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ABSTRACT: The eigenblock equation for a Fockian- or Huckel-type Hamiltonian¨
matrix of a molecule being an alternative form of the Brillouin theorem and determining

Ž .the noncanonical molecular orbitals NCMOs was generalized to the case of
nonorthogonal initial basis sets. As in the Lowdin’s partitioning technique, the initial set¨
of basis orbitals was divided into two subsets. This allowed the problem to be formulated
in terms of these subsets and the respective submatrices. A perturbative approach was
developed for the solution of the new matrix equation in terms of entire submatrices
Ž .blocks of both Fockian and overlap matrices without specifying either the structures or

Ž .dimensions of these submatrices. Two multidimensional molecular orbitals MMOs
Ž .containing the subsets of occupied and vacant noncanonical MOs NCMOs , respectively,

were defined for any molecule, and these MMOs were expressed in the form of linear
combinations of two subsets of basis orbitals with matrix coefficients. A linear combination
of this type may be considered as a generalization of the usual LCAO approximation for
an MO of a two-level system. The relevant common form of the bond-order matrix was
shown to be obtainable on the basis of the projector to a single occupied MMO. These
results allowed us to conclude that the generalized matrix problem obtained in this
article forms the basis of the noncanonical MO theory of electronic structures of molecules
in its matrix representation. The new matrix problem along with its solution was
compared to related problems and methods. � 1999 John Wiley & Sons, Inc. Int J Quant
Chem 72: 559�570, 1999
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Introduction

Žne-electron orbitals of molecules molecularO .orbitals are usually sought in the form of
linear combinations of certain nonorthogonal basis

Ž .functions e.g., AOs . As a result, the operator
equations determining these orbitals turn into re-

� �spective matrix problems 1�3 .
Ž .In the case of the canonical Hartree�Fock HF

� �equation 1, 2 one obtains the diagonalization
problem for the Fockian matrix of molecule along
with orthonormalization condition for molecular
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Ž . Žorbitals MOs being sought these MOs are usu-
Ž ..ally referred to as the canonical MOs CMOs .

Owing to the relation of eigenvalues of the Fockian
matrix to the ionization potentials of a molecule
Ž � �.the Koopmans theorem 4 the sets of CMOs are
especially popular in molecular spectroscopy. It is
also noteworthy that the CMOs are, as a rule,

� �delocalized over the whole molecule 1�3, 5 .
In contrast to the unique canonical HF equation,

various forms of the noncanonical one-electron
problem are possible. Such a variety may be traced
back to the fact that the general version of the HF
equation containing off-diagonal Lagrange multi-

� �pliers has no unique solution 1, 2 . As delocalized
MOs may be more easily obtained from the canon-
ical HF equation, the noncanonical one-electron

� �problem is usually adapted 5 to look for orbitals
localized mostly on separate fragments of molecule
and thereby being more closely related to chemical

� �concepts of bonds, lone electron pairs, etc. 5�7 .
Furthermore, to obtain a set of MOs being as

� �localized as possible 8 , the orthogonality require-
ment for these orbitals is given up in addition,
although the problem becomes both more in-
volved and more ambiguous in this case.

�The well-known Adams�Gilbert equation 5,
� � �9�12 and its various modifications 8, 13�16 serve

as an example of the above-mentioned adaptation.
The respective initial problem takes the form of an
eigenvalue equation for an ambiguous effective
operator in this case. After introducing an appro-
priate localization criterion for orbitals being
sought into this operator, an eigenvalue equation

Ž .for effective Fockian of a subsystem fragment
embedded into the molecule under study follows.
In particular, the criterion of minimal self-energy

Ž .of an atom yields an equation for atoms ions in
� �molecules and�or crystals 9, 10, 12 being closely

� �related to the theory of pseudopotentials 8, 15 . It
is evident that these equations also resolve them-
selves into diagonalization problems when turning
to respective matrix representations.

�In this context, the Brillouin theorem 1, 5,
�17�24 deserves particular attention. Indeed, appli-

cation of this theorem is equivalent to solution of
� �the noncanonical HF equation as shown in 1 . On

the other hand, the theorem itself contains no
particular localization criterion and, consequently,
it may be used to obtain various types of non-

Ž .canonical MOs NCMOs . The existence of NC-
MOs of the desired type also may be verified on

the basis of the Brillouin theorem. This possibility
� �may be exemplified by the results of 18 where

the existence of nonorthogonal NCMOs containing
a single strictly localized bond orbital and tails
consisting of vacant BOs has been proved under
certain conditions.

The most important feature of the Brillouin the-
orem, however, consists of the fact that it yields a
new and more general matrix problem after turn-
ing to matrix representation. Let us discuss this
point in more detail.

Among particular forms of the Brillouin theo-
rem there is a zero value requirement for an off-di-
agonal element of the Fockian operator referring to

� �an occupied and a vacant MO 1 . In its matrix
form, this requirement resolves itself into the
zero-matrix condition for the occupied-vacant off-

Ž .diagonal block submatrix of the total Fockian
� �matrix in the basis of NCMOs being sought 18�24 .

As a result, the block-diagonalization problem for
the Fockian matrix arises and it includes the diago-

� �nalization problem as a particular case 22, 24 .
The more general nature of the block-diagonali-

zation problem versus the diagonality requirement
allowed us to expect that the former has more
general solutions, for example, for entire classes of
matrices. This expectation has been supported by

� �the results of 21�24 , wherein the block-diagonali-
zation problem was solved in an orthogonal basis

Ž .in terms of entire submatrices blocks of the initial
matrix without specifying either the internal con-
stitutions or dimensions of these blocks. Moreover,
these solutions proved to be independent of ap-
proximations made within the initial matrix in-
cluding the use of the Huckel-type model.¨

Inasmuch as nonorthogonal basis sets of AOs
are most commonly used in quantum chemistry,
generalization of the above-mentioned solution to
the case of a nonorthogonal basis becomes an im-
portant task. Now, the solution is expected to be
expressed in terms of submatrices of both Fockian
and overlap matrices. It is precisely the accom-
plishing of this generalization that this article was
aimed at.

Furthermore, we intend to demonstrate that the
solution of the block-diagonalization problem in
terms of submatrices may be used directly to form
other quantum chemical characteristics of mole-

Ž .cules including the bond order BO matrix. This,
in turn, implies a feasibility of constructing a gen-
eral matrix form of the noncanonical theory of
MOs.
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Formulation of the
Block-diagonalization Problem in the
Case of a Nonorthogonal Basis Set

Let us consider a molecule containing 2n elec-
trons and a set of p nonorthogonal basis orbitals
� 4� , i � 1, 2 ��� p. The overlap matrix of these or-i
bitals will be designated by S.

In accordance with the Brillouin theorem in its
� �matrix representation 18�24 , turning from the

� 4 � 4basis � to the relevant set of NCMOs � mayi j
be carried out by transforming the initial Fockian-
or Huckel-type Hamiltonian matrix H of our¨
molecule into a block-diagonal form. Thus, let us
look for a transformation matrix C determined by
the following block-diagonality condition:

Žn�n. Žn�k .E 01� Ž .C HC � E � , 1Žk�n. Žk�k .0 E2

which coincides with the respective requirement in
� �the case S � I 23, 24 . The superscript ‘‘�’’ within

Ž .the left side of Eq. 1 designates the Hermitian-
Ž .conjugate transposed matrix, whereas those of
Ž .submatrices blocks of the matrix E indicate the

Ždimensions of these blocks n coincides with the
number of occupied NCMOs, whereas k � p � n

.stands for the number of vacant NCMOs .
� �As in 21�24 , let us impose an orthogonality

condition on NCMOs being sought. In the case of a
� 4nonorthogonal basis set � , this condition takesi

� �the form 2, 3

� Ž p�p. Ž .C SC � I , 2

where I Ž p�p. is the p-dimensional unit matrix.
Let us invoke now the Lowdin’s partitioning¨

� �technique originally developed 3, 25�28 for
transforming the eigenvalue problems for matrices
into effective problems of lower dimensions. The
central idea of this technique consists of partition-
ing the basis set into two subsets and in reformu-
lating the initial matrix problem in terms of these
subsets and the respective submatrices.

� 4Thus, let us assume that the initial basis set �i
Ž .may be divided at least formally into two subsets

containing n and k basis functions, respectively.
Then, n- and k-dimensional row matrices consist-
ing of basis orbitals � , � , . . . � and � ,1 2 n n�1
� , . . . � may be defined. These row matricesn�2 p

� : � :will be designated by ket-vectors � and � ,1 2

respectively, and further referred to as multidi-
Ž .mensional basis orbitals MBOs . The bra-vectors

² � ² �� and � evidently coincide with column1 2
matrices containing the respective complex-con-
jugate orbitals.

Accordingly, the matrices H, S, and C may be
Ž .represented in terms of four submatrices blocks ,

for example:

Žn�n. Žn�k .H H11 12 Ž .H � . 3Žk�n. Žk�k .H H21 22

Ž .Then, the block-diagonality condition of Eq. 1
may be considered as a generalization of the diag-
onalization problem for a two-dimensional matrix
h, the latter corresponding to the case n � k � 1
� �22, 24 . The generalization consists of passing from
one-dimensional to multidimensional matrix ele-
ments. The same conclusion is evidently valid for

Ž .the orthonormalization condition of Eq. 2 . Hence,
Ž . Ž .the matrix problems of Eqs. 1 and 2 make up a

generalization of the two-level problem in the ba-
� :sis of two nonorthogonal basis functions � and1

� :� . As with the latter, the requirements of Eqs.2
Ž . Ž .1 and 2 may be rewritten as a single matrix

� �equation 3 :

Ž .HC � SCE, 4

where E stands for the block-diagonal matrix of
Ž .Eq. 1 .

Let us revert for a while to the case of orthonor-
� 4malized basis functions � described by thei

Ž p�p. � �equality S � I 21�24 . Then, the eigenblock
� �equation 22 for the matrix H

Ž .HC � CE 5

Ž . Ž .follows from Eq. 4 . The solution of Eq. 5 was
Ž .obtained in terms of entire submatrices blocks

H Žn�n., H Žn�k ., H Žk�n., and H Žk�k . in a particular11 12 21 22
� �case only 23, 24 . The case was described by an

additional assumption that the two subsets of ba-
sis orbitals are separated by a large energy gap
versus the intersubset interactions contained within
the submatrix H Žn x k .. This promotes an expecta-12

Ž .tion that the matrix problem of Eq. 4 also may be
solved in terms of entire submatrices H and Si j i j
Ž .i, j � 1, 2 under small-matrix conditions for both
H Žn�k . and SŽn�k .. This solution will be obtained12 12
and analyzed in the third section.

Before finishing this section, let us define addi-
tional multidimensional electronic-structure char-
acteristics necessary for further studies. Thus, let
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� :us introduce a row matrix � containing eitherm
Ž .the set of occupied NCMOs m � 1 or of vacant

Ž .ones m � 2 . Given that the solution of the matrix
Ž .problem shown in Eq. 4 is obtained and thereby

Ž .the four submatrices C j � 1, 2 of the matrix Cjm
� :are known, the row matrix � may be expressedm

as a linear combination of two MBOs, that is,

2

� : � : � : � : Ž .� � � C � � C � � C , 6Ým 1 1m 2 2 m j jm
j�1

where the submatrices C of the matrix C playjm
the role of coefficients. In the case n � k � 1, Eq.
Ž .6 evidently turns into an usual expression for an
MO of the two-level system described by the

Ž .Hamiltonian matrix h. Hence, Eq. 6 may be con-
sidered as a generalization of the usual LCAO
approximation for MOs. In this context, the row

� : � :matrices � and � may be called the multidi-1 2
Ž .mensional MOs MMOs . This concept is evidently

immanent in the NCMO method.
It is also evident that the relevant one-electron

Ž .density matrix DM may be defined as a projector
� :onto the occupied MMO � multiplied by the1

occupation number 2, that is,

Ž � . � Ž .:² Ž . � Ž .P r r����� � 2 � r � r����� . 71 1

Ž .Indeed, the right-hand side of Eq. 7 actually
contains a sum of projectors to all occupied NC-

� Ž .:MOs. If we rewrite the expressions for � r and1
² Ž . � Ž .� r����� shown in Eq. 6 into the form1

C11� Ž .: � Ž .: � Ž .: Ž .� r � � r � r 8a1 1 2 C21

² Ž . �� r�����1� �² Ž . � � � Ž .� r����� � C C 8b1 11 21 ² Ž . �� r�����2

Ž . Ž .and substitute Eqs. 8a, b into Eq. 7 , the follow-
Ž � .ing expression for the DM P r r����� in terms of four

multidimensional elements of the BO matrix re-
sults in

2

Ž � . � Ž .: ² Ž . � Ž .P r r����� � � r P � r����� , 9Ý i i j j
i , j�1

which serves as a generalization of the well-known
bilinear form of the DM in terms of individual

� �basis functions 1�3 . The elements P of the BOi j
matrix P are

� � Ž .P � 2C C , P � 2C C 1011 11 11 22 21 21

and

� Ž .P � 2C C . 1112 11 21

The n � n- and k � k-dimensional matrices P11
and P are the multidimensional analogs of the22

Ž .occupation numbers populations of basis func-
tions and these may be called the intrasubset pop-
ulation matrices. Accordingly, the matrix P de-12

Ž .fined by Eq. 11 may be referred to as the inter-
subset BO matrix.

Solution of the Problem in the Case of
Small Intersubset Interaction

Let us turn now to the case when the subsets of
basis orbitals � , � ��� � and � , � ��� �1 2 n n�1 n�2 p
may be assumed to be separated by a large energy
gap versus the intersubset interactions contained

Žn�k . � � Žwithin the submatrix H 23, 24 see also the12
.subsection The Main Features . . . . The energy ref-

erence point will be supposed to be located inside
this energy gap so that the one-electron energies
referring to orbitals of the first subset are negative,
whereas those of the second subset are positive. As
a result, the first-order magnitude of the submatrix
H Žn�k . as compared to the diagonal blocks H Žn�n.

12 11
and H Žk�k . will be accepted. The latter matrices,22
in turn, will be represented as sums of zero-order
terms H and H and of the first-order termsŽ0.1 Ž0.2
T and T , respectively. Then, the total matrix H1 2
takes the form

Ž .H � H � H , 12Ž0. Ž1.

where

H 0 T RŽ0.1 1 Ž .H � , H � 13�Ž0. Ž1.0 H R TŽ0.2 2

are the zero-order and the first-order matrices,
respectively, and R stands for the total submatrix
H Žn�k .. Inasmuch as the off-diagonal elements of12

Ž .the Fockian matrix resonance parameters are
usually assumed to be proportional to the respec-

� �tive overlap integrals of basis functions 29 , a
similar assumption about the first-order magni-
tude of the off-diagonal submatrices versus the
diagonal ones is valid in the case of the overlap

� �matrix as well 30 . Thus, the latter also will be
supposed to contain a block-diagonal zero-order
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term S and a first-order term S , namely:Ž0. Ž1.

Ž .S � S � S , 14Ž0. Ž1.

where

S 0 V ZŽ0.1 1 Ž .S � S � . 15�Ž0. Ž1.0 S Z VŽ0.2 2

Ž . Ž .Before turning to the solution of Eqs. 1 and 2
for the above-described matrices H and S, two
essential features of the problem are worth dis-
cussing:

First, the problem may be simplified consider-
ably if we start with performing the zero-order
Ž .intrasubset orthogonalization. To show this, let
us introduce a block-diagonal matrix

�1�2S 0Ž0.1�1�2 Ž .S � 16Ž0. �1�20 SŽ0.2

�where the Lowdin’s orthogonalization matrix 31,¨
� Ž . Ž .32 is used. Then, the problems of Eqs. 1 and 2

may be rewritten as follows:

� 1�2 �1�2 �1�2 1�2 Ž .E � C S S HS S C 17Ž0. Ž0. Ž0. Ž0.

� 1�2 �1�2 �1�2 1�2 Ž p�p. Ž .C S S SS S C � I . 18Ž0. Ž0. Ž0. Ž0.

If we define new matrices

˜ 1�2 ˜ �1�2 �1�2C � S C , S � S SS ,Ž0. Ž0. Ž0. Ž .19
˜ �1�2 �1�2H � S HS ,Ž0. Ž0.

Ž . Ž .and use them to rewrite Eqs. 17 and 18 , the
Ž .latter acquire the form of Eqs. 1 again, that is:

�̃ ˜˜ Ž .E � C HC , 20
�̃ ˜˜ Ž p�p. Ž .C SC � I . 21

However, an essential simplification of the prob-
lem consisting of the equality

˜ Ž p�p. Ž .S � I 22Ž0.

follows from this transformation. Hence, we may
Ž . Ž . Ž .solve Eqs. 20 and 21 along with Eq. 22 at first

and, thereupon, turn back to the matrix C using
Ž .Eq. 19 .

˜ Ž .Second, the diagonal blocks C r � 1, 2 of ourr r
˜solution C are not defined unambiguously by the

Ž . Ž .requirements of Eqs. 20 and 21 , and an addi-
tional condition may be imposed on these blocks

before solving the problem. To do this, let us start
˜with the following statement: Given that C is a

˜ ˜Ž . Ž .solution of Eqs. 20 and 21 , the matrix C� � CU
is also a solution of the same problem, where U is
an unitary block-diagonal matrix of the form

U 01 � Žn�n.U � , U U � I ,1 10 U2 Ž .23

U�U � I Žk�k . .2 2

To prove this statement, let us consider the matrix
˜ � ˜˜C� SC� and the off-diagonal block of the matrix
˜ � ˜˜C� HC�, the latter being denoted by the subscript
Ž .12 . We then obtain

˜ � ˜˜ � �̃ ˜˜ � Ž p�p. Ž .C� SC� � U C SCU � U U � I 24

and

˜ � ˜˜ � �̃ ˜˜Ž . Ž .C� HC� � U C HCU12 12

� �̃ ˜˜ Žn�k .Ž . Ž .� U C HC U � 0 . 25121 2

˜ Ž .Now, let C be a generic solution of Eqs. 20
Ž .and 21 . Let us build up the matrix U containing

the diagonal blocks of the form

�1�2� �˜ ˜ ˜ Ž . Ž .U � C C C r � 1, 2 . 26ž /r r r r r r r

�̃ ˜Then, the diagonal blocks C of the matrix C�r r
become Hermitian matrices. Indeed, these blocks
are

�1�2
� � �˜ ˜ ˜ ˜ ˜ ˜ Ž .C � C U � C C C C r � 1, 2ž /r r r r r r r r r r r r r

Ž .27

�̃� �̃and C � C . Hence, we may ‘‘a priori’’ confiner r r r
˜ourselves to matrices C described by the property

�̃ ˜ Ž .C � C . 28r r r r

� �As in 21�23 , let us look now for the transfor-
˜mation matrix C in the form of power series, that

is,

�

˜ ˜ ˜ ˜ ˜ Ž .C � C � C � C � C � ��� . 29Ý Žm. Ž0. Ž1. Ž2.
m�0

Ž . Ž .Thereupon, let us substitute Eq. 29 into Eqs. 20 ,
Ž . Ž .21 , and 28 and collect terms of the same order
within these requirements.
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Thus, the zero-order equations

�̃ ˜ ˜ Žn�k . �̃ ˜ ˜ Ž p�p.C H C � 0 , C S C � IŽ0. Ž0. Ž0. Ž0. Ž0. Ž0.ž / 12

Ž .30

Ž .along with Eq. 28 yield the requirements

�̃ ˜ �̃ ˜ Ž .C C � I , C � C , r � 1, 2Ž0.r r Ž0.r r Ž0.r r Ž0.r r

�̃ ˜ ˜ �̃ ˜ ˜ Žn�k . Ž .C H C � C H C � 0 31Ž0.11 Ž0.11 Ž0.12 Ž0.21 Ž0.22 Ž0.22

that may be easily met if we take the zero-order
˜matrix C equal to the unit matrix, that is,Ž0.

˜ Ž p�p. Ž .C � I . 32Ž0.

In addition, the zero-order eigenblocks follow from
�̃ ˜ ˜the diagonal blocks of the matrix C H C ,Ž0. Ž0. Ž0.

namely:

˜ Ž . Ž .E � H r � 1, 2 . 33Ž0.r Ž0.r

The first-order equations take the form

�̃ ˜ ˜ �̃ ˜ ˜ �̃ ˜ ˜ Ž .C S C � C S C � C S C � 0 34aŽ1. Ž0. Ž0. Ž0. Ž0. Ž1. Ž0. Ž1. Ž0.

�̃ ˜ ˜ �̃ ˜ ˜ �̃ ˜ ˜C H C � C H C � C H C � 0.Ž1. Ž0. Ž0. Ž0. Ž0. Ž1. Ž0. Ž1. Ž0.ž /
12

Ž .34b

Ž . Ž .After taking into account Eqs. 22 and 32 , we
obtain

�̃ ˜ ˜ Ž .C � C � S � 0 35Ž1. Ž1. Ž1.

�̃ ˜ ˜ ˜ ˜ Ž .C H � H C � R � 0. 36Ž1.21 Ž0.2 Ž0.1 Ž1.12

Ž . Ž .Diagonal blocks of Eq. 35 along with Eq. 28
yield

1˜ ˜ Ž . Ž .C � � V r � 1, 2 . 37Ž1.r r r2

Then, the first-order corrections to the eigenblocks
follow from the diagonal blocks of the whole ma-

Ž .trix within the parentheses of Eq. 34b , namely:

˜ �̃ ˜ ˜ ˜E � H � C H � H CŽ1.r Ž1.r r Ž1.r r Ž0.r Ž0.r Ž1.r r

1˜ ˜ ˜ ˜ ˜ Ž .� T � V H � H V . 38r r Ž0.r Ž0.r rž /2

Again, a system of two matrix equations

�̃ ˜ ˜C � C � Z � 0Ž1.21 Ž1.12

�̃ ˜ ˜ ˜ ˜ Ž .C H � H C � R � 0 39Ž1.21 Ž0.2 Ž0.1 Ž1.12

Ž .results from the off-diagonal blocks of Eqs. 35
Ž .and 36 . The solution of these equations is de-

scribed in the Appendix. Let us introduce the
notations

�̃ ˜ ˜ ˜ Ž .C � K , C � L . 40Ž1.21 Ž1. Ž1.12 Ž1.

˜Then, the total matrix C takes the formŽ1.

1 ˜ ˜� V L1 Ž1.2˜ Ž .C � , 41Ž1. 1
�̃ ˜K � VŽ1. 22

where

�
˜ ˜ ˜ ˜ ˜K � exp H t �R � H ZH ž /Ž1. Ž0.1 Ž0.1

0

˜ Ž .� exp �H t dt 42ž /Ž0.2

�
˜ ˜ ˜ ˜ ˜ ˜L � exp H t R � ZH exp �H t dt .H ž / ž /Ž1. Ž0.1 Ž0.2 Ž0.2

0
Ž .43

The second-order equations may be solved simi-
larly—only more intricate expressions follow in

Ž .this case. Thus, the second-order analog of Eq. 35
is

�̃ ˜ ˜ Ž .C � C � N � 0, 44Ž2. Ž2. Ž2.

where

˜ �̃ ˜ �̃ ˜ ˜ ˜ Ž .N � C S � C C � S C . 45Ž2. Ž1. Ž1. Ž1. Ž1. Ž1. Ž1.

Ž . Ž .The diagonal blocks of Eq. 44 along with Eq. 28
yield the respective second-order analog of Eq.
Ž .37 , namely:

1˜ ˜ Ž . Ž .C � � N r � 1, 2 . 46Ž2.r r Ž2.r r2

On the other hand, the following matrix equation

�̃ ˜ ˜ ˜ ˜ Ž .C H � H C � M � 0 47Ž2.21 Ž0.2 Ž0.1 Ž2.12 Ž2.12

Ž .results instead of Eq. 36 , where

�
� �˜ ˜ ˜ ˜ ˜ ˜ ˜ Ž .M � C H � C H C � H C . 48Ž2. Ž1. Ž1. Ž1. Ž0. Ž1. Ž1. Ž1.
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Ž . Ž .The off-diagonal block of Eq. 44 and Eq. 47
yields a system of two matrix equations like those

Ž .of Eq. 39 , namely:

�̃ ˜ ˜C � C � N � 0Ž2.21 Ž2.12 Ž2.12

�̃ ˜ ˜ ˜ ˜ Ž .C H � H C � M � 0. 49Ž2.21 Ž0.2 Ž0.1 Ž2.12 Ž2.12

˜As a result, the total second-order matrix C takesŽ2.
the form

1 ˜ ˜� N LŽ2.11 Ž2.2˜ Ž .C � , 50Ž2. 1�̃ ˜K � NŽ2. Ž2.222

where

�
˜ ˜ ˜ ˜ ˜K � exp H t �M � H NH ž /Ž2. Ž0.1 Ž2.12 Ž0.1 Ž2.12

0

˜ Ž .� exp �H t dt 51ž /Ž0.2

�
˜ ˜ ˜ ˜ ˜L � exp H t M � N HH ž /Ž2. Ž0.1 Ž2.12 Ž2.12 Ž0.2

0

˜ Ž .� exp �H t dt . 52ž /Ž0.2

The second-order corrections to the eigenblocks
Ž .E r � 1, 2 may be expressed as follows:r

1˜ ˜ ˜ ˜ ˜ Ž .E � M � N H � H N . 53Ž2.r Ž2.r r Ž2.r r Ž0.r Ž0.r Ž2.r rž /2

Ž .Equation 53 is the second-order analog of Eq.
˜ ˜Ž .38 . Diagonal blocks of matrices N and MŽ2. Ž2.

Ž . Ž .defined by Eqs. 45 and 48 , respectively, should
Ž .be substituted into Eq. 53 to obtain the final form

of the E .Ž2.r
Therefore, we have derived the expressions for

Ž .the first three terms of the power series of Eq. 29 .
Obtaining of the subsequent terms also meets no
considerable difficulties.

Ž . Ž . Ž . Ž .Using Eqs. 19 , 32 , 41 , and 50 , the multidi-
� : � : Ž .mensional MOs � and � defined by Eq. 61 2

may be expressed as follows:

1
�1�2 Žn�n. ˜ ˜� : � :� � � S I � V � Nž /1 1 Ž0.1 1 Ž2.112

�1�2 �̃ �̃� : Ž .� � S K � K 54ž /2 Ž0.2 Ž1. Ž2.

1
�1�2 Žk�k . ˜ ˜� : � :� � � S I � V � Nž /2 2 Ž0.2 2 Ž2.222

�1�2 ˜ ˜� : Ž .� � S L � L . 55ž /1 Ž0.1 Ž1. Ž2.

The BO matrix P also may be expressed in the
form of power series, that is,

�

Ž .P � P � P � P � P � ��� . 56Ý Žm. Ž0. Ž1. Ž2.
m�0

Ž .The first three terms of Eq. 56 are

�1S 0Ž0.1 Ž .P � 2 57aŽ0.
0 0

�1�2 �1�2 �1�2 �1�2˜ ˜�S V S S K SŽ0.1 1 Ž0.1 Ž0.1 Ž1. Ž0.2 Ž .P � 2 57bŽ1. �1�2 � �1�2˜S K S 0Ž0.2 Ž1. Ž0.1

21 1�1�2 �1�2 �1�2 �1�2 �1�2 �1�2˜ ˜ ˜ ˜ ˜S V S � S N S S � V K � K SŽ .Ž0.1 1 Ž0.1 Ž0.1 Ž2.11 Ž0.1 Ž0.1 1 Ž1. Ž2. Ž0.24 2
Ž .P � 2 . 57cŽ2.

1�1�2 � � �1�2 �1�2 � �1�2˜ ˜ ˜ ˜ ˜S � K V � K S S K K SŽ0.2 Ž1. 1 Ž2. Ž0.1 Ž0.2 Ž1. Ž1. Ž0.22

Ž . Ž .Equations 10 and 11 should be used when ob-
Ž .taining Eqs. 57a�c .

Ž .The total energy of our system � may be easily
obtained either on the basis of the eigenblock E or1
using the above-described DM P. Indeed, two
alternative definitions of the total energy are possi-

ble, namely:

Ž .� � 2TrE 58a1

� �or 3, 33

Ž . Ž .� � Tr PH . 58b
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Discussion

COMPARISON OF THE MATRIX PROBLEM
( )OF EQ. 4 TO RELATED PROBLEMS

Ž .The problem of Eq. 4 is the most general
matrix form of the Brillouin theorem determining
orthogonal sets of noncanonical MOs of molecules.
This problem forms the basis of the noncanonical
MO method in its matrix representation. Hence,

Ž .comparison of Eq. 4 to related problems is of
interest.

Ž .First, Eq. 4 is a nontrivial generalization of a
two-dimensional eigenvalue problem, where mul-

Ž .tidimensional quantities submatrices stand for
Ž .the usual matrix elements third section . Simi-

larly, the NCMO approach as a whole may be
Žregarded as a generalization of the usual canoni-

.cal MO theory for two-electron systems in the
basis of two nonorthogonal basis functions.

Ž .Second, the problem of Eq. 4 is a generaliza-
Ž .tion of the eigenblock equation shown in Eq. 5 to

Ž .the case of a nonorthogonal basis set S � I . Ac-
Ž .cordingly, the solution of Eq. 4 discussed in the

third section turns into the respective solution of
Ž . � �Eq. 5 obtained in 23 if the equality S � I is

assumed.
˜ ˜ ˜ ˜Thus, the matrices K , L , K , and L of theŽ1. Ž1. Ž2. Ž2.

third section, taking the off-diagonal positions
˜ ˜within the corrections C and C , turn into ma-Ž1. Ž2.

trices �G , G , �G and G , respectively,Ž1. Ž1. Ž2. Ž2.
where G and G are determined by matrixŽ1. Ž2.
equations

Ž .H G � G H � R � 0 59aŽ0.1 Ž1. Ž1. Ž0.2

Ž .H G � G H � M � 0 59bŽ0.1 Ž2. Ž2. Ž0.2

and M � T G � G T . The matrices G and1 Ž1. Ž1. 2 Ž1.
G coincide with the principal matrices used inŽ2.
� � Ž . Ž23 when expressing the solution of Eq. 5 The
minus sign in front of H within the initialŽ0.2

� �matrix H of 23 should be taken into considera-Ž0.
Ž .tion when comparing Eqs. 59a, b of the present

Ž . Ž . � � .article to Eqs. 27 and 35 of 23 .
˜As to diagonal blocks of corrections C andŽ1.

˜ ˜Ž .C , Eq. 37 yields zero matrices for C � CŽ2. Ž1.11 Ž1.11
˜and C � C when turning to the case S � I.Ž1.22 Ž1.22

For C and C , in turn, simple algebraic ex-Ž2.11 Ž2.22
Ž .pressions result from Eqs. 46 , and these may be

�̃ ˜traced back to the nonzero product C C withinŽ1. Ž1.
˜Ž .the expression of Eq. 45 for the matrix N .Ž2.

Ž .Finally, the requirement of Eq. 28 turns into
� � �the equality C � C assumed in 23 and isr r r r

equivalent to a zero-matrix condition for the anti-
Ž .Hermitian skew-symmetrix part of the submatrix

C . The analog of this assumption within ther r
usual Rayleigh�Schrodinger perturbation theory¨
Ž � �.see, e.g., 34, 35 corresponds to certain choice of

� �the phase of the wave function 35 as discussed in
� �24 .

In this context, the relation of the perturbative
approach of the third section to the standard

Ž .Rayleigh�Schrodinger perturbation theory RSPT¨
Ž .deserves attention. Thus, the solution of Eq. 5

� �obtained in 23 has been shown to be actually
based on application of the so-called noncommuta-

� �tive RSPT developed in 24 and is a generalization
Ž � �.of the standard RSPT see, e.g., 34, 35 to the case

Ž .of noncommutative multidimensional matrix ele-
ments. Both the standard and the noncommutative
RSPTs refer to an orthogonal basis set. The stan-
dard RSPT may be generalized to the case of a

� �nonorthogonal basis set as shown in 36�39 . In
this context, certain generalization of the noncom-
mutative RSPT to the case S � I seems to be
feasible. This task, however, is not accomplished
yet.

Ž .Let us compare now our solutions of Eqs. 4
Ž .and 5 with the relevant results of the pioneering

� �contributions in this field 17�20 . Thus, the solu-
tions of the block-diagonalization problem for a
Huckel-type Hamiltonian matrix in an orthogonal¨
� � � �18, 19 and in a nonorthogonal basis 20 were
obtained in these articles in terms of individual
elements of this matrix. The same refers also to the
iterative approach to the linearized version of the

� �Brillouin theorem for the Fockian operator 17 .
Ž . Ž .Again, our solutions of Eqs. 4 and 5 were ex-

Ž .pressed in terms of entire submatrices blocks of
the initial matrix. Moreover, zero-order resonance
parameters inside subspaces of basis functions
� , � , . . . � and � , � , . . . � are allowed in1 2 n n�1 n�2 p

� �the latter case in contrast to 17�20 . The above-
mentioned two points make up the content of

� �generalization made when passing from 17�20 to
� �23 and the present contribution. On the other
hand, an orthogonality requirement for NCMOs

� �being sought is added in 23 and in the present
� �article in contrast to 17�20 . In this respect, the

� �results of 17�20 correspond to a more general
type of NCMOs. It should be noted, however, that
the Brillouin theorem cannot be represented in the

Ž . Ž .matrix form of Eqs. 4 and 5 without imposing
the orthogonality condition for NCMOs.
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THE MAIN FEATURES OF THE
NONCANONICAL MOs RESULTING FROM THE

( )PERTURBATIVE SOLUTION OF EQ. 4

The main features of our NCMOs are deter-
mined by both the nature of the initial basis func-

� 4tions � and the peculiarities of the solution ofi
Ž .Eq. 4 itself. Let us start with the first of these

factors:
Ž . ŽThe perturbative solution of Eq. 4 third sec-

.tion was based on an assumption that the two
subsets of basis orbitals are separated by a large
energy gap versus the intersubset resonance pa-
rameters. This requirement may be most easily

� 4met for basis functions � coinciding with eitheri

the MOs of the whole ‘‘unperturbed’’ system or
with the orbitals localized on its separate frag-
ments, for example, on chemical bonds. Indeed,
coincidence between the dimension of the first

Ž .subset n and the total number of pairs of elec-
Ž .trons third section allows the bonding basis or-

bitals to be included into the first subset, while the
antibonding orbitals find themselves within the
second subset. Inasmuch as bonding and antibond-
ing orbitals are usually separated by a large en-
ergy gap, the main assumption of our solution is
valid provided that intersubset resonance parame-
ters are not too large.

� 4Choice of the basis functions � coincidingi

with strictly localized orbitals may be exemplified
� �by the results of 21�23, 40, 41 , wherein NCMOs

of saturated organic molecules have been sought
in the basis of bonding and antibonding bond
orbitals. As a result, NCMOs of the bond-orbital-
and-tail structure were obtained. Similar orbitals

� �were derived also in 17�20 .
Delocalized basis orbitals coinciding with CMOs

of the ‘‘unperturbed’’ system make an alternative
type of basis sets. For example, NCMOs of aro-
matic heterocycles may be sought in the basis of

� �CMOs of respective parent hydrocarbons 42 , and
delocalized NCMOs result in this case.

It is also noteworthy in this context that the
principal assumption of the third section may
hardly be met for ordinary AOs. Thus, the pertur-

Ž .bative solution of Eq. 4 is unlikely to be applica-
ble for investigation of ‘‘atoms in molecules.’’
Hence, the NCMOs of the third section may be
considered as an alternative to those resulting from
the Adams�Gilbert equation: The latter proved to
be most applicable to ions in inorganic molecules

� �and crystals 9, 10, 12 , whereas the perturbative

Ž .solution of Eq. 4 refers mostly to organic
molecules containing covalent bonds.

Let us discuss now the main peculiarities of our
Ž .solution of Eq. 4 . As seen from the third section,

this solution is not unique, and this especially
refers to diagonal blocks of matrix C. In this con-

Ž . Ž .text, the assumptions of Eqs. 28 and 32 may be
considered as representing a choice of a particular
solution.

˜Thus, the equality C � I ensures that theŽ0.
zero-order corrections within the multidimen-

� : � : Ž .sional MOs � and � shown in Eqs. 54 and1 2
Ž . �1�2 �1�255 coincide with matrices S and S de-Ž0.1 Ž0.2
scribing the intrasubset orthogonalization. As the
Lowdin’s orthogonalization is known to yield a set¨
of orthonormal functions which minimize the sum
of squared distances between each initial function
and a corresponding function of the orthonormal

� �set 43 , the zero-order NCMOs prove to be as
� 4close to the initial basis functions � as possible.i

Given that the latter are localized, the respective
NCMOs are as localized as is possible within the
class of orthogonal MOs. On this basis, the NC-
MOs of the third section may be related to local-
ized MOs obtained using the so-called projection

� � Ž . Ž .criterion 5 . Equations 54 and 55 also indicate
that the extent of intrasubset delocalization is pro-
portional to the relevant overlap integrals of basis
functions.

Intersubset delocalization of NCMOs arises
within the first-order corrections only, and it is

�̃ ˜represented by matrices K and L , each ofŽ1. Ž1.
Ž .them consisting of two terms as shown in Eqs. 42

˜Ž .and 43 , respectively. The first R-containing terms
may be traced back to intersubset resonance pa-
rameters involved within the matrix R, while the

˜second Z-containing terms are related to the inter-
subset overlap integrals.

ANALYSIS OF THE BOND-ORDER MATRIX

Let us start by verifying the adequacy of the BO
matrix obtained on the basis of a projector to a
single occupied MMO. It may be easily proved

Ž . Ž .that the BO matrix shown in Eqs. 56 and 57a�c
� �complies with the system of equations 44�46

Ž . Ž .Tr PS � 2n 60
Ž .PSP � 2 P 61
Ž .SPH � HPS 62

to within the second-order terms inclusive. Equa-
Ž . Ž .tions 60 � 62 correspond to generalizations of the
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charge conservation condition, the idempotence re-
quirement, and the commutation equation for the
respective representations of the Hamiltonian and
one-electron density matrices, respectively, to the
case of a nonorthogonal basis set.

To make the above-mentioned proof, Eqs.
Ž . Ž . Ž . Ž .12 � 15 , 56 , and 57 should be substituted into

Ž . Ž .Eqs. 60 � 62 and terms of the same order should
be collected. In particular, the following matrix
relation

˜ ˜ ˜ ˜ ˜ ˜ ˜ Ž .H K � K H � R � H Z 63Ž0.1 Ž1. Ž1. Ž0.2 Ž0.1

Ž . Ž .easily resulting from Eqs. 39 and 40 should be
Ž .used to verify Eq. 62 . The fact that the BO matrix

P obtained on the basis of the projector to the
� :MMO � complies with the requirements of Eqs.1

Ž . Ž .60 � 62 serves to bear out the suggested way of
obtaining this matrix in the framework of the
NCMO method.

Let us turn now to comparison of the BO matrix
� : � :P to the MMOs � and � . Indeed, these1 2

matrices are expressed in terms of the same sub-
˜ ˜Ž . Ž .matrices V , K , etc. as is seen from Eqs. 54 ,1 1

Ž . Ž .55 , and 57a, b, c . Hence, elements of the BO
matrix may be expected to be related to delocaliza-
tional characteristics of NCMOs.

� �In the case S � I studied in 21�24 , the relation
between the diagonal elements of the BO matrix
Ž .occupation numbers of basis orbitals and the
extents of delocalization of respective NCMOs ac-
quired an extremely simple form, namely, the al-
terations in the occupation numbers versus their

Žinitial values equal to 2 and 0 for bonding and
.antibonding basis orbitals, respectively were

shown to coincide with the total delocalization
� �coefficients 23, 24 of the respective NCMOs. As

occupation numbers are invariant to unitary trans-
formations, the above relation implies that a cer-
tain special choice of NCMOs was actually made

� �in 21�24 , namely, NCMOs, the extents of delocal-
ization of which were related to the unique popu-
lations of basis orbitals, were obtained. The
above-discussed relation, however, becomes con-
siderably more involved if we turn to the general
case S � I.

Similarly, certain relations also may be expected
between the shapes of NCMOs and the off-diago-
nal elements of the matrix P determining the

� �overlap populations 47 of basis orbitals. Interrela-
tions of this type are likely to be applicable for
substantiation of the Magnasco�Perico criterion

� �48, 49 for obtaining localized NCMOs based on
the so-called partial occupation numbers of NC-
MOs being expressed in terms of overlap popula-

� �tions 5 .

Appendix: on the Solution of a System
of Two Linear Matrix Equations

Let us consider a system of two linear matrix
equations

A X � X A � B � 01 1 2 2

Ž .X � X � D � 0, A11 2

where A , A , B, and D are assumed to be known1 2
matrices and X and X are matrices being sought.1 2
Let us start with reformulating the system of Eq.
Ž .A1 into two independent equations. To this end,
let us turn to matrices Y and Y related to X and1 2 1
X as follows:2

Ž .X � Y � Y A , X � �Y � A Y . A21 2 1 2 2 2 1 1

Ž . Ž .Indeed, substituting Eq. A2 into Eq. A1 yields
two independent equations for matrices Y and1
Y , namely:2

A Y � Y A � B � 01 2 2 2

Ž .A Y � Y A � D � 0. A31 1 1 2

Moreover, both of these equations are of the well-
studied form

Ž .AX � XC � aF � 0. A4

Ž .The general theory of Eqs. A4 may be found in
� � Ž .50 . In particular, a unique solution of Eq. A4
was proved to exist if the real parts of eigenvalues
of both matrices A and C are negative. This solu-
tion may be presented as an integral

�
Ž . Ž . Ž .X � a exp At F exp Ct dt . A5H

0

Given that A and C are Hermitian matrices, the
negative-value requirement refers to eigenvalues
themselves.

Ž . Ž .Using Eqs. A3 and A5 , we then obtain

�
Ž . Ž .Y � exp A t D exp �A t dt ,H1 1 2

0 Ž .A6
�

Ž . Ž .Y � exp A t B exp �A t dt .H2 1 2
0
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Ž .Owing to commutation of matrices A and exp At
� � Ž .50 , the final solution of Eq. A1 may be pre-
sented in the form

�
Ž . � � Ž .X � exp A t B � DA exp �A t dtH1 1 2 2

0

�
Ž . � � Ž .X � exp A t �B � A D exp �A t dt .H2 1 1 2

0
Ž .A7

In the case studied in the third section, we
obtain

˜ �1�2 �1�2A � H � S H S1 Ž0.1 Ž0.1 Ž0.1 Ž0.1 Ž .A8
˜ �1�2 �1�2A � H � S H S2 Ž0.2 Ž0.2 Ž0.2 Ž0.2

and both A and A are Hermitian matrices. The1 2
question whether the eigenvalues of matrices A1
and �A are negative should be solved in each2
case separately. It should be noted that only eigen-
values of matrices H and �H are expected toŽ0.1 Ž0.2
be negative, at least for saturated organic molecules
� �24 .

Let us discuss now the use of solution shown in
Ž .Eq. A7 in practice. To this end, particular struc-

tures of the involved matrices are evidently re-
Ž .quired. Let us start with Eq. A4 and its solution

Ž .shown in Eq. A5 for Hermitian matrices A and
C.

Given that the structures of matrices A and C
are specified, these may be diagonalized using
unitary matrices U and V, namely:

� � Ž .A* � U AU, C* � V CV , A9

where A* and C* are diagonal matrices involving
elements � and � . As a result, the matricesi j

Ž . Ž .exp At and exp Ct may be expressed as follows
� �50 :

Ž . Ž . �exp At � U exp A*t U Ž .A10
Ž . Ž . �exp Ct � V exp C*t V ,

Ž . Ž .where exp A*t and exp C*t also are diagonal
Ž .matrices containing elements exp � t andi

Ž .exp � t , respectively. Then, the solution X of Eq.j
Ž .A5 becomes

� Ž .X � aUX*V , A11

where

�
Ž . Ž . Ž .X* � a exp A*t F*exp C*t dt A12H

0

and

� Ž .F* � U FV . A13

It may be easily seen that particular elements
� Ž .X of the matrix X* defined by Eq. A12 may bei j

obtained in an explicit form, namely:

�
�aFi j� �Ž . Ž .X � a exp � t F exp � t dt � � ,Hi j i i j j � � �0 i j

Ž .A14

�Ž . �where exp � � � t is assumed to turn to zeroi j
Žfor t � � this requirement is met for negative

.value of � � � .i j
Ž .This version of solution shown in Eq. A5 is

� �equivalent to that discussed in 24 . It is also evi-
dent that it may be applied to obtain matrices Y1

Ž .and Y of Eq. A3 . Thereupon, the matrices X2 1
Ž .and X follow directly from Eq. A2 .2
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