the operator H ina

the form of linear combination of the zero-order
multieigenfunctions

< : < : Ž .C s C C , 25Ýa Ž0. i i a
i

where C are multidimensional coefficients.i a
Ž .Thereupon, Eq. 25 will be substituted into Eq.

Ž . Ž . Ž .21 and the relations of Eqs. 22 and 23 will be
used. We then obtain

ˆ< : < : < :C E C q V C C s C C E .Ý ÝŽ0. i Ž0. i i a Ž0. i i a Ž0. i i a a
i i

Ž .26

Ž .After multiplying Eq. 26 by the complex-con-
² <jugate function C from the left-hand side ofŽ0.m
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Ž .this relation and taking into account Eq. 24 , we
obtain the principal equation of our PT in terms of
matrices:

Ž .C E y E C s V C , 27Ým a a Ž0.m m a mi i a
i

ˆ² < < :where V s C V C are elements of themi Ž0.m Ž0. i
ˆoperator V.

Ž .It is seen that the distinctive feature of Eq. 27
w xvs. the relevant analog of the usual PT 24 consists

in noncommutativeness of factors within the prod-
ucts of the former. Moreover, the different relative
order of factors within the two terms of the left-

Ž .hand side of Eq. 27 proves to be essential.
Let us look for the coefficients C and thei a

eigenvalues E in the usual form of power series:a

C s C q C q C q ???i a Ž0. i a Ž1. i a Ž2. i a Ž .28
E s E q E q E q ???a Ž0.a Ž1.a Ž2.a

Ž . Ž .and substitute Eq. 28 into Eq. 27 .
Let us start with the zero-order equation

Ž .C E y E C s 0, 29Ž0.m a Ž0.a Ž0.m Ž0.m a

w xwhich belongs to matrix equations of the form 26

Ž .AX q XB s aD, 30

where X is the matrix being sought and a is a
Ž .constant. Indeed, Eq. 29 coincides with the partic-

Ž .ular case of Eq. 30 when D s 0. Two cases may
be distinguished here:

1. If E / E , the only zero solution CŽ0.a Ž0.m Ž0.m a
Ž . Žs 0 may be expected to be peculiar to Eq. 29 see

. < :the Appendix . The eigenfunction C would con-a
tain first-order terms only in this case, and such a
result is not compatible with the expression for the

ˆoperator H where the zero-order term is also pres-
w Ž .xent see Eq. 22 .

2. If E s E , the solution C s I com-Ž0.a Ž0.m Ž0.m a
Ž .plies with Eq. 29 . At the same time, this solution

resembles the respective expression of the usual
w xPT 24 . Hence, let us accept the equalities

Ž .E s E , C s Id . 31Ž0.a Ž0.m Ž0.am am

Then the subscripts m, i, k, etc., describing the
Ž .zero-order multieigenfunctions of Eq. 23 , may be

used also when denoting those of the total Hamil-
ˆtonian operator H.

The first-order equation for a s k takes the form

Ž .C E q C E y E C s V . 32Ž0.m k Ž1.k Ž1.m k Ž0.k Ž0.m Ž1.m k m k

For m / k, we then obtain

Ž .E C y C E q V s 0. 33Ž0.m Ž1.m k Ž1.m k Ž0.k m k

It is seen that in the case of commutative parame-
Ž .ters Eq. 33 yields the usual expression for the

Ž .coefficient c . In the general case Eq. 33 be-Ž1.m k
longs to matrix equations of the form shown in Eq.
Ž .30 and may be solved as discussed in the Ap-
pendix.

Let us look now for the coefficient C . ThisŽ1.k k
may be obtained on the basis of the orthonormal-
ization requirement for multieigenfunctions:

² : Ž .C N C s Id . 34k m k m

² < < :To this end, let us write C and C in the formk m

< : < : < :C s C q C CÝm Ž0.m Ž0. i im
i/m Ž .35

q² < ² < ² <C s C q C C .Ýk Ž0.k jk Ž0. j
j/k

Ž . Ž .After substituting Eq. 35 into 34 and collecting
the first-order terms, we obtain

q Ž .C q C s 0. 36Ž1.m k Ž1.k m

Ž .In the case m s k, from Eq. 36 it follows that

q Ž .C q C s 0. 37Ž1.k k Ž1.k k

Ž .Equation 37 implies a zero-matrix condition
Ž .for the Hermitian symmetric part of the correc-

Žtion C , whereas the skew-Hermitian skew-Ž1.k k
.symmetric part remains undefined. The analog of

this result within the usual PT coincides with the
zero-value requirement for the real part of the
coefficient c following from the orthonormal-Ž1.k k
ization condition for the eigenfunction being

w xsought 25 . The imaginary part of this coefficient
w xis also taken to be zero in the usual PT 24, 25 ,

and this additional assumption corresponds to a
certain choice of the phase of the wave function
w x25 . On the basis of this analogy let us assume
that

q Ž .C s C s 0. 38Ž1.k k Ž1.k k

ŽThis does not imply, however, that other choices
of Cq y C and thereby other solutions ofŽ1.k k Ž1.k k

.our problem are impossible .
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Ž .Let us take now the case m s k within Eq. 32
Ž .and use Eq. 38 . We then obtain

Ž .E s V , 39Ž1.k k k

wand this result also coincides with the usual one 2,
x24, 25 .

The second-order equation of our PT takes the
form

d E q C V q C E y E Cm k Ž2.k Ž1.m k k k Ž2.m k Ž0.k Ž0.m Ž2.m k

Ž .s V C , 40Ý mi Ž1. i k
i

where V stands for E in accordance with Eq.k k Ž1.k
Ž .39 .

Ž .In the case m / k the relation of Eq. 40 be-
comes

Ž .E C y C E q W s 0, 41Ž0.m Ž2.m k Ž2.m k Ž0.k m k

where

Ž .W s V C y C V . 42Ým k mi Ž1. i k Ž1.m k k k
i

Ž .The relation of Eq. 41 for C proves to beŽ2.m k
Ž .similar to that for C shown in Eq. 33 . TheŽ1.m k

coefficient C may be obtained from theŽ2.k k
second-order terms of the requirement shown in

Ž .Eq. 34 . Then the following relation results

q q Ž .C q C q C C s 0. 43ÝŽ2.m k Ž2.k m Ž1. i k Ž1. im
i/k , m

As with the first-order term C , let us accept theŽ1.k k
equality

q Ž .C s C . 44Ž2.k k Ž2.k k

Ž .Then the relation of Eq. 43 for m s k yields the
expression

1 q Ž .C s y C C . 45ÝŽ2.k k Ž1. i k Ž1. i k2
i/k

In the case m s k the second-order correction
E for the generalized eigenvalue E followsŽ2.k k

Ž .from Eq. 40 :

Ž .E s V C y C E q E C . 46ÝŽ2.k k i Ž1. i k Ž2.k k Ž0.k Ž0.k Ž2.k k
i

Ž .Using Eq. 44 for C we obtainŽ2.k k

1 qŽ .E s 1 y d V C q C E CÝŽ2.k k i k i Ž1. i k Ž1. i k Ž0.k Ž1. i k2
i

1 q Ž .y E C C . 47Ž0.k Ž1. i k Ž1. i k2

This expression for E may be simplified consid-Ž2.k
erably. To this end let us substitute E C q VŽ0. i Ž1. i k i k
and C E y V for C E and E Cq 'Ž1.k i Ž0. i k i Ž1. i k Ž0.k Ž0.k Ž1. i k
yE C , respectively, in accordance with Eqs.Ž0.k Ž1.k i
Ž . Ž .33 and 36 . We then obtain

1 Ž .Ž . Ž .E s 1 y d V C y C V . 48ÝŽ2.k k i k i Ž1. i k Ž1.k i i k2
i

Therefore, the coefficients C and C of theŽ1.m k Ž2.m k
noncommutative Rayleigh]Schrodinger PT are de-¨

Ž . Ž .termined by matrix equations of Eqs. 33 and 41 ,
whereas C and C prove to be defined alge-Ž1.k k Ž2.k k
braically in terms of the former. Given that the

Ž . Ž .principal equations of Eqs. 33 and 41 are solved,
the multieigenfunctions and multidimensional

ˆeigenvalues of the operator H may be easily ob-
Ž . Ž . Ž . Ž .tained on the basis of Eqs. 31 , 38 , 39 , 45 , and

Ž .48 .

Discussion of the Particular Case of
Saturated Organic Molecules:
Summarizing Remarks

The results corresponding to the Hamiltonian
Ž .Fockian matrix of saturated organic molecules

Ž . Ž .shown in Eqs. 5 ] 7 follow directly from the
expressions given in the preceding section if the
number of multieigenfunctions is assumed to be
equal to 2. Thus, let the subscripts m, l, and k of
the preceding section coincide with either 1 and 2
Ž .see above . Then the following expressions:

Ž .V s R, W s TC y C Q 4912 12 Ž1.12 Ž1.12

Ž . Ž .should be substituted into Eqs. 33 and 41 . As a
result, the above-mentioned matrix equations de-
termine the off-diagonal blocks of the matrix C.
These are

Ž .E C y C E q R s 0, 50Ž0.1 Ž1.12 Ž1.12 Ž0.2

Ž .E C y C E q W s 0, 51Ž0.1 Ž2.12 Ž2.12 Ž0.2 12

and coincide with the respective equations of Ref.
w x6 . Accordingly, the diagonal blocks of the matrix

Ž .C follow from Eq. 45 :

1 1q qC s y C C , C s y C C ,Ž2.11 Ž1.12 Ž1.12 Ž2.22 Ž1.12 Ž1.122 2

Ž .52

and this result also is in agreement with the rele-
w xvant expressions of Ref. 6 . And finally, from Eqs.
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Ž . Ž .39 and 48 we obtain that

1 qŽ .E s E q T y C R q RC ,1 Ž0.1 Ž1.12 Ž1.122 Ž .53
1 q qŽ .E s E q Q q C R q R C .2 Ž0.2 Ž1.12 Ž1.122

Therefore, the matrix form of the PT developed in
w xRef. 6 for saturated organic molecules actually

coincides with the case of two multieigenfunctions
of the noncommutative Rayleigh]Schrodinger PT.¨
In this connection, additional conclusions may be
drawn about the nature of generalization underly-
ing the common quantum mechanical description
of saturated organic molecules based on the block
diagonalization problem for the respective com-

w xmon Huckel-type Hamiltonian matrix 6 .
So far as the matrix representation of the prob-

lem is concerned, the essence of the generalization
Žconsists in passing from one-dimensional com-

. Ž .mutative to multidimensional noncommutative
Hamiltonian matrix parameters.

The operator form of the same problem follows
from the results given in the third section pro-
vided that the multidimensional parameters H i j

Ž . Ž . Ž .are taken from Eqs. 5 ] 7 . Accordingly, Eq. 12
may be considered as a definition of the common
Hamiltonian operator of saturated organic mole-
cules. In this connection, noncommutativeness of a
multidimensional eigenfunction, and of the respec-
tive multidimensional eigenvalue of the Hamilto-
nian operator of saturated organic molecules, may
be regarded as an alternative formulation of the
nature of the generalization under discussion.

Similar conclusions refer also to the noncanoni-
cal approach to the investigation of the electronic
structure of molecules in general. Thus, applica-
tion of the Brillouin theorem for obtaining NCMOs
of any molecule is associated with passing to mul-

Ž .tidimensional noncommutative quantum chemi-
cal characteristics. The question whether these
characteristics may be derived by means of the
noncommutative Rayleigh]Schrodinger PT should¨
be examined in each particular case separately.

Appendix: On the Solution of the
Matrix Equations AX q XB s aD

The general theory of matrix equations

Ž .AX q XB s aD A1

where A and B are square matrices, a is a constant
and X is the matrix being sought, may be found in

w xRef. 26 . In particular, a unique solution of Eq.
Ž .A1 has been proved to exist if the real parts of
eigenvalues of both matrices A and B are negative.
Moreover, this solution may be presented as an
integral:

`
Ž . Ž . Ž .X s ya exp A t D exp Bt dt . A2H

0

Given that A and B are Hermitian matrices, the
negative-value requirement refers to eigenvalues
themselves.

In the case of saturated organic molecules, we
obtain

Ž .A s E , B s yE A3Ž0.1 Ž0.2

and thereby both A and B are Hermitian matrices.
Ž .One-electron energies of BBOs ABOs of these
Ž .molecules acquire the negative positive values

after an appropriate choice of the energy reference
w xpoint 6 . Moreover, absolute values of these ener-

gies are known to be sufficiently large vs. the
w xinterorbital resonance parameters 27]29 standing

in the off-diagonal positions of matrices E andŽ0.1
E . Hence, the eigenvalues of matrices E andŽ0.2 Ž0.1
yE may be expected to be negative, and theŽ0.2

Ž . Ž .solution of Eq. A1 shown in Eq. A2 is likely to
be valid in this case.

Given that the particular structures of matrices
A and B are known, these may be diagonalized
using unitary matrices U and V:

q q Ž .A* s U AU, B* s V BV, A4

where A* and B* are diagonal matrices involving
elements a and b , respectively, i.e.,i j

U U Ž .A s a d , B s b d . A5i k i i k k j j k j

Ž .Then the initial problem of Eq. A1 may be rewrit-
ten in the form

Ž .A*X* q X*B* s aD*, A6

where X* s UqXV and D* s UqDV. After fur-
Ž .ther rewriting of Eq. A6 into components and

Ž .using Eq. A5 , the elements of the matrix X*
follow:

U U Ž . Ž .X s aD r a q b . A7i j i j i j

Then the matrix X equals to

q Ž .X s UX*V . A8

This algorithm may be regarded as a practical way
Ž .of solving Eq. A1 .
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