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Abstract: We propose a robust localization of the highly-excited Rydberg atoms interacting
with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based
localization methods, a vortex beam can provide an ultraprecise two-dimensional localization
solely in the zero-intensity center, within a confined excitation region down to the nanometer
scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively
much stronger confinement towards a high spatial resolution when it is partially compensated
by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon
detuning allows a three-dimensional confinement of Rydberg atoms. In this case, the vortex field
provides a transverse confinement, while the SW modulation of the two-photon detuning localizes
the Rydberg atoms longitudinally. To develop a new subwavelength localization technique, our
results pave a path one step closer to reducing excitation volumes to the level of a few nanometers,
representing a feasible implementation for the future experimental applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recent years have seen a vast progress in the precise localization of atoms, with potential
applications in the fundamental and applied science. Some important examples are precise
addressing of ultracold atoms in optical lattices [1,2], patterning of Bose-Einstein condensates
(BECs) [3,4], optical lithography [5] or fluorescence microscopy [6]. The diffraction limit,
however, is a barrier to the possible resolution. For example, in an optical microscope, the highest
achievable point-to-point resolution is limited by diffraction. The diffraction restricts the ability
of optical instruments to distinguish between two objects separated by a distance smaller than a
half of the wavelength of light employed to image the sample.

Coherent-adiabatic light-matter interactions provide some ways to overcome the diffraction
limit by reducing the excitation volume in atom-light coupling schemes. The concepts are based
on spatially modulated dark-states created by the Electromagnetically Induced Transparency
(EIT) [7–10] or the Coherent Population Trapping (CPT) [11]. The space-dependent interaction
between the light field and the atomic internal states is produced by a standing-wave (SW) field.
New schemes have been proposed for the SW localization by applying different measuring ways,
e.g. absorption spectrum [12,13], level population [14–17], spontaneous emission [18–20], or
adopting complex energy-level structures [21,22]. Beyond the theory proposals, there are only
a few experiments on EIT-based localization [23–25], demonstrating an atomic localization to
regions of 60 nm, i.e. 13 times smaller than the wavelength of incident light [25]. The precision
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level better than 30nm has been achieved in imaging of molecules and biological dynamics
[26,27]. Yet improving the resolution of subwavelength atomic localization down to the range of
a single nanometer remains an important challenge.

A localization protocol with SW produces a periodic pattern of tightly localized regions.
This was fine for the first experimental demonstrations [23–25], but it is not appropriate for
applications, which usually require single excitation regions. On the other hand, in the search for
systems suitable for quantum information and precision measurement [28–31], Rydberg atom
has emerged as one of the favorites mainly due to its strong long-range interaction that blocks the
possibility of multiple excitations [32–36]. However, this superiority also gives rise to a poor
quality of localizing Rydberg atoms because it is difficult to confine them in a small region with
a high density. Hence, it is still under way to precisely localize highly-excited Rydberg atoms
using currently available experimental techniques. Very recently we have studied the localization
of Rydberg atoms via SW beams that produce a periodic pattern of tightly localized atoms in one
dimension [37], however, the current work provides a progress towards single site confinement
of atoms.

In order to find atoms in a single excitation region, in the present work, we propose and
analyze a theoretical scheme of combining Rydberg atoms with a special space-dependent
doughnut-shaped beams which carry an orbital angular momentum (OAM) [38,39]. In contrast
to the earlier SW-based localization protocols, a doughnut beam geometry makes it possible to
detect atoms in a single spatial region with a 100% probability, where any fluctuations from
the laser noise can be largely suppressed. It should be noted that the localized excitation of a
four-level atom to a highly excited Rydberg state has been theoretically investigated in [40] by
considering the Laguerre-Gaussian (LG) beam spatial features. Yet, the dipole-dipole interaction
between the Rydberg atoms (which may induce the blockade) has been neglected, allowing in
[40] to focus on the single atom excitation mechanism. However, the work presented in this
paper is completely different. It is shown here that the strong Rydberg-Rydberg interaction
can be partially compensated by a suitable detuning, and a two-dimension (2D) transverse
confinement can be achieved with a localization precision ∼11nm. To image the Rydberg atoms
in the three-dimensional (3D) space, in addition to the vortex beam, we employ an auxiliary
SW modulation to the two-photon detuning. Such a SW modulation yields the longitudinal
placement of Rydberg atoms along the propagation direction of the probe beam, while the atomic
excitation is spatially confined in a transverse plane due to application of vortex beams. In
addition, we explore an experimental implementation of our setup under realistic parameters,
strongly supporting the preservation of the robustness of our 3D Rydberg localization protocol,
even under the influences of non-negligible random intensity noise and frequency noise.

2. Theoretical formulation

Let us consider an ensemble of atoms characterized by a typical three-level ladder configuration
of energy levels as shown in Fig. 1. For each atom, states {|g⟩, |e⟩, |r⟩} represent the ground, the
excited and the highly excited Rydberg states, respectively. The transition between |g⟩ and |e⟩ is
induced by a traveling-wave (TW) field characterised by the Rabi-frequencyΩp and the frequency
detuned by ∆p from |e⟩. The upper transition between |e⟩ and |r⟩ is driven by a vortex control
field Ωc(r, ϕ) , which is detuned by ∆c with respect to |r⟩. The control field detuning ∆c(z) can
be adjusted to be z-dependent enabling an auxiliary spatial confinement along the z-axis.

We assume a frozen-atom limit where the atomic center-of-mass motion is negligible due to the
fast operation of experiments ∼ µs [41–43]. Therefore, applying the rotating-wave approximation,
the Hamiltonian is given by (ℏ = 1)

H = Ha +Vaf +VvdWs, (1)



Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 36938

Fig. 1. Schematic diagram for a collection of Rydberg superatoms interacting with a TW
field Ωp as well as a LG field Ωc(r, ϕ). Both beams are propagating along the same direction
ẑ. The concept of superatom is that, within the blockade radius Rb, only one of the atoms
can obtain one excitation to the uppermost Rydberg state. Inset: Level structure of each
atom with states |g⟩, |e⟩, |r⟩ denoting the ground, intermediate and Rydberg states, which
enables the transitions of |g⟩ ↔ |e⟩ and |e⟩ ↔ |r⟩. VvdWs stands for the intrinsic ns − ns
type vdWs Rydberg interaction between the unique excited atoms of adjacent superatoms.
Other parameters are described in the text.

where
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are the unperturbed atomic HamiltonianHa, the atom-field interactionVaf and the internuclear van
der Waals(vdWs)-type interaction VvdWs, respectively. Note that the electric dipole approximation
(EDA) is adopted while deriving Eqs. (1)–(4). In general the EDA is applicable if kr ≪ 1, with
k = 2π/λ representing the wavevector of field and r the atomic size. For a higher Rydberg level
this condition is hard to meet automatically. Due to the special property of the LG beam the
Rydberg electron may "see" the light intensity variation, i.e. different parts of the atom interact
with different electric fields. The resulting quadrupole Rabi frequency related to the LG beam
and the Rydberg state can cause additional OAM exchange covering the center-of-mass and
internal motions [44,45]. By approximately neglecting the OAM transfer between light and
atomic internal degrees we focus on the intensity variation of the LG beam and will leave the
interesting physics of higher-order effects for a future work.

As for the jth atom, σj
αβ = |α⟩ ⟨β |j is the transition (α ≠ β) or projection (α = β) operator,

while C6 denotes the vdWs coefficient which depends on |r⟩. Under the mean-field treatment
[46], one can safely replace VvdWs with

∑︁N
j σ

j
rr
∑︁

m≠j
C6
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6σ

m
rr . The mean-field approximation

neglects the correlations of Rydberg-state atoms within a single superatom, which is enabled by
strong Rydberg blockade that prevents the excitation of a second atom within a superatom. The
correlation can be incorporated into the expression of s [Eq. (8)] via a short-range cutoff to the
spatial integral for the Rydberg interaction. For short excitation times, this method yields good
agreement with experiments [47,48]. The time evolution of operator σj

αβ(t) of the jth atom is
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where
s =

∑︂
m≠j
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rr (6)

is the accumulated vdWs-induced energy shift for the atom j induced by the adjacent Rydberg-state
atoms m, and γαβ =

(︁
Γα + Γβ

)︁
/2 is the dephasing rate, with α, β ∈ (g, e, r). If the spontaneous

decay rates obey the condition Γe ≫ Γr, Γg ≈ 0, one has approximately γ = γer = γge, Γe = 2γ
and γgr = Γr ≈ 0. The two-photon detuning is described by ∆p + ∆c. In addition, we will ignore
the superscript j for the sake of simplicity. Solving the system of Eqs. (5) under the steady limit
(σ̇αβ(t) ≡ 0), one arrives at a steady-state solution σrr indicating the stable population for the
state |r⟩:

σrr(r) =
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)︁(︁
Ip + Ic

)︁2
− 2∆p
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with the laser intensity Ip(c) =
|︁|︁Ωp(c)

|︁|︁2. For s = 0, the solution σrr has a Lorentzian dependence on

the two-photon detuning (∆p+∆c), with its half-peak width given by w = (Ip+Ic)/
√︂
γ2 + ∆2

p + 2Ip

[49].
For estimating the Rydberg-Rydberg interaction between the neighboring excited atoms

belonging to different superatoms, the blockade radius is defined by Rb = (C6/w)1/6 if assuming
ℏw = C6/R6

b (ℏ = 1) [36]. Then only one atom can be excited within a single superatom volume
Vb. It is apparent that the blockade radius Rb is also position-dependent due to the spatial
dependence of the control field and hence w. The Rydberg interaction s felt by the jth excited
atom within a single Vb is calculated by integrating over all excitation probabilities from the
volume V ≠ Vb [47]

s =
∫

V≠Vb

C6

r6 fRρd3r. (8)

Here ρ is the ground atom density and r = |rj − rm | denotes the relative distance. The average
Rydberg excitation fraction fR is described by [50,51]

fR =
f0

1 + (Nsa − 1)f0
, (9)

where the Rydberg population fraction is f0 = σrr at s = 0, and Nsa = Vbρ represents the number
of atoms in a single superatom. Note that if Nsa = 1 we get fR = f0 meaning that only one atom
inside can obtain a determined excitation; otherwise, assuming Nsa ≫ 1/f0, one gets fR = 1/Nsa
indicating that the blocked volume definitely contains one Rydberg excitation and the Rydberg
excitation fraction for each atom is 1/Nsa. The resulting s becomes s =

∫
V≠Vb

C6
r6

ρ
Nsa

d3r. In
appendix A, we discuss the calculation of the shifted energy s(rj) with respect to the jth atom in
details.
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3. Transverse super localization

3.1. Atomic spatial resolution

Let us first consider a perfect antiblockade condition ∆p + ∆c − s = 0, where the two photon
detuning ∆p + ∆c compensates the Rydberg shift s. Without loss of generality in what follows
we assume ∆p = 0. As a result, ∆c actually stands for the two photon detuning and ∆c − s ≡ 0
represents the perfect antiblockade condition. In this case, the population of the Rydberg state
given by Eq. (7) takes the form

σrr =
1

1 + η
. (10)

Here η = Ic/Ip represents a relative ratio between the two laser intensities. Equation (10) acquires
its maximum value in the core of the vortex beam where Ωc = 0 and hence η = 0. Thus, ensuring
the perfect antiblockade condition and so long as the steady state is reached, monitoring the
population of Rydberg state is a sufficient tool to measure the position of atoms.

Inspired by this, we take the control laser Ωc(r, ϕ) to be a doughnut-shaped Laguerre-Gaussian
(LG) beam of the form [52]

Ωc(r, ϕ) = Ωc0

(︃
r

W0

)︃ |l |
e−r2/W2

0 eilφ , (11)

with a zero-intensity solely at the beam core r = 0. Other higher-order vortex fields with more
radial nodes may cause multi-site atom localization, and can be considered for a future study.
HereΩc0, W0 and l are, respectively, the peak amplitude, the beam waist, and the winding number
of the vortex beam, while (r, ϕ) are, respectively, the cylindrical radius and the azimuthal angle.
Under the perfect antiblockade condition, the system evolves into a position dependent dark state
|D⟩ =

(Ωp |r⟩−Ωc(r,φ) |g⟩)√
Ω2

p+Ω
2
c (r,φ)

. As the position r changes, the system adiabatically follows such a dark

state. One can see that the dark state reduces to the excited Rydberg state |r⟩ at the core of the
vortex beam where Ωc ≈ 0. Thus, a smooth adiabatic change of |D⟩ can excite atoms to the
Rydberg state as Ωc(r, ϕ) passes through its zero intensity core, and hence the population of |r⟩
can be tightly localized. Besides the probe field denoted by Ωp describes a TW propagating
along the same direction ẑ as the LG laser beam with a constant amplitude Ωp0. Note that the
spatial modulation of ∆c(z) has been ignored here for accomplishing an ideal 2D localization.

Using Eq. (11) for Ωc(r, ϕ), the intensity ratio η takes the form

η = κ2
(︃

r
Wo

)︃2 |l |
e−2(r/W0)

2
(12)

with κ = Ωc0/Ωp0. One gets η = 0 at the beam core corresponding to r = 0. This yields a perfect
confinement with a 100%-probability of finding atoms at the vortex core.

The localization quality depends on a high spatial resolution characterized by a narrow
linewidth of steady Rydberg population σrr(r). A very narrow linewidth indicates that the
position of the atoms can be well resolved within a very small excitation volume. For the
lowest-order mode of the LG beam with l = 1, η can be expanded around r = 0 in a Taylor series
up to the fourth order, giving

η ≈ κ2[(
r

W0
)2 − 2(

r
W0

)4]. (13)

Then the full width at half maximum (FWHM) labeled by ar of σrr can be approximated as

ar ≈ W0

√︄
1 −

√
κ2 − 8
κ

. (14)

According to the symmetry, we have ar = ax = ay where ax and ay are the FWHM of the
excitation along x̂ and ŷ directions, respectively. From Eq. (14), it is intuitive that ar → 0 only
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when κ ≫ 2
√

2, indicating a high resolution peak. A very large κ is obtained for sufficiently
weak probe pulses (Ωp0 ≪ Ωc0). As confirmed by Fig. 2(a), starting from its peak value 1.0, σrr
is found to decrease rapidly as r grows, allowing an ultra-precise confinement of center-of-mass
of Rydberg atoms as long as a sufficiently large κ is adopted. However, for a larger value of κ, the
time required for the steady state to be formed is longer, as Ωp0 is weaker. In contrast, a smaller
value of κ e.g. κ = 10, would cause a poor resolution although it may speed up the time to reach
the steady state. The full numerical results by solving Eqs. (5) confirm the analytical predictions.
The relation between steady time and resolution for different κ values will be discussed in section
5.2. Figure 2(b1-b3) shows the 2D imaging of the atomic localization with different κ values. It
is clear that the localization quality becomes worse as κ decreases, indicating the importance of a
sufficiently weak probe field for a tight 2D confinement of atoms.

Fig. 2. (a) Representation of the steady Rydberg probability σrr(rj) versus rj/λc for l = 1.
The subscript j means for the jth Rydberg atom. The full-width at half maximum of excitation
where σrr = 0.5 is defined by ar . Here a half-width ar/2 is labeled. (b1-b3) The 2D plot of
atom transverse localization with different κ values. (c) The full-width ar (in unit of λc)
with the increase of the winding number l. Detailed values ar (in unit of λc) are shown in
the inset. Here the beam waist and the wavelength are W0 = 1µm, λc = 480nm. Cases of
κ = 10, 100, 500 are given by red-dotted, green-dashed and blue-solid curves, respectively.

The dependence of ar on the OAM number l is demonstrated in Fig. 2(c). One can see that
larger topological charge numbers destroy the spatial resolution, i.e., the larger the OAM number
l is, the bigger the value of ar and the wider the localization widths are. This is understood by
the fact that when the OAM number l increases to larger numbers, the dark hollow center is
increased in size, as indicated by Eq. (11). For example when l = 5 and for κ = 10, ar becomes
1.39µm(2.89λc), in contrast to the best case where we achieved only ar = 4nm(0.0083λc) for
l = 1. Therefore, in what follows we take l = 1 in order to get the best results.

3.2. Influence of the Rydberg shift s

Because of the position-dependent nature of the control field, the Rydberg shift s(r) is difficult to
be completely compensated by the detuning ∆c, i.e. a perfect antiblockade condition by using an
appropriate ∆c that compensates s(r) at every position is impossible. Once ∆c − s(r) ≠ 0 and
considering Ic ≪ Ip (around r ≈ 0), σrr can be approximated as

σrr(r) =
1

1 + [∆c − s(r)]2/w(r)2
. (15)
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The resolution ar then can be obtained when |∆c − s(r)| = w(r) corresponding to σrr = 1/2.
Luckily, as observed in Fig. 9(b) of appendix A, we see that s(rj) can be approximately a
constant when the localized atom j is placed within a short displacement rj to the beam core,
i.e. if rj ≪ Rb. Hence adopting the way of so-called partial antiblockade in which we let the
detuning ∆c compensate the Rydberg interaction s(rj = 0) exactly at the vortex core, is easy to
implement practically. While if rj>0, one obtains ∆c − s(rj) ≠ 0 leading to a fast decrease of
steady population.

In Figs. 3(a) and (b) we numerically compare the results for the cases of perfect antiblockade
by ∆c = s(rj) (solid, the same as in Section 3.1) and the partial antiblockade (stars) featured by
∆c = s(rj = 0). Comparing Figs. 3(a) and (b) shows that one can get a better localization when
W0 = 1µm. However, in this case, the partial antiblockade gives rise to the same results as the
perfect antiblockade (see Fig. 3(a)), since the Rydberg interaction s is approximately constant
and can be compensated by a specific detuning ∆c at every position. Therefore the degree of
localization can be well kept by an easier partial antiblockade condition, achieving the same
FWHM e.g. ar ≈ 4.0nm for κ = 500.

Fig. 3. The influence of s on the steady Rydberg population σrr(rj) under different beam
waists (a) W0 = 1µm and (b) W0 = 5µm. Star points and solid curves are separately solved by
considering a partial antiblockade ∆c = s(rj = 0) and a perfect antiblockade ∆c = s(rj). Plots
corresponding to κ = 10, 100, 500 are denoted by red, green and blue curves, respectively.

However, for a larger W0 (e.g., W0 = 5µm) it is insufficient to compensate s(rj) by a constant
∆c that equals to s(rj = 0), since the distortion and shrink of the blockade sphere caused by
a wider beam waist W0 can bring a significant variation to s(rj) making it spatial-dependent.
Hence, we follow the partial antiblockade condition by letting ∆c = s(rj = 0). In this way we find
that once rj>0, the steady Rydberg population σrr(rj) reveals a faster fall due to the imperfect
compensation of s beyond the localized point rj = 0. One finally obtains a narrower FWHM as
compared to the case of perfect antiblockade, see Fig. 3(b).

Therefore, thanks to the hollow core laser beam we have realized an efficient scheme for
ultraprecise 2D Rydberg localization. Remarkably, once the partial antiblockade condition
∆c = s(rj = 0) is fulfilled, the Rydberg-Rydberg interaction counter-intuitively yields a better
spatial resolution. This condition would be easier to be carried out in experiments.

4. Longitudinal super localization

Getting rid of using a SW optical Rabi frequency that may add to the complexity of our protocol,
in the following we implement a spatial modulation to the detuning ∆c(z) that is directly connected
to |r⟩. This modulation is enabled by the ac Stark effect from an external electric field to induce
a periodic energy shift of |r⟩ [53], taking the form of

∆c(z) = ∆c0 sin(
2π
λc

z) + δ, (16)
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with its peak-peak amplitude ∆c0 and an extra frequency shift δ. In such a case, the partial
antiblockade condition changes to ∆c = s(rj = 0, zj = 3λc/4) at the localized point, giving

δ − ∆c0 = s0, (17)

where s0 = s(rj = 0, zj = 3λc/4). Once Eq. (17) is violated, i.e., δ − ∆c0 ≠ s0, both the precision
and spatial resolution will be reduced significantly, as numerically demonstrated in Fig. 5. The
periodicity of the SW function∆c(z) allows atoms to be localized at zj = (3/4+n)λc [n ∈ integers].
Note that we have assumed n = 0 in the simulations.

Based on the findings in Fig. 9(c) of Appendix A, it is safe to assume s(rj = 0, zj) to be a
constant as s(zj) can be well kept with negligible oscillations. In this case, by following the
equality of ∆c(z) − s0 = w, the FWHM of σrr(zj) can be solved analytically, leading to

az = [
1
2
− arcsin(1 −

w
∆c0

)/π]λc. (18)

Figure 4 shows numerical simulations for the population distribution σrr(zj) against zj. The
numerical results for az are in a good agreement with the analytical solutions given by Eq. (18).
Increasing κ from 10 to 500 reduces az significantly, yielding a tighter longitudinal confinement.
Specifically, for a large control field detuning ∆c0/2π = 30MHz and κ = 500, the localization
resolution can be enhanced, reaching az = 0.0046λc ≈ 2.2nm (see Fig. 4(a) (blue-solid)).
However, if the peak-peak amplitude ∆c0 is set to be orders of magnitude smaller, e.g. ∆c0 = Ωp0
as in Fig. 4(b), it exhibits a dramatic broadening of az due to az ∝ ∆

−1
c0 , as featured by Eq. (18).

Fig. 4. The periodic steady Rydberg distribution σrr(zj) along z axis for κ = 10(red-dotted),
100(green-dashed), 500 (blue-solid), under the peak-peak amplitudes (a) ∆c0/2π = 30MHz
(fixed) and (b) ∆c0 = Ωp0 (tunable). Remember κ = Ωc0/Ωp0 and Ωc0/2π = 80MHz. az
stands for the full-width at half maximal peak, i.e. σrr ≈ 0.5 and λc = 480nm is considered.

5. Experimental feasibility

5.1. Ultrahigh-precision 3D localization

Our localization protocol benefits greatly not only from a hollow-core vortex beam which enables
the confinement of atoms in a single site with a 100% detection probability, but also from the
presence of Rydberg-Rydberg interaction which efficiently speeds up the fall of probability in
space, finally improving the transverse localization resolution towards a subwavelength domain.
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Fig. 5. (color online). Isosurface plots of Rydberg excitation probability at half maxima
of σrr, versus (x, y, z) for different κ values under the case of (a-c) partial antiblockade
condition: δ − ∆c0 = s0; as well as in (d-f) that the partial antiblockade breaks by letting
δ − ∆c0 = 2s0. Other relevant parameters are described detailedly in the text.

In addition, applying a spatially-modulated two-photon detuning instead of an SW laser, enables
us for precisely localizing atom along the longitudinal direction.

Before proceeding, we now numerically estimate the relevant experimental parameters for
verifying the practical implementation of our protocol. In the calculations, we consider ground
87Rb atoms with energy levels (|g⟩, |e⟩, |r⟩) = (|5s1/2⟩, |5p3/2⟩, |60s1/2⟩) excited by a two-photon
process at the temperature of 20µK [54]. The upper transition of |e⟩ → |r⟩ is played by a vortex
LG beam with (Ωc0, W0, λc) = (2π × 80MHz, 1µm, 480nm) for the peak intensity, the beam
waist and the wavelength, respectively. The lower transition from |g⟩ to |e⟩ is characterized by
the continuous probe field with the Rabi frequency Ωp0 = Ωc0/κ and the wavelength 780nm.
We introduced a tunable κ which is manipulated by changing Ωp0, when Ωc0/2π = 80MHz
is fixed. In general, we take Ωp0 = 2π × (8.0, 0.8, 0.16)MHz providing κ = (10, 100, 500).
The average atom density is ρ = 6 × 108mm−3, and the vdWs coefficient of state |60s1/2⟩ is
C6/2π = 140GHzµm6[55]. The dissipation is dominated by a fast decay from the middle excited
state |e⟩, given by Γe/2π = 6.05MHz [54] and other spontaneous decays are Γr,g = 0, leading to
the dephasing rates γ = γer = γge = Γe/2.

Besides, the two-photon detuning ∆c(z) (note that ∆p = 0) is modulated as a sinusoidal function
with its amplitude ∆c0/2π = 30MHz and periodicity λc. Importantly, the shifted energy δ
should be decided accurately according to the partial antiblockade condition Eq. (17), leading to
δ = ∆c0 + s0 = 2π × (37.77, 31.15, 30.063)MHz for κ = (10, 100, 500), where s0 is numerically
estimated from solving an integration Eq. (23) [see Appendix A and B] at rj = 0, zj = 3λc/4. If
κ ≫ 1, δ is closing to the value of ∆c0 due to s0/γ → 0. Therefore, in a real implementation in
order to obtain an accurate δ for an optimal localization, one needs to scan the shifted frequency
δ around ∆c0. A brief discussion for the determination of the shifted frequency δ is presented in
Appendix B.

Our final results for the 3D Rydberg atom localization are summarized in Fig. 5 with all
practical parameters, where a global isosurface at half maxima of σrr is represented. Panels (a-c)
show the partial antiblockade case at the localized point: ∆c = s(rj = 0, zj = 3λc/4), leading to
an accurate relation δ − ∆c0 = s0. The plots demonstrate a visible localization image with the
spatial resolution which can be optimized for a larger κ. However, once this accurate relation is
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violated e.g. δ − ∆c0 = 2s0 as indicated in (d-f), the FWHM of σrr(r) experiences a dramatic
broadening while decreasing its peak value. This confirms our theoretical predictions that the
sensitive partial antiblockade condition at the localized point is very important for realizing a
high-quality atom localization, especially in the presence of strong Rydberg-Rydberg interactions.
A slight shift of the partial antiblockade condition would cause the breakdown of our localization
scheme.

5.2. Selection of the parameter κ

As discussed in section 3, an ultra-precise localization relies on a sufficiently large κ[≈ 500].
However, the duration time Ts for reaching a steady localization is typically inversely proportional
to the absolute values of Rabi frequencies Ωc0 and Ωp0. As κ = Ωc0/Ωp0 (Ωc0 is fixed), Ts is
positively associated with κ. That means a large κ leads to a sufficiently long time for the system
to be stationary. In reality, Ts is also limited by the Rydberg lifetime typically Ts ≪ 1/Γr is
required. For that purpose a proper κ is mostly favored. e.g. by numerically solving Bloch
Eqs. (5), we find when κ = 500 the steady time Ts reaches as high as 86µs which is comparable
to the lifetime.

In order to get an optimal κ value, Fig. 6 shows the opposite dependence of the width ar and
time Ts on κ that confirms our analytical predictions. In an experiment, the parameter κ should be
chosen properly by considering the precision of localization as well as the time duration to reach
steady state at the same time. For example, if κ = 180, it gives Ts = 11µs, which is 23 times
shorter than the lifetime of a Rydberg state. So this result can provide enough time for measuring
the steady Rydberg probability due to its localization. Also, for κ = 180 the spatial resolution
is ar = 11nm ensuring a nanoscale-level localization precision. Therefore optimizing κ is very
important for the success of ultra-precise localization. In general replacing with a Rydberg state
of higher principal quantum number can help to enhance κ, giving rise to a higher localization
precision.

Fig. 6. The FWHM ar(blue-dashed) and the steady time Ts(red-solid) versus the change
of the ratio κ. For |r⟩ = |60s1/2⟩ the Rydberg-state lifetime is 252µs as denoted by the
dot-dashed line.

6. Scheme stability

6.1. Laser intensity noise

In order to explore the robustness of our scheme against external perturbations, we introduce now
a position-dependent random intensity noise to the peak amplitude Ωc0 of the LG beam. In this
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case, the amplitude Ωc0 turns to be position-dependent, defined by

Ωc0(r) = Ωs
c0 +Ω

′
c0(r) (19)

with Ωs
c0 being the unperturbed laser amplitude. Here the random noise term Ω′

c0(r) is simulated
as a normal distribution, which has a zero expectation value and a standard deviation σi˜ . We
only pay attention to the steady Rydberg distribution along x axis due to the symmetry of system,
in order to measure its variations under the effect of random fluctuations Ω′

c0(x). For reducing
the uncertainty during single measurement, each plot is simulated by averaging over ten-times
outputs.

Figure 7 demonstrates that suffering from the influence of the intensity noise, the steady Rydberg
population σrr(xj) starts fluctuating and broadening. When the noise amplitude characterized by
σ̃i is relatively small, e.g. σ̃i = 0.2Ωc0, the population distribution is quite steady closing to the
case of σ̃i = 0.0 (no noise). Neverthless, if σ̃i is increased to be 0.5Ωc0, σrr(xj) reveals a strong
fluctuation with its resolution (half-width at σrr = 0.5) becoming worse. To our knowledge
the realistic intensity noise can be suppressed to a very weak level under current experimental
technique, which strongly supports the robustness of our localization protocol towards a new
ultra-precision standard.

Fig. 7. The position-dependent steady Rydberg population σrr(x) along x axis under random
laser intensity noise given by Ω′

c0(x). The standard deviation of Ω′
c0(x) is exemplified as

σ̃i = 0.5Ωc0(red-dotted), σ̃i = 0.2Ωc0(green-dashed) and σ̃i = 0(blue-solid). Each curve
of σ̃i = (0.2, 0.5)Ωc0 is obtained by averaging over ten simulation trajectories and σ̃i = 0 is
for the case with no noise. Here κ = 180, Ωc0/2π = 80MHz and the beam waist W0 = 1µm.

6.2. Frequency noise

Next, we explore the effect of frequency fluctuations to show the robust stability of our scheme.
A random frequency noise mainly contributed by the unavoidable laser-induced ac Stark effect
[56,57] is introduced to the frequency shift δ of the level detuning∆c(z), with a normal distribution
and a small deviation σ̃f . Applying additional compensation laser fields may reduce this effect
[58]. Here the deviation σ̃f is modified to be with respect to s0 since s0 = δ − ∆c0 is small
and very sensitive to δ. As observed in Fig. 8, it is clear that the steady Rydberg population
σrr(xj) sensitively depends on the deviation strength because of the partial antiblockade condition
δ − ∆c0 = s0. If perturbed by a frequency noise σ̃f ≠ 0 it leads to a significant influence on
σrr(xj). Similar results are confirmed by Fig. 5.

However, different from Fig. 7, the frequency noise would cause a dominant variation of the
population in the vicinity of the beam core. As moving far away from the core, the effect of
frequency noise becomes negligible. The reason can be understood by using Eq. (7), which can
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Fig. 8. The steady Rydberg population σrr(xj) vs the transverse direction xj suffering
from a random noise of frequency shift δf in the periodically-modified detuning ∆c(z).
The standard deviation of the random noise is given by σ̃f = 500kHz(red-dotted), σ̃f =
100kHz(green-dashed) and σ̃f = 0(blue-solid), where σ̃f = 0 means no frequency noise.
Here s0 = δ−∆c0 = 2π× 0.42MHz stands for the Rydberg interaction at the localized points.
Other parameters are the same with Fig. 7.

be re-expressed as

σrr =
1

1 + η + (γ2+2Ip)
(Ip+Ic)Ωp

(∆c − s)2
. (20)

Far from the beam core, the second term η = Ic/Ip in the denominator is much larger than the
third term (γ2+2Ip)

(Ip+Ic)Ωp
(∆c − s)2. In this case, the influence of the frequency noise with respect to

∼ (∆c − s)2 becomes negligible. On the other hand, if the atom is placed in the vicinity of the
beam core, η = Ic/Ip goes to zero. The frequency noise then brings a remarkable fluctuation to
σrr, and reduces the steady population probability.

7. Concluding remarks

In conclusion, we have proposed a robust protocol for localizing the highly-excited Rydberg
atoms. The periodicity of the SW field in earlier schemes was an obstacle for detecting atoms in
single excitation regions. We have overcome this obstacle by applying an optical vortex, enabling
a super transverse localization of Rydberg atoms solely in the vicinity of the vortex core and with
a resolution down to the nanometer scale. The presence of the Rydberg-Rydberg interaction also
yields a better localization when it is partially compensated by a suitable detuning. We have also
demonstrated that a 3D localization is possible when applying simultaneously a vortex beam and
an auxiliary SW modulation to the two-photon detuning. The SW modulation of the detuning
provides a longitudinal confinement, while the vortex field localizes Rydberg atoms transversely.
The vortex based approach has unique advantages that may be especially useful for Rydberg
quantum computation in a nanometer-scale level, in which its robustness to the laser intensity
noise revealed will offer special applications for the high-precision operation of a stable quantum
logic gate.

Appendix A: Rydberg-Rydberg shifted energy s(r)

The position-dependent shifted energy s(r) can be solved for numerically. In the frame of
cylindrical coordinates, from Eq. (8) s(rj, zj) of the jth atom contributed by other surrounding m
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Fig. 9. (a1) The position-dependent blockade boundary for atom j at rj = 0, zj = 3λc/4,
characterized by an anisotropic blockade radius Rb in the (r, z) space for κ=10(red solid),
100(green-dashed), 500(blue dash-dotted) respectively. Inset: schematic diagram of
superatom ensembles illuminated by a localized LG field Ωc(r, ϕ), as well as a non-localized
TW field Ωp. (a2) A 3D visible plot of the anisotropic blockade sphere with blockade radius
Rb and κ = 100. Note that (a1) is a cross-section of the blockade sphere, as denoted by the
red-dashed curve. (b) The Rydberg shifted energy s(rj) at zj = 3λc/4 versus rj ∈ [0, 0.1]λc.
A wider range of rj ∈ [0, 20]λc is given in the inset, where s(rj) shows a slight change with
rj. Similarly to (b), (c) represents the relationship between s(zj) and zj ∈ [0.25, 1.25]λc
at rj = 0. Inset denotes a detailed image for s(zj), where tiny oscillations are preserved,
stemming from the SW periodicity of ∆c(z).

atoms has a reduced dual-integration form, described by

s(rj, zj) = 2πC6

∫ ∞

0

∫ ∞

−∞

fRρχ
[(r − rj)2 + (z − zj)2]3

rdzdr, (21)

where the azimuthal angle ϕ has been dropped out due to the symmetry. An adjustable coefficient
χ

χ =

{︄
0 r2 + z2<R2

b
1 r2 + z2 ≥ R2

b
(22)

is introduced to control the interaction strength of adjacent atoms m. Hence, if the adjacent atom
m is placed inside the blockade sphere preventing all Rydberg excitations, then χ = 0 and s = 0;
otherwise χ = 1, leading to s ≠ 0. The excited atom m will induce a finite Rydberg shift to the
atom j at (rj, zj). In the calculations, the entire integration regime contains a computational lattice
with 104 × 104 points in (r, z)-directions, where the computational lengths and the lattice spacing
along each dimension are Lr = Lz = 100λc ∼ 48µm and δr = δz = 0.01λc ∼ 4.8nm.

In Fig. 9(a1) we study the position-dependent blockade radius Rb(r, z) for κ = 10, 100, 500.
Explicitly, when the localized atom j is placed at the core of the LG field, Rb is essentially
anisotropic and increases with κ. The reason is, that near the beam core, where Ic ≈ 0, Rb is
inversely proportional to Ip. However, a common dip occurs at the beam waist around r ≈ 1.5λc,
arising from the fact that at this point the intensity Ic arrives at a same maximal value Ic0. Due
to the dominant role played by the strong intensity Ic0, the blockade radius tends to be the
same around r ≈ 1.5λc no matter what κ is. The inset shows a visual picture of a collection of
superatom ensembles illuminated by the LG (red) and TW (amaranth) fields. A 3D plot of the
anisotropic blockade sphere is given in Fig. 9(a2) to visualize the imaging, in which the blockade
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radius Rb in three-dimension is stressed. Note that (a1) is only a part of cross-section boundaries
as denoted by the red-dashed curve in the 3D blockade sphere.

Guided by the anisotropy of blockade radius, we further exploit the accumulated Rydberg shift
s(rj, zj) via the variation of positions, by considering zj = 3λc/4 (Fig. 9(b)) and rj = 0 (Fig. 9(c)),
separately. Note that the atom j is localized at (rj, zj) = (0, (3/4 ± n)λc) with n = 0, 1, 2 · · ·
denoting the periodic number coming from the SW modulation ∆c(z). Here we choose n = 0.
Based on Figs. 9(b) and (c), generally speaking the value of s(rj, zj = 3λc/4) or s(rj = 0, zj) can
be robustly preserved no matter how κ is tuned, benefiting from the tiny localization regime
around rj = 0 and zj = 3λc/4. For example Fig. 9(b) shows the little variation of the interaction
s within rj ≤ 48nm. That preservation property gives rise to a partial antiblockade relation by
δ − ∆c0 = s0 where s0 means the shifted energy at the localized point, and δ, ∆c0 are related to
the modulation function ∆c(z). Beyond the localization regime an insufficient preservation due to
partial antiblockade effect can counter-intuitively speed up the fall of the excited-state probability,
making the atom position confined within a narrower area, as indicated in Sec. 3.2.

On the other hand, it is also confirmed that s(rj, zj) significantly decreases for a larger κ. The
reason is that, if κ is large, the localized atoms placed around the core would suffer from a weaker
interaction from other atoms due to the sufficient size of the blockade radius. An extensive plot
in (b) supplementarily shows that the shifted energy s(rj) indeed changes slightly if the atom is
placed far from the beam core, where rj is a few micrometers as comparable as Rb, especially for
a small κ. At the same time, the shifted energy s(zj) keeps a long-range and stable preservation
along the z axis in every period [see inset of (c)].

Appendix B: The shifted frequency δ

To realize a robust 3D localization, we reveal the importance of the partial blockade relation
δ − ∆c0 = s0 with ∆c0 being the peak-peak modulation amplitude. Here ∆c0 is arbitrarily chosen
to be ∆c0/2π = 30MHz. The shifted frequency δ should be determined by δ = s0 + ∆c0. Here
s0 stands for the average Rydberg shift at the localized point (rj, zj) = (0, 3λc/4), which can be
solved by rewriting Eq. (21) into

s0 = 2πC6ρIp

∫ ∞

0
r
∫ ∞

−∞

χ

[(r − rj)2 + (z − zj)2]3B
dzdr, (23)

where B = Ic(r) + 4πR3
bρIp0/3 +

(γ2+2Ip0)∆c(z)2
Ip0+Ic(r) . If s0 is numerically solved it is possible to apply

the value δ = s0 + ∆c0 for structuring the sinusoidal modulation ∆c(z). Fig. 10 plots the behavior
of s0 with respect to κ. It is clearly shown that s0 decreases significantly as κ grows, and s0 also

Fig. 10. The shifted energy s0 at the localized point (rj, zj) = (0, 3λc/4) versus the change
of the ratio κ.
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preserves a tiny value if κ is very large. For example as κ>100, s0 has entered the regime below
∼ 0.1γ or smaller. Owing to the use of a weak probe field Ωp0, the poor Rydberg excitation
probability can lead to a smaller Rydberg shift s0.

However, although s0 is very small, the chosen δ should be sensitive to it. Once the relation of
δ = s0 + ∆c0 breaks, a dramatic broadening of FWHM occurs, that can greatly reduce the spatial
resolution of the localization [see Figs. 5(d)-(f)]. In experiment one needs to scan the frequency
δ very precisely around ∆c0 to improve the localization quality. For example, we numerically
obtain the values of δ/2π = (37.77, 31.15, 30.063)MHz for κ = (10, 100, 500), confirming that δ
becomes very close to ∆c0 = 30MHz when κ is sufficiently large.
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22. H. R. Hamedi and G. Juzeliūnas, “Phase-sensitive atom localization for closed-loop quantum systems,” Phys. Rev. A
94(1), 013842 (2016).

23. N. A. Proite, Z. J. Simmons, and D. D. Yavuz, “Observation of atomic localization using electromagnetically induced
transparency,” Phys. Rev. A 83(4), 041803 (2011).

24. J. A. Miles, Z. J. Simmons, and D. D. Yavuz, “Subwavelength localization of atomic excitation using electromagneti-
cally induced transparency,” Phys. Rev. X 3(3), 031014 (2013).

25. J. A. Miles, D. Das, Z. J. Simmons, and D. D. Yavuz, “Localization of atomic excitation beyond the diffraction limit
using electromagnetically induced transparency,” Phys. Rev. A 92(3), 033838 (2015).

26. Y. Zhou, P. Zammit, V. Zickus, J. M. Taylor, and A. R. Harvey, “Twin-airy point-spread function for extended-volume
particle localization,” Phys. Rev. Lett. 124(19), 198104 (2020).

27. S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending
point spread function,” Nat. Photonics 8(4), 302–306 (2014).

28. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82(3),
2313–2363 (2010).

29. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,”
Phys. Rev. Lett. 85(10), 2208–2211 (2000).

30. Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, and M. Zhan, “Entangling two
individual atoms of different isotopes via rydberg blockade,” Phys. Rev. Lett. 119(16), 160502 (2017).

31. A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev,
P. Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “Quantum kibble–zurek mechanism and critical
dynamics on a programmable rydberg simulator,” Nature 568(7751), 207–211 (2019).

32. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and
quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87(3), 037901 (2001).

33. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade
of rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).

34. K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and
spectral broadening induced by interactions in a cold gas of rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).

35. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, “Dipole blockade at förster resonances in high
resolution laser excitation of rydberg states of cesium atoms,” Phys. Rev. Lett. 97(8), 083003 (2006).

36. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, “Evidence for coherent
collective rydberg excitation in the strong blockade regime,” Phys. Rev. Lett. 99(16), 163601 (2007).
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