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1 Introduction

In quantum mechanics there are two kinds of dynamical rules which are used to describe the
observed time dependence of quantum states. For closed systems the unitary evolution
according to the Schrödinger equation is valid. On the other hand, measured system
experiences “reduction” or “collapse of the wave function”. Such dualistic description has
been a problem since early development of quantum mechanics. During recent years the
measurement problem attracted much attention due to the advancement in experimental
techniques. Nevertheless, the full understanding of quantum-mechanical measurements
has not been achieved as yet. The collapse of the wave function refers only to an ideal
measurement, which is instantaneous and arbitrarily accurate. Real measurements are
represented by the projection postulate only approximately.

When the unitary Schrödinger dynamics of a system is disturbed by the interaction
with an environment, the most important effect is creation of the entanglement with an
environment and resulting disturbance of the phase relations between the states of the
system. This process is called decoherence. Without coupling to the environment the
system displays a certain time dependence, governed by its own Hamiltonian. The motion
of a system may become frozen by repeated measurements, even if these are performed
ideally. This phenomenon is called the quantum Zeno effect.

The simplest analysis of the quantum Zeno effect does not take into account the actual
mechanism of the measurement process involved. It is based on an alternating sequence
of unitary evolution and a collapse of the wave function. Later it was realized that the
repeated measurements could not only slow down the quantum dynamics but the quantum
process may be accelerated by frequent measurements as well. This effect is called the
quantum anti-Zeno effect.

The quantum Zeno and anti-Zeno effects have attracted much attention. Although a
great progress in the investigation of the quantum Zeno effect has been made, this effect
is not completely understood as yet. In a more accurate analysis of the quantum Zeno
effect the finite duration of the measurement becomes important. Therefore, the projection
postulate is not sufficient to solve this problem. The measurement should be described
more fully, including the detector and the effect of the interaction with the environment
into the description.

Another interesting concept related to the measurements in quantum mechanics is the
idea of weak measurements by Ahronov, Albert and Vaidman. They showed that even
when the interaction with the quantum system is very weak and it only slightly disturbs
the dynamics of the system, it is possible to obtain some data about the quantum system
averaging over a large ensemble of identical systems. Weak measurements are in some
aspects more similar to the measurements in classical mechanics and can be used to obtain
interesting results about some questions that are trivial in classical mechanics but lack
rigorous formulation in quantum mechanics.

One of such a question is the tunneling time problem. There have been many attempts to
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1 Introduction

define a physical time for the tunneling processes. This question is still a subject of much
controversy, since numerous theories contradict each other in their predictions for “the
tunneling time”. Some of these theories predict that the tunneling process takes place at a
speed faster than the speed of light, whereas the others state that it should be subluminal.
The results of the experiments are often ambiguous. Using the weak measurements it is
possible to gain some insight into the tunneling time problem.

Another problem that has attracted much attention is the quantum description of the
arrival time. The problems rise from the fact, that the arrival time of a particle to a definite
spatial point is a classical concept. In classical mechanics for the determination of a time
the particle spends moving along a certain trajectory we have to measure the position of
the particle at two different moments of time. In quantum mechanics this procedure does
not work. Asking about the time in quantum mechanics one needs to define the procedure
of the measurement.

The main goals of the research work

• To show that quantum Zeno and anti-Zeno effects can be understood as a consequence
of the unitary Schrödinger dynamics and does not require a collapse of the wave
function.

• To investigate simple models of measurement demonstrating the quantum Zeno and
anti-Zeno effects.

• To derive a general equation for the probability of the jump during the measurement
without using the collapse of the wave function.

• To compare the decay rate of the measured system given by the derived equation
with the one obtained using more complete models of measurement that include into
description the environment of the detector.

• To use the concept of weak measurements for the investigation of the tunneling time
problem.

• Using weak measurements to investigate the problem of arrival time in quantum
mechanics.

The main conclusions

1. The quantum Zeno and anti-Zeno effects can be described without collapse of the
wave function.

2. Frequent real measurements of the quantum system can cause inhibition as well as
acceleration of the evolution of the system.

3. The general expression for the jump probability during the measurement, first ob-
tained by Kofman and Kurizki can be derived using only the assumptions of the
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non-demolition measurement and the Markovian approximation for the quantum
dynamics of the detector.

4. The general expression for the decay rate of a frequently measured system gives a
good agreement with the numerical simulation of the measured two level system and
for the decaying one, showing the quantum Zeno and anti-Zeno effects.

5. The expression is introduced for the duration when the observable has a certain value
subject to a condition that the system is found in a given final state. It is shown that
this duration has a definite value only when the commutativity condition is fulfilled.
In the opposite case two characteristic durations can be introduced which can be
combined into one complex quantity.

6. The tunneling time, defined using the concept of weak measurements, has no definite
value.

7. The density of one sided arrivals in quantum mechanics can be defined using weak
measurements. In analogy with the complex tunneling time, the complex arrival time
is introduced. It is shown that the proposed approach imposes an inherent limitation
on the resolution of the arrival time.

Approbation of the results

The main results of the research described in this dissertation have been published in 9
scientific papers.

Personal contribution of the author

The author of the thesis has performed most of the analytical derivations of the equations
as well as numerical calculations.
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3 Measurements in quantum mechanics

Quantum mechanics has shown an ever increasing range of applicability, making it more
and more evident that the formalism describes some general properties of Nature. De-
spite this success of quantum theory, there is still no consensus about its interpretation.
The main problems center around the notions of “observation” and “measurement”. The
problem of the “classical limit” is at the heart of the interpretation problem. Most text-
books suggest that classical mechanics is in some sense contained in quantum mechanics
as a special case. These standard arguments are insufficient for several reasons. It re-
mains unexplained why macro-objects come only in narrow wave packets, even though the
superposition principle allows far more nonclassical states. Measurement-like processes
would necessarily produce nonclassical macroscopic states as a consequence of the unitary
Scrödinger dynamics. An example is the famous Scrödinger cat [1–3].

It is now being realized that the assumption of a closed macroscopic system is not
justified. Objects we usually call “macroscopic” are interacting with their environment in
such a strong manner that they can never be considered as isolated.

According to a universal Scrödinger equation, quantum correlations with the environ-
ment are permanently created with a great efficiency for all macroscopic systems. Phase
relations between the system states during the interaction with the environment are trans-
ferred to the phase relations between combined system and environment states, leading
to decoherence. Decoherence is crucial in the measurement process. Measurement-like
interactions cause a strong quantum entanglement of macroscopic objects with their en-
vironment. Since the state of the environment is generally inaccessible to the observer,
the accompanying delocalization of phases then effectively destroys superpositions between
macroscopically different states, so that the object appears to be in one or other of those
states.

Since a system in contact with an environment is generally in an entangled state with
the latter it does not possess a pure state for itself. For the purpose of observations
concerning only the degrees of freedom of the system one can form a reduced density matrix
by averaging over the states of the environment. By performing experiments including
also the environment one could, in principle, observe quantum correlations between the
system and the environment which cannot be described by the reduced density matrix.
The Hamiltonian dynamics of the total system usually induces a non-unitary dynamics
for the reduced density matrix of the system itself. The classical properties emerge in
those physical situations in which the system is strongly entangled with the environment
that cannot be controlled and where the reduced density matrix of the former evolves
toward a decohered form with respect to certain properties. Then, while the system
remains entangled with the environment, all observations at our disposal are compatible
with classical statistics concerning these properties [4].

Measurements are usually described by means of observables, formally represented by
Hermitean operators. Physical states are assumed to vary in time in accordance with a
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3 Measurements in quantum mechanics

dynamical law. In contrast, a measurement device is usually defined regardless of time. If
the system is in a state |α〉, any basis {|n〉} in Hilbert space defines formal probabilities
pn = |〈n|α〉|2 to find the system in a state |n〉. However, only a basis consisting of states
that are not immediately destroyed by decoherence defines “realizable observables”.

The usual description of measurements is phenomenological. However, measurements
should be described dynamically as interactions between the measured system and the
measurement device. As discussed by von Neumann [5], this interaction must be diagonal
with respect to the measurement basis. It should act on the quantum state of the device in
such a way that the “pointer” moves into a position appropriate for being read, |n〉|Φ0〉 →
|n〉|Φn〉, where |Φ0〉 is the initial state of the measurement device and |Φn〉 is the state
corresponding to the measurement result n. The states |Φn〉, representing different pointer
positions, must approximately be mutually orthogonal.

In many situations the back-reaction of the environment on the considered system is neg-
ligibly small if the system is in a certain state. This is a typical situation of a measurement-
like process. If the interaction Hamiltonian is of von Neumann’s form

Ĥint =
∑

n

|n〉〈n| ⊗ Ân , (3.1)

where Ân are operators acting only in the Hilbert space of the environment, an eigenstate
|n〉 of the “observable” measured by this interaction will not be changed, while the envi-
ronment acquires information about the state |n〉 in the sense that its state changes in an
n-dependent way. States which do not change or change minimally during the interaction
with the environment are called “pointer states” [4, 6–8].

Because of dynamical superposition principle, an initial superposition
∑

cn|n〉 does not
lead to definite pointer positions. If decoherence is neglected, one obtains their entan-
gled superposition

∑
cn|n〉|Φn〉. This dilemma represents the “quantum measurement

problem”. Von Neumann’s interaction is nonetheless regarded as the first step of a mea-
surement. Yet, a collapse seems still to be required — now in the measurement device
rather than in the microscopic system. Because of the entanglement between the system
and the apparatus, it would then affect the total system.

The apparatus itself, since macroscopic, will interact strongly with its environment. By
the same mechanism, correlations are then delocalized again, leading to a diagonal density
matrix for the system and the apparatus. After establishing the system-apparatus correla-
tions, information about the measurement result is rapidly transferred to the environment
E, (∑

n

cn|n〉|Φn〉
)
|E〉 →

∑
n

cn|n〉|Φn〉|En〉

with 〈Em|En〉 ≈ 0. Again, the interaction coupling the apparatus to its environment is
assumed to have the form (3.1) thereby defining the “pointer states” |Φn〉 dynamically.

Therefore, the description of the measurement can have various levels of complexity [4]:

1. The simplest description is obtained when we assume a collapse after each complete
measurement. A sequence of measurements with a collapse of the wave function
after every measurement event leads to a stochastic history of system states. The
coarse grained system’s dynamics can be described by a rate equation for the density
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matrix. One can test whether the collapse has occured by coherently recombining
the split components of the wave function.

2. The next level of description includes the measuring device. The resulting wave func-
tion is a superposition of all branches corresponding to possible measurement results.
Coherence between different “histories” is fully preserved in this state. Inspecting
the detector would reveal a superposition of different results. The density matrix
of the measuring apparatus is not diagonal in the pointer states, hence it does not
even describe an improper mixture of measurement results. Furthermore, arbitrary
superpositions of macroscopically different pointer readings could be produced by
appropriate manipulations.

3. For a full unitary description the environment has to be included. Only after es-
tablishing quantum correlations with the environment, the “pointer basis” is well
defined, since phase relations between different states of the detector corresponding
to the different measurement results are delocalized. The density matrix describing
the apparatus now represents an improper mixture of measurement results. No ma-
nipulation of system or apparatus states can recover coherence, if the delocalization
of phases into the environment is truly irreversible.

However, decoherence does not provide by itself a solution to interpretational problems,
in particular that of measurement. We still need to explain the selection of one definite
result out of the improper mixture and the corresponding fate of the measured system.
A macroscopic measurement device is always assumed to decohere into its macroscopic
pointer states. However, environment-induced decoherence by itself does not yet solve the
problem, since the “pointer states” |Φn〉 may be assumed to include the total environment.
A way out of this dilemma with quantum mechanical concepts requires one of two possi-
bilities: a modification of the Scrödinger equation that explicitly describes a collapse or
an Everett type interpretation, in which all measurement outcomes are assumed to exist
in one formal superposition.

Although incomplete, models of measurements with various levels of complexity are
useful in investigation of the problems where the simplest description using wave function
collapse is insufficient. In this thesis various models of the measurement are used to con-
sider quantum Zeno and anti-Zeno effects and the problems related with time in quantum
mechanics.
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4 Quantum Zeno and anti-Zeno effects

4.1 Introduction

Theory of measurements has a special status in quantum mechanics. Unlike classical
mechanics, in quantum mechanics it cannot be assumed that the effect of the measurement
on the system can be made arbitrarily small. It is necessary to supplement quantum theory
with additional postulates, describing the measurement. One of such additional postulate
is von Neumann’s state reduction (or projection) postulate [5]. The essential peculiarity
of this postulate is its nonunitary character. However, this postulate refers only to an
ideal measurement, which is instantaneous and arbitrarily accurate. Real measurements
are described by the projection postulate only roughly.

The important consequence of von Neumann’s projection postulate is the quantum Zeno
effect. In quantum mechanics short-time behavior of nondecay probability of unstable
particle is not exponential but quadratic [9]. This deviation from the exponential decay
has been observed by Wilkinson et al. [10]. In 1977, Misra and Sudarshan [11] showed
that this behavior when combined with the quantum theory of measurement, based on the
assumption of the collapse of the wave function, leaded to a very surprising conclusion:
frequent observations slowed down the decay. An unstable particle would never decay
when continuously observed. Misra and Sudarshan have called this effect the quantum
Zeno paradox or effect. The effect is called so in allusion to the paradox stated by Greek
philosopher Zeno (or Zenon) of Elea. The very first analysis does not take into account the
actual mechanism of the measurement process involved, but it is based on an alternating
sequence of unitary evolution and a collapse of the wave function.

Cook [12] suggested an experiment on the quantum Zeno effect that was realized by
Itano et al. [13]. In this experiment a repeatedly measured two-level system undergoing
Rabi oscillations has been used. The outcome of this experiment has also been explained
without the collapse hypothesis [14–16]. Stochastic simulations of the quantum Zeno effect
experiment were performed in Ref. [17]. Recently, an experiment similar to Ref. [13] has
been performed by Balzer et al. [18]. The quantum Zeno effect has been considered for
tunneling from a potential well into the continuum [19], as well as for photoionization [20].
The quantum Zeno and anti-Zeno effects have been experimentally observed in an atomic
tunneling process in Ref. [21].

Later it was realized that the repeated measurements could not only slow the quantum
dynamics but the quantum process may be accelerated by frequent measurements as well
[20,22–26]. This effect was called a quantum anti-Zeno effect by Kaulakys and Gontis [22],
who argued that frequent disturbances may destroy quantum localization effect in chaotic
systems. An effect, analogous to the quantum anti-Zeno effect has been obtained in a
computational study involving barrier penetration, too [27]. Recently, an analysis of the
acceleration of a chemical reaction due to the quantum anti-Zeno effect has been presented
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4.2 Description of the measured system

in Ref. [28].
A simple interpretation of quantum Zeno and anti-Zeno effects was given in Ref. [26].

Using projection postulate the universal formula describing both quantum Zeno and anti-
Zeno effects was obtained. According to Ref. [26], the decay rate is determined by the
convolution of two functions: the measurement-induced spectral broadening and the spec-
trum of the reservoir to which the decaying state is coupled.

The states of the frequently measured system need not be frozen: in the general situation
coherent evolution of the system can take place in dynamically generated quantum Zeno
subspaces [29]. The projective measurements used in the description of the quantum Zeno
effect can be replaced by another quantum system interacting strongly with the principal
system [30–33].

Quantum Zeno effect can have practical significance in quantum computing. The use of
the quantum Zeno effect for correcting errors in quantum computers was first suggested
by Zurek [34]. A number of quantum codes utilising the error prevention that occurs in
the Zeno limit have been proposed [35–39].

In the analysis of the quantum Zeno effect the finite duration of the measurement be-
comes important, therefore, the projection postulate is not sufficient to solve this problem.
The complete analysis of the Zeno effect requires a more precise model of measurement
than the projection postulate. The measurement should be described more fully, includ-
ing in the description the detector. The basic ideas of a quantum measurement process
were theoretically expounded in Refs. [4,6–8,40–42] on the assumption of environmentally
induced decoherence or superselection. Therefore, in order to correctly describe the mea-
surement process one should include in the description the interaction of the detector with
the environment. Regardless of that, simpler models of measurement also can correctly
describe some aspects of quantum Zeno and anti-Zeno effects.

This Chapter is organized as follows. We begin from simple model of measurement in
Sec. 4.3 In Sec. 4.5 we analyze the quantum Zeno and anti-Zeno effects without using
any particular measurement model and making only few assumptions. We obtain a more
general expression for the jump probability during the measurement. Concrete model
of the environment of the detector is used in Sec. 4.6. Another model of the detector
is considered in Sec. 4.7. The influence of the environment is taken into account using
quantum trajectory method.

4.2 Description of the measured system

We consider a system that consists of two parts. The first part of the system has the
discrete energy spectrum. The Hamiltonian of this part is Ĥ0. The other part of the
system is represented by Hamiltonian Ĥ1. The Hamiltonian Ĥ1 commutes with Ĥ0. In
a particular case the second part can be absent, i.e. Ĥ1 can be zero. The operator V̂ (t)
causes the jumps between different energy levels of Ĥ0. Therefore, the full Hamiltonian
of the system is of the form ĤS = Ĥ0 + Ĥ1 + V̂ (t). The example of such a system is an
atom with the Hamiltonian Ĥ0 interacting with the electromagnetic field, represented by
Ĥ1, while the interaction between the atom and the field is V̂ (t).

We will measure in which eigenstate of the Hamiltonian Ĥ0 the system is. The measure-
ment is performed by coupling the system with the detector. The full Hamiltonian of the
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4 Quantum Zeno and anti-Zeno effects

system and the detector equals to

Ĥ = ĤS + ĤD + ĤI , (4.1)

where ĤD is the Hamiltonian of the detector and ĤI represents the interaction between
the detector and the measured system, described by the Hamiltonian Ĥ0. We can choose
the basis |nα〉 = |n〉 ⊗ |α〉 common for the operators Ĥ0 and Ĥ1,

Ĥ0|n〉 = En|n〉, (4.2)

Ĥ1|α〉 = Eα|α〉, (4.3)

where n numbers the eigenvalues of the Hamiltonian Ĥ0 and α represents the remaining
quantum numbers.

4.3 Simple model of measurement and quantum Zeno
effect

The complete analysis of the Zeno effect requires a more precise model of measurement
than the projection postulate. The purpose of this section is to consider a simple model
of the measurement. The model describes a measurement of the finite duration and finite
accuracy. Although the used model does not describe the irreversible process, it leads,
however, to the correct correlation between the states of the measured system and the
measuring apparatus.

Due to the finite duration of the measurement it is impossible to consider infinitely
frequent measurements, as in Ref. [11]. The highest frequency of the measurements is
achieved when the measurements are performed one after another, without the period of
the measurement-free evolution between two successive measurements. In our model we
consider such a sequence of the measurements. Our goal is to check whether this sequence
of the measurements can change the evolution of the system and to verify the predictions
of the quantum Zeno effect.

4.3.1 Model of the measurement

The measured system is described in section 4.2. We choose the operator ĤI representing
the interaction between the detector and the measured system in the form

ĤI = λq̂Ĥ0 (4.4)

where q̂ is the operator acting in the Hilbert space of the detector and the parameter λ
describes the strength of the interaction. This system—detector interaction is that consid-
ered by von Neumann [5] and in Refs. [43–47]. In order to obtain a sensible measurement,
the parameter λ must be large. We require a continuous spectrum of operator q̂. For
simplicity, we can consider the quantity q as the coordinate of the detector.

The measurement begins at time moment t0. At the beginning of the interaction with
the detector, the detector is in the pure state |Φ〉. The full density matrix of the system
and detector is ρ̂(t0) = ρ̂S(t0) ⊗ |Φ〉〈Φ| where ρ̂S(t0) is the density matrix of the system.
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4.3 Simple model of measurement and quantum Zeno effect

The duration of the measurement is τ . After the measurement the density matrix of the

system is ρ̂S(τ +t0) = TrD

{
Û(τ + t0) (ρ̂S(t0)⊗ |Φ〉〈Φ|) Û †(τ + t0)

}
and the density matrix

of the detector is ρ̂D(τ + t0) = TrS

{
Û(τ + t0) (ρ̂S(t0)⊗ |Φ〉〈Φ|) Û †(τ + t0)

}
where Û(t) is

the evolution operator of the system and detector, obeying the equation

i~
∂

∂t
Û(t) = Ĥ(t)Û(t) (4.5)

with the initial condition Û(t0) = 1.

Since the initial density matrix is chosen in a factorizable form, the density matrix of the
system after the interaction depends linearly on the density matrix of the system before
the interaction. We can represent this fact by the equality

ρ̂S(τ + t0) = S(τ, t0)ρ̂S(t0) (4.6)

where S(τ, t0) is the superoperator acting on the density matrices of the system. If the
vectors |n〉 form the complete basis in the Hilbert space of the system we can rewrite
Eq. (4.6) in the form

ρS(τ + t0)pr = S(τ, t0)
nm
pr ρS(t0)nm (4.7)

where the sum over the repeating indices is supposed. The matrix elements of the super-
operator are

S(τ, t0)
nm
pr = TrD

{
〈p|Û(τ + t0)(|n〉〈m| ⊗ |Φ〉〈Φ|)Û †(τ + t0)|r〉

}
. (4.8)

Due to the finite duration of the measurement it is impossible to realize the infinitely
frequent measurements. The highest frequency of the measurements is achieved when the
measurements are performed one after another without the period of the measurement-
free evolution between two successive measurements. Therefore, we model a continuous
measurement by the subsequent measurements of the finite duration and finite accuracy.
After N measurements the density matrix of the system is

ρ̂S(Nτ) = S(τ, (N − 1)τ) . . . S(τ, τ)S(τ, 0)ρ̂S(0). (4.9)

Further, for simplicity we will neglect the Hamiltonian of the detector. After this as-
sumption the evolution operator is equal to Û(t, 1 + λq̂) where the operator Û(t, ξ) obeys
the equation

i~
∂

∂t
Û(t, ξ) =

(
ξĤ0 + Ĥ1 + V̂ (t + t0)

)
Û(t, ξ) (4.10)

with the initial condition Û(t0, ξ) = 1. Then the superoperator S(τ, t0) is

S(τ, t0)
nm
pr =

∫
|〈q|Φ〉|2〈p|Û(τ + t0, 1 + λq)|n〉〈m|Û †(τ + t0, 1 + λq)|r〉dq . (4.11)
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4 Quantum Zeno and anti-Zeno effects

4.3.2 Measurement of the unperturbed system

In order to estimate the necessary duration of the single measurement it is convenient
to consider the case when the operator V̂ = 0. In such a case the description of the
evolution is simpler. The measurement of this kind occurs also when the influence of the
perturbation operator V̂ is small in comparison with the interaction between the system
and the detector and, therefore, the operator V̂ can be neglected. Since the Hamiltonian
of the system does not depend on t we will omit the parameter t0 in this section. From
Eq. (4.11) we obtain the superoperator S(τ) in the basis |nα〉

S(τ)nα1,mα2
pα3,rα4

= δnpδmrδ(α1, α3)δ(α2, α4) exp(iωmα2,nα1τ)

×
∫
|〈q|Φ〉|2 exp(iλωmnτq)dq (4.12)

where

ωmn =
1

~
(Em − En) , (4.13)

ωmα2,nα1 = ωmn +
1

~
(Eα2 − Eα1) (4.14)

and δ(·, ·) represent the Kronecker’s delta in a discrete case and the Dirac’s delta in a
continuous case. Eq. (4.12) can be rewritten using the correlation function

F (ν) = 〈Φ| exp(iνq̂)|Φ〉. (4.15)

We can express this function as F (ν) =
∫ |〈q|Φ〉|2 exp(iνq)dq =

∫ 〈Φ|p〉〈p− ν
~ |Φ〉dp. Since

vector |Φ〉 is normalized, the function F (ν) tends to zero when |ν| increases. There exists
a constant C such that the correlation function |F (ν)| is small if the variable |ν| > C.

Then the equation for the superoperator S(τ) is

S(τ)nα1,mα2
pα3,rα4

= δnpδmrδ(α1, α3)δ(α2, α4) exp(iωmα2,nα1τ)F (λτωmn). (4.16)

Using Eqs. (4.7) and (4.16) we find that after the measurement the non-diagonal elements
of the density matrix of the system become small, since F (λτωmn) is small for n 6= m when
λτ is large.

The density matrix of the detector is

〈q|ρ̂D(τ)|q1〉 = 〈q|Φ〉〈Φ|q1〉Tr
{

Û(τ, 1 + λq)ρ̂S(0)Û †(τ, 1 + λq1)
}

. (4.17)

From Eqs. (4.10) and (4.17) we obtain

〈q|ρ̂D(τ)|q1〉 = 〈q|Φ〉〈Φ|q1〉
∑

n

exp(iλτωn(q1 − q))
∑

α

〈n, α|ρ̂S(0)|n, α〉 (4.18)

where

ωn =
1

~
En. (4.19)

The probability that the system is in the energy level n may be expressed as

P (n) =
∑

α

〈n, α|ρ̂S(0)|n, α〉. (4.20)
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4.3 Simple model of measurement and quantum Zeno effect

Introducing the state vectors of the detector

|ΦE〉 = exp

(
− i

~
λτEq̂

)
|Φ〉 (4.21)

we can express the density operator of the detector as

ρ̂D(τ) =
∑

n

|ΦEn〉〈ΦEn |P (n). (4.22)

The measurement is complete when the states |ΦE〉 are almost orthogonal. The different
energies can be separated only when the overlap between the corresponding states |ΦE〉 is
almost zero. The scalar product of the states |ΦE〉 with different energies E1 and E2 is

〈ΦE1|ΦE2〉 = F (λτω12). (4.23)

The correlation function |F (ν)| is small when |ν| > C. Therefore, we have the estimation
for the error of the energy measurement ∆E as

λτ∆E & ~C (4.24)

and we obtain the expression for the necessary duration of the measurement

τ & ~
Λ∆E

(4.25)

where

Λ =
λ

C
. (4.26)

Since in our model the measurements are performed immediately one after the other, from
Eq. (4.25) it follows that the rate of measurements is proportional to the strength of the
interaction λ between the system and the measuring device.

4.3.3 Measurement of the perturbed system

The operator V̂ (t) represents the perturbation of the unperturbed Hamiltonian Ĥ0 + Ĥ1.
We will take into account the influence of the operator V̂ by the perturbation method,
assuming that the strength of the interaction λ between the system and detector is large.

The operator V̂ (t) in the interaction picture is

Ṽ (t, t0, ξ) = exp

(
i

~
(ξĤ0 + Ĥ1)t

)
V̂ (t + t0) exp

(
− i

~
(ξĤ0 + Ĥ1)t

)
. (4.27)

In the second order approximation the evolution operator equals to

Û(τ, t0, ξ) ≈ exp

(
− i

~
(ξĤ0 + Ĥ1)τ

){
1 +

1

i~

∫ τ

0

Ṽ (t, t0, ξ)dt

− 1

~2

∫ τ

0

dt1

∫ t

0

dt2Ṽ (t1, t0, ξ)Ṽ (t2, t0ξ)

}
. (4.28)
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4 Quantum Zeno and anti-Zeno effects

We obtain the superoperator S in the second order approximation substituting the
approximate expression for the evolution operator (4.28) into Eq. (4.11). Thus we have

S(τ, t0) = S(0)(τ) + S(1)(τ, t0) + S(2)(τ, t0) (4.29)

where S(0)(τ) is the superoperator of the unperturbed measurement given by Eq. (4.16),
S(1)(τ, t0) is the first order correction,

S(1)(τ, t0)
nα1,mα2
pα3,rα4

=
1

i~
δrmδ(α4, α2) exp(iωrα4,pα3τ)

∫ τ

0

dtVpα3,nα1(t + t0)

× exp(iωpα3,nα1t)F (λ(ωrpτ + ωpnt))

− 1

i~
δpnδ(α3, α1) exp(iωrα4,pα3τ)

∫ τ

0

dtVmα2,rα4(t + t0)

× exp(iωmα2,rα4t)F (λ(ωrpτ + ωmrt)), (4.30)

and S(2)(τ, t0) is the second order correction,

S(2)(τ, t0)
nα1,mα2
pα3,rα4

=
1

~2
exp(iωrα4,pα3τ)

∫ τ

0

dt1

∫ τ

0

dt2Vpα3,nα1(t1 + t0)Vmα2,rα4(t2 + t0)

× F (λ(ωrpτ + ωpnt1 + ωmrt2)) exp(iωpα3,nα1t1 + iωmα2,rα4t2)

− 1

~2
δrmδ(α4, α2) exp(iωrα4,pα3τ)

∑
s,α∫ τ

0

dt1

∫ t1

0

dt2Vpα3,sα(t1 + t0)Vsα,nα1(t2 + t0)

× F (λ(ωrpτ + ωpst1 + ωsnt2)) exp(iωpα3,sαt1 + iωsα,nα1t2)

− 1

~2
δpnδ(α3, α1) exp(iωrα4,pα3τ)

∑
s,α∫ τ

0

dt1

∫ t1

0

dt2Vmα2,sα(t2 + t0)Vsα,rα4(t1 + t0)

× F (λ(ωrpτ + ωsrt1 + ωmst2)) exp(iωsα,rα4t1 + iωmα2,sαt2), (4.31)

The probability of the jump from the level |iα〉 to the level |fα1〉 during the measurement
is W (iα → fα1) = S(τ, t0)

iα,iα
fα1,fα1

. Using Eqs. (4.29), (4.30) and (4.31) we obtain

W (iα → fα1) =
1

~2

∫ τ

0

dt1

∫ τ

0

dt2F (λωif (t2 − t1))V (t1 + t0)fα1,iαV (t2 + t0)iα,fα1

× exp (iωiα,fα1(t2 − t1)) . (4.32)

The expression for the jump probability can be further simplified if the operator V̂ does
not depend on t. We introduce the function

Φfα1,iα(t) = |Vfα1,iα|2 exp

(
i

~
(E1(f, α1)− E1(i, α))t

)
. (4.33)

Changing variables we can rewrite the jump probability as

W (iα → fα1) =
2

~2
Re

∫ τ

0

F (λωfit) exp(iωfit)(τ − t)Φfα1,iα(t)dt . (4.34)
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4.3 Simple model of measurement and quantum Zeno effect

Introducing the Fourier transformation of Φfα1,iα(t)

Gfα1,iα(ω) =
1

2π

∫ ∞

−∞
Φfα1,iα(t) exp(−iωt) dt (4.35)

and using Eq. (4.34) we obtain the equality

W (iα → fα1) =
2πτ

~2

∫ ∞

−∞
Gfα1,iα(ω)Pif (ω)dω (4.36)

where

Pif (ω) =
1

π
Re

∫ τ

0

F (λωif t)

(
1− t

τ

)
exp(i(ω − ωif )t)dt . (4.37)

From Eq. (4.37), using the equality F (0) = 1, we obtain

∫
Pif (ω)dω = 1 . (4.38)

The quantity G equals to

Gfα1,iα(ω) = ~|Vfα1,iα|2δ(E1(f, α1)− E1(i, α)− ~ω) . (4.39)

We see that the quantity G(ω) characterizes the perturbation.

4.3.4 The discrete spectrum

Let us consider the measurement effect on the system with the discrete spectrum. The
Hamiltonian Ĥ0 of the system has a discrete spectrum, the operator Ĥ1 = 0, and the oper-
ator V̂ (t) represents a perturbation resulting in the quantum jumps between the discrete
states of the system Ĥ0.

For the separation of the energy levels, the error in the measurement should be smaller
than the distance between the nearest energy levels of the system. It follows from this
requirement and Eq. (4.25) that the measurement time τ & 1

Λωmin
, where ωmin is the

smallest of the transition frequencies |ωif |.
When λ is large then |F (λx)| is not very small only in the region |x| < Λ−1. We can

estimate the probability of the jump to the other energy level during the measurement,
replacing F (ν) by 2Cδ(ν)in Eq. (4.32). Then from Eq. (4.32) we obtain

W (iα → fα1) ≈ 2

~2Λ|ωif |
∫ τ

0

|Viα1,fα(t + t0)|2 dt . (4.40)

We see that the probability of the jump is proportional to Λ−1. Consequently, for large
Λ, i.e. for the strong interaction with the detector, the jump probability is small. This
fact represents the quantum Zeno effect. However, due to the finiteness of the interaction
strength the jump probability is not zero. After sufficiently large number of measurements
the jump occurs. We can estimate the number of measurements N after which the system
jumps into other energy levels from the equality 2τ

~2Λ|ωmin| |Vmax|2N ∼ 1 where |Vmax| is
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4 Quantum Zeno and anti-Zeno effects

the largest matrix element of the perturbation operator V . This estimation allows us to
introduce the characteristic time, during which the evolution of the system is inhibited

tinh ≡ τN = Λ
~2|ωmin|
2|Vmax|2 . (4.41)

We call this duration the inhibition time (it is natural to call this duration the Zeno time,
but this term has already different meaning).

The full probability of the jump from level |iα〉 to other levels is W (iα) =
∑

f,α1
W (iα →

fα1). From Eq. (4.40) we obtain

W (iα) =
2

~2Λ

∑

f,α1

1

|ωif |
∫ τ

0

|Vfα1,iα(t + t0)|2 dt . (4.42)

If the matrix elements of the perturbation V between different levels are of the same size
then the jump probability increases linearly with the number of the energy levels. This
behavior has been observed in Ref. [48].

Due to the unitarity of the operator Û(t, ξ) it follows from Eq. (4.11) that the superop-
erator S(τ, t0) obeys the equalities

∑
p,α

S(τ, t0)
nα1,mα2
pα,pα = δnmδα1,α2 , (4.43)

∑
n,α

S(τ, t0)
nα,nα
pα1,rα2

= δprδα1,α2 . (4.44)

If the system has a finite number of energy levels, the density matrix of the system is
diagonal and all states are equally occupied (i.e., ρnα1,mα2(t0) = 1

K
δnmδα1,α2 where K is

the number of the energy levels) then from Eq. (4.44) it follows that S(τ, t0)ρ(t0) = ρ(t0).
Such a density matrix is the stable point of the map ρ → Sρ. Therefore, we can expect
that after a large number of measurements the density matrix of the system tends to this
density matrix.

When Λ is large and the duration of the measurement is small, we can neglect the non-
diagonal elements in the density matrix of the system, since they always are of order Λ−1.
Replacing F (ν) by 2Cδ(ν) in Eqs. (4.29), (4.30) and (4.31) and neglecting the elements
of the superoperator S that cause the arising of the non-diagonal elements of the density
matrix, we can write the equation for the superoperator S as

S(τ, t0)
nα1,mα2
pα3,rα4

≈ δpnδ(α3, α1)δrmδ(α4, α2)δpr +
1

Λ
A(τ, t0)

n,α1,α2
p,α3,α4

δprδnm (4.45)

where

A(τ, t0)
n,α1,α2
p,α3,α4

=
2

~2|ωnp|
∫ τ

0

Vpα3,nα1(t + t0)Vnα2,pα4(t + t0)dt

− δpnδ(α4, α2)
∑
s,α

1

~2|ωsn|
∫ τ

0

Vnα3,sα(t + t0)Vsα,nα1(t + t0)dt

− δpnδ(α3, α1)
∑
s,α

1

~2|ωns|
∫ τ

0

Vsα,nα4(t + t0)Vnα2,sα(t + t0)dt (4.46)
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4.3 Simple model of measurement and quantum Zeno effect

Then for the diagonal elements of the density matrix we have ρ(τ+t0) ≈ ρ(t0)+
1
Λ
A(τ, t0)ρ(t0),

or
d

dt
ρ̂(t) ≈ 1

Λτ
A(τ, t)ρ̂(t). (4.47)

If the perturbation V does not depend on t then it follows from Eq. (4.47) that the diagonal
elements of the density matrix evolve exponentially.

Example: two-level system

As an example we will consider the evolution of the measured two-level system. The system
is forced by the perturbation V which induces the jumps from one state to another. The
Hamiltonian of this system is

Ĥ = Ĥ0 + V̂ (4.48)

where

Ĥ0 =
~ω
2

σ̂3, (4.49)

V̂ = vσ̂+ + v∗σ̂−. (4.50)

Here σ1, σ2, σ3 are Pauli matrices and σ± = 1
2
(σ1 ± iσ2). The Hamiltonian Ĥ0 has two

eigenfunctions |0〉 and |1〉 with the eigenvalues −~ω
2

and ~ω
2

respectively. The evolution
operator of the unmeasured system is

Û(t) = cos

(
Ω

2
t

)
− 2i

~Ω
Ĥ sin

(
Ω

2
t

)
(4.51)

where

Ω =

√
ω2 + 4

|v|2
~2

. (4.52)

If the initial density matrix is ρ(0) = |1〉〈1| then the evolution of the diagonal elements of
the unmeasured system’s density matrix is given by the equations

ρ11(t) = cos2

(
Ω

2
t

)
+

(ω

Ω

)2

sin2

(
Ω

2
t

)
(4.53)

ρ00(t) =

(
1−

(ω

Ω

)2
)

sin2

(
Ω

2
t

)
. (4.54)

Let us consider now the dynamics of the measured system. The equations for the
diagonal elements of the density matrix (Eq. (4.47) ) for the system under consideration
are

d

dt
ρ11 ≈ − 1

tinh

(ρ11 − ρ00), (4.55)

d

dt
ρ00 ≈ − 1

tinh

(ρ00 − ρ11). (4.56)

where the inhibition time, according to Eq. (4.41), is

tinh =
Λ

2ω

∣∣∣∣
~ω
v

∣∣∣∣
2

. (4.57)
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Figure 4.1: The occupation of the initial level 1 of the measured two-level system calculated
according to Eqs. (4.7), (4.11), (4.51) and (4.61). The used parameters are ~ = 1, σ2 =
1, ω = 2, v = 1. The strength of the measurement λ = 50 and the duration of the
measurement τ = 0.1. The exponential approximation (4.58) is shown as a dashed line.
For comparison the occupation of the level 1 of the unmeasured system is also shown
(dotted line).

The solution of Eqs. (4.56) with the initial condition ρ(0) = |1〉〈1| is

ρ11(t) =
1

2

(
1 + exp

(
− 2

tinh

t

))
, (4.58)

ρ00(t) =
1

2

(
1− exp

(
− 2

tinh

t

))
. (4.59)

From Eq. (4.44) it follows that if the density matrix of the system is

ρ̂f =
1

2
(|0〉〈0|+ |1〉〈1|) , (4.60)

then S(τ)ρ̂f = ρ̂f . Hence, when the number of the measurements tends to infinity, the
density matrix of the system approaches ρ̂f .

We have performed the numerical analysis of the dynamics of the measured two-level
system (4.48)—(4.50) using Eqs. (4.7), (4.11) and (4.51) with the Gaussian correlation
function (4.15)

F (ν) = exp

(
− ν2

2σ2

)
. (4.61)

From the condition
∫∞
−∞ F (ν)dν = 2C we have C = σ

√
π
2
. The initial state of the system

is |1〉. The matrix elements of the density matrix ρ11(t) and ρ10(t) are represented in
Fig. 4.1 and Fig. 4.2, respectively. In Fig. 4.1 the approximation (4.58) is also shown. This
approach is close to the exact evolution. The matrix element ρ11(t) for two different values
of λ is shown in Fig. 4.3. We see that for larger λ the evolution of the system is slower.

The influence of the repeated non-ideal measurements on the two level system driven
by the periodic perturbation has also been considered in Refs. [48–51]. Similar results
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Figure 4.2: The non-diagonal element of the density matrix of the measured two-level
system. Used parameters are the same as in Fig. 4.1
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Figure 4.3: The occupation of the initial level 1 of the measured two-level system for
different strengths of the measurement: λ = 50, τ = 0.1 (dashed line) and λ = 5, τ = 0.2
(solid line). Other parameters are the same as in Fig. 4.1
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4 Quantum Zeno and anti-Zeno effects

have been found: the occupation of the energy levels changes exponentially with time,
approaching the limit 1

2
.

4.3.5 The decaying system

We consider the system which consists of two parts. We can treat the first part as an atom,
and the second part as the field (reservoir). The energy spectrum of the atom is discrete
and the spectrum of the field is continuous. The Hamiltonians of these parts are Ĥ0 and
Ĥ1 respectively. There is the interaction between the atom and the field represented by
the operator V̂ . So, the Hamiltonian of the system is

ĤS = Ĥ0 + Ĥ1 + V̂ . (4.62)

When the measurement is not performed, such a system exhibits exponential decay,
valid for the intermediate times. The decay rate is given according to the Fermi’s Golden
Rule

R(iα1 → fα2) =
2π

~
|Vfα2,iα1|2ρ(~ωif ) (4.63)

where
1

~
(Eα2 − Eα1) = ωif (4.64)

and ρ(E) is the density of the reservoir’s states.

When the energy level of the atom is measured, we can use the perturbation theory, as
it is in the discrete case.

The initial state of the field is a vacuum state |0〉 with energy E0 = 0. Then the density
matrix of the atom is ρ̂0(τ) = Tr1{ρ̂(τ)} = Tr1{S(τ)ρ̂(0)} or ρ̂0(τ) = Seff(τ)ρ̂0(0), where
Seff is an effective superoperator

Seff(τ)nm
pr =

∑
α

S(τ)n0,m0
pα,rα . (4.65)

When the states of the atom are weakly coupled to a broad band of states (continuum),
the transitions back to the excited state of the atom can be neglected (i.e., we neglect the
influence of emitted photons on the atom). Therefore, we can use the superoperator Sef

for determination of the evolution of the atom.

Since the states in the reservoir are very dense, one can replace the sum over α by an
integral over Eα ∑

α

. . . =

∫
dEαρ(Eα) . . .

where ρ(Eα) is the density of the states in the reservoir.

The spectrum

The density matrix of the field is ρ̂1(τ) = Tr0{ρ̂(τ)} = Tr0{S(τ)ρ̂(0)}. The diagonal
elements of the field’s density matrix give the spectrum. If the initial state of the atom is
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4.3 Simple model of measurement and quantum Zeno effect

|i〉 then the distribution of the field’s energy is W (Eα) = ρ1(τ)αα =
∑

f S(τ)i0,i0
fα,fα . From

Eqs. (4.29), (4.30) and (4.31) we obtain

W (Eα) =
∑

f

2π

~2
|Vfα,i0|2τPif

(
Eα

~

)
(4.66)

where Pif (ω) is given by the equation (4.37). From Eq. (4.66) we see that P (ω) is the
measurement-modified shape of the spectral line.

The integral in Eq. (4.37) is small when the exponent oscillates more rapidly than the

function F . This condition is fulfilled when E
~ − ωif & λωif

C
. Consequently, the width of

the spectral line is
∆Eif = Λ~ωif . (4.67)

The width of the spectral line is proportional to the strength of the measurement (this
equation is obtained using the assumption that the strength of the interaction with the
measuring device λ is large and, therefore, the natural width of the spectral line can be
neglected). The broadening of the spectrum of the measured system is also reported in
Ref. [24] for the case of an electron tunneling out of a quantum dot.

The decay rate

The probability of the jump from the state i to the state f is W (i → f ; τ) = Seff(τ)ii
ff .

From Eqs. (4.65) it follows

W (i → f ; τ) =
∑

α

W (i0,→ fα, τ) (4.68)

Using Eq. (4.36) we obtain the equality

W (i → f ; τ) =
2πτ

~2

∫ +∞

−∞
Gfi(ω)Pif (ω)dω. (4.69)

where

Gfi(ω) =

∫
ρ(Eα)Gfα,i0(ω)dEα (4.70)

The expression for G(ω) according to Eq. (4.39) is

Gfi(ω) = ~ρ(~ω) |VfEα=~ω,i0|2 . (4.71)

The quantity G(ω) is the reservoir coupling spectrum.
The measurement-modified decay rate is R(i → f) = 1

τ
W (i → f ; τ). From Eq. (4.69)

we have

R(i → f) =
2π

~2

∫ ∞

−∞
Gfi(ω)Pif (ω)dω. (4.72)

The equation (4.72) represents a universal result: the decay rate of the frequently measured
decaying system is determined by the overlap of the reservoir coupling spectrum and the
measurement-modified level width. This equation was derived by Kofman and Kurizki [26],
assuming the ideal instantaneous projections. We show that Eq. (4.72) is valid for the more
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4 Quantum Zeno and anti-Zeno effects

realistic model of the measurement, as well. An equation, similar to Eq. (4.72) has been
obtained in Ref. [52], considering a destruction of the final decay state.

Depending on the reservoir spectrum G(ω) and the strength of the measurement the in-
hibition or acceleration of the decay can be obtained. If the interaction with the measuring
device is weak and, consequently, the width of the spectral line is much smaller than the
width of the reservoir spectrum, the decay rate equals the decay rate of the unmeasured
system, given by the Fermi’s Golden Rule (4.63). In the intermediate region, when the
width of the spectral line is rather small compared with the distance between ωif and the
nearest maximum in the reservoir spectrum, the decay rate grows with increase of Λ. This
results in the anti-Zeno effect.

If the width of the spectral line is much greater compared both with the width of the
reservoir spectrum and the distance between ωif and the centrum of the reservoir spectrum,
the decay rate decreases when Λ increases. This results in the quantum Zeno effect. In
such a case we can use the approximation

Gfi(ω) ≈ ~Bfiδ(ω − ωR). (4.73)

where Bfi is defined by the equality Bfi = 1
~

∫
Gfi(ω)dω and ωR is the centrum of G(ω).

Then from Eq. (4.72) we obtain the decay rate R(i → f) ≈ 2π
~ BfiPif (ωif ). From Eq. (4.37),

using the condition Λτ |ωif | À 1 and the equality
∫∞
−∞ F (ν)dν = 2C we obtain

Pif (ωif ) =
1

πΛωif

. (4.74)

Therefore, the decay rate is equal to

R(i → f) ≈ 2Bfi

Λ~ωif

. (4.75)

The obtained decay rate is insensitive to the spectral shape of the reservoir and is inverse
proportional to the measurement strength Λ.

4.4 Free evolution and measurements

In the analysis of the quantum Zeno effect the finite duration of the measurement becomes
important. In Ref. [47] a simple model that allows us to take into account the finite duration
and finite accuracy of the measurement has been developed. However, in Ref. [47] it has
been analyzed the case when there are no free evolution between the measurements. In
this section we obtain the corrections to the jump probability due to the finite duration of
the measurement with the free evolution between the measurements.

The measured system is described in section 4.2. The measurement begins at time mo-
ment t0. At the beginning of the interaction with the detector, the detector is in the pure
state |Φ〉. The full density matrix of the system and detector is ρ̂(t0) = ρ̂S(t0) ⊗ |Φ〉〈Φ|
where ρ̂S(t0) is the density matrix of the system. The duration of the measurement is τ . Af-
ter the measurement the density matrix of the system is ρ̂S(τ+t0) = TrD{ÛM(τ, t0)(ρ̂S(t0)⊗
|Φ〉〈Φ|)Û †

M(τ, t0)} where ÛM(t, t0) is the evolution operator of the system and detector,
obeying the equation

i~
∂

∂t
ÛM(t, t0) = Ĥ(t + t0)ÛM(t, t0) (4.76)
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4.4 Free evolution and measurements

with the initial condition ÛM(0, t0) = 1. Further, for simplicity we will neglect the Hamil-
tonian of the detector (as in Ref. [47]). Then the evolution operator ÛM obeys the equation

i~
∂

∂t
ÛM(t, t0) =

(
(1 + λq̂)Ĥ0 + Ĥ1 + V̂ (t + t0)

)
ÛM(t, t0). (4.77)

After the measurement the system is left for the measurement-free evolution for time
T−τ . The density matrix becomes ρ̂S(T +t0) = ÛF(T−τ, τ +t0)ρ̂S(τ +t0)Û

†
F(T−τ, τ +t0)},

where ÛF(t, t0) is the evolution operator of the system only, obeying the equation

i~
∂

∂t
ÛF(t, t0) = ĤS(t + t0)ÛF(t, t0) (4.78)

with the initial condition ÛF(0, t0) = 1.
The measurements of the duration τ with a subsequent free evolution for the time T − τ

are repeated many times with the measurement period T . Such a process was considered
by the Misra and Sudarshan [11] and realized in the experiments [13].

4.4.1 Jump probability

We will calculate the probability of the jump from the initial to the final state during the
measurement and subsequent measurement-free evolution. The jumps are induced by the
operator V̂ (t) that represents the perturbation of the unperturbed Hamiltonian Ĥ0 + Ĥ1.
We will take into account the influence of the operator V̂ by the perturbation method,
assuming that the durations of the measurement τ and of the free evolution T − τ are
small.

The operator V̂ (t) in the interaction picture during the measurement is

ṼM(t, t0) = Û
(0)
M (t)V̂ (t + t0)Û

(0)
M (t), (4.79)

where Û
(0)
M (t) is the evolution operator of the system and the detector (4.1) without the

perturbation V̂

Û
(0)
M (t) = exp

(
− i

~
(Ĥ0 + Ĥ1 + ĤI)t

)
. (4.80)

The evolution operator ÛM(τ, t0) in the second order approximation equals to

ÛM(τ, t0) ≈ Û
(0)
M (τ)

(
1 +

1

i~

∫ τ

0

dtṼM(t, t0)

− 1

~2

∫ τ

0

dt1

∫ t

0

dt2ṼM(t1, t0)ṼM(t2, t0)

)
. (4.81)

The operator V̂ (t) in the interaction picture during the free evolution is

ṼF(t, t0) = Û
(0)
F (t)V̂ (t + t0)Û

(0)
F (t), (4.82)

where Û
(0)
F (t) is the evolution operator of the system without the perturbation V̂ , i.e.,

Û
(0)
F (t) = exp

(
− i

~
(Ĥ0 + Ĥ1)t

)
. (4.83)
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4 Quantum Zeno and anti-Zeno effects

The evolution operator ÛF(t, t0) in the second order approximation equals to

ÛF(t, t0) ≈ Û
(0)
F (t)

(
1 +

1

i~

∫ t

0

dt1ṼF(t1, t0)

− 1

~2

∫ t

0

dt1

∫ t

0

dt2ṼF(t1, t0)ṼF(t2, t0)

)
. (4.84)

The probability of the jump from the level |iα〉 to the level |fα1〉 is

W (iα → fα1) = TrD{〈fα1|ÛF(T − τ)ÛM(τ)(|iα〉〈iα| ⊗ |Φ〉〈Φ|)
× Û †

F(T − τ)Û †
M(τ)|fα1〉}. (4.85)

In the second-order approximation we obtain the expression for the jump probability
W (iα → fα1). The jump probability consists from three parts.

W (iα → fα1) = WF(iα → fα1) + WM(iα → fα1) + WInt(iα → fα1), (4.86)

where WF is the probability of the jump during the free evolution, WM is the probability
of the jump during the measurement and WInt is an interference term. The expressions for
these probabilities are (see Refs. [47,53] for the analogy of the derivation)

WF(iα → fα1) =
1

~2

∫ T−τ

0

dt1

∫ T−τ

0

dt2Vfα1,iα(t1 + t0 + τ)Viα,fα1(t2 + t0 + τ)

× exp(iωfα1,iα(t1 − t2)), (4.87)

WM(iα → fα1) =
1

~2

∫ τ

0

dt1

∫ τ

0

dt2Vfα1,iα(t1 + t0)Viα,fα1(t2 + t0)

× exp(iωfα1,iα(t1 − t2))F (λωfi(t1 − t2)), (4.88)

WInt(iα → fα1) =
2

~2
Re

∫ τ

0

dt1

∫ T

τ

dt2Vfα1,iα(t1 + t0)Viα,fα1(t2 + t0)

× exp(iωfα1,iα(t1 − t2))F (λωif (τ − t1)), (4.89)

where

ωfi =
1

~
(Ef − Ei), (4.90)

ωfα1,iα = ωfi +
1

~
(Eα1 − Eα), (4.91)

F (x) = 〈Φ| exp(ixq̂)|Φ〉. (4.92)

The probability to remain for the system in the initial state |iα〉 is

W (iα) = 1−
∑

f,α1

W (iα → fα1). (4.93)

After N measurements the probability for the system to survive in the initial state is equal
to W (iα)N ≈ exp(−RNT ), where R is the measurement-modified decay rate

R =
∑

f,α1

1

T
W (iα → fα1) (4.94)
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4.4 Free evolution and measurements

4.4.2 Example: two-level system

As an example we will consider the evolution of the measured two-level system. The system
is forced by the periodic of the frequency ωL perturbation V (t) which induces the jumps
from one state to another. Such a system was used in the experiment by Itano et al [13].
The Hamiltonian of this system is

Ĥ = Ĥ0 + V̂ (t) (4.95)

where

Ĥ0 =
~ω
2

σ̂3, (4.96)

V̂ (t) = (vσ̂+ + v∗σ̂−) cos(ωLt). (4.97)

Here σ1, σ2, σ3 are Pauli matrices and σ± = 1
2
(σ1 ± iσ2). The Hamiltonian Ĥ0 has two

eigenfunctions |0〉 and |1〉 with the eigenvalues −~ω
2

and ~ω
2

respectively.
Using Eqs. (4.87), (4.88) and (4.89) for the jump from the state |0〉 to the state |1〉 we

obtain

WF(0 → 1) =
|v|2
~2

sin2
(

∆ω
2

(T − τ)
)

(∆ω)2
, (4.98)

WM(0 → 1) =
τ

2

|v|2
~2

Re

∫ τ

0

F (λωt) exp(i∆ωt)

(
1− t

τ

)
dt, (4.99)

WInt(0 → 1) =
|v|2
2~2

Re

∫ τ

0

dt1

∫ T

τ

dt2 exp(i∆ω(t1 − t2))F (λω(t1 − τ)), (4.100)

where ∆ω = ω − ωL is the detuning . Equation (4.99) has been obtained in Ref. [47].
When λ is large, the function F varies rapidly and we can approximate expressions

(4.99) and (4.100) as

WM(0 → 1) =
τ

2Λω

|v|2
~2

(4.101)

WInt(0 → 1) =
|v|2
~2

1

2Λω∆ω
sin(∆ω(T − τ)) (4.102)

where Λ = λ/C, C is the width of the function F , defined by the equation (see Ref. [47])

C =
1

2

∫ ∞

−∞
F (x)dx (4.103)

If T À τ and ∆ωT ¿ 1 then we obtain

W (0 → 1) =
|v|2
~2

T 2

4
+
|v|2
~2

T

2

(
1

Λω
− τ

)
. (4.104)

From Eq. (4.104) we see that the jump probability for the non-ideal measurement consists
of two terms. The first term equals to the jump probability when the measurement is
instantaneous, the second term represents the correction due to the finite duration of the
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4 Quantum Zeno and anti-Zeno effects

measurement. In Ref. [47] it has been shown that the duration of the measurement can
be estimated as

τ & 1

Λω
. (4.105)

From Eq. (4.104) we see that the correction term is small, since the duration of the mea-
surement τ is almost compensated by the term 1/Λω.

4.5 General expression for the quantum Zeno and
anti-Zeno effects

In this section we analyze the quantum Zeno and anti-Zeno effects without using any
particular measurement model and making only few assumptions. We obtain a more
general expression for the jump probability during the measurement. Expression, derived
in Ref. [26] is a special case of our formula.

The measured system is described in section 4.2. The initial density matrix of the system
is ρ̂S(0). The initial density matrix of the detector is ρ̂D(0). Before the measurement the
measured system and the detector are uncorrelated, therefore, the full density matrix of
the measured system and the detector is ρ̂(0) = ρ̂S(0) ⊗ ρ̂D(0). The duration of the
measurement is τ .

When the interaction of the detector with the environment is taken into account, the
evolution of the measured system and the detector cannot be described by a unitary
operator. More general description of the evolution, allowing to include the interaction
with the environment, can be given using the superoperators. Therefore, we will assume
that the evolution of the measured system and the detector is given by the superoperator
S(t). The explicit form of the superoperator S(t) can be obtained from a concrete model
of the measurement.

Due to the finite duration of the measurement it is impossible to realize the infinitely
frequent measurements. The highest frequency of the measurements is achieved when the
measurements are performed one after another without the period of the measurement-
free evolution between two successive measurements. Therefore, we model a continuous
measurement by the subsequent measurements of the finite duration and finite accuracy.
After N measurements the full density matrix of the measured system and the detector is

ρ̂(Nτ) = S(τ)N ρ̂(0). (4.106)

We assume that the density matrix of the detector ρ̂D(0) is the same before each mea-
surement. This means that the initial condition for the detector modified by the measure-
ment is restored at the beginning of each measurement or each measurement is performed
with new detector. For example, if the detector is an atom which is excited during the
measurement, then after the interaction with the measured system is swithed off, due to
spontaneous emission the atom returns to the ground state and the result of the measure-
ment is encoded in the emitted photon, thus the initial state of the detector is restored.
In this case the full duration τ must be greater than the lifetime of the excited level.
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4.5 General expression for the quantum Zeno and anti-Zeno effects

4.5.1 Measurement of the unperturbed system

In this section we investigate the measurement of the unperturbed system, i.e., the case
when V (t) = 0.

We assume that the measurement of the unperturbed system is a quantum non-demolition
measurement [54–57]. The measurement of the unperturbed system does not change the
state of the measured system when initially the system is in an eigenstate of the Hamilto-
nian Ĥ0. After such an assumption, the most general form of the action of the superoper-
ator S(τ) can be written as

S(τ)[|nα〉〈mα′| ⊗ ρ̂D(0)] = |nα〉〈mα′|eiωmα′,nατ ⊗ Snα,mα′(τ)ρ̂D(0), (4.107)

where

ωmα′,nα =
1

~
(Em + Eα′ − En − Eα) (4.108)

and the superoperator Snα,mα′(τ) acts only on the density matrix of the detector. The full
density matrix of the detector and the measured system after the measurement is

ρ̂(τ) = S(τ)ρ̂(0) =
∑

nα,mα′
|nα〉(ρS)nα,mα′e

iωmα′,nατ 〈mα′| ⊗ Snα,mα′(τ)ρ̂D(0). (4.109)

From Eq. (4.109) it follows that the non-diagonal matrix elements of the density matrix
of the system after the measurement (ρS)nα,mα′(τ) are multiplied by the quantity

Fnα,mα′(τ) ≡ Tr{Snα,mα′(τ)ρ̂D(0)}. (4.110)

Since after the measurement the non-diagonal matrix elements of the density matrix of
the measured system should become small (they must vanish in the case of an ideal mea-
surement), Fnα,mα′(τ) must be also small when n 6= m.

4.5.2 Measurement of the perturbed system

The operator V̂ (t) represents the perturbation of the unperturbed Hamiltonian Ĥ0 + Ĥ1.
We will take into account the influence of the operator V̂ (t) by the perturbation method,
assuming that the strength of the interaction between the system and detector is large and
the duration of the measurement τ is short. Similar method was used in Ref. [58].

We assume that the Markovian approximation is valid, i.e., the evolution of the mea-
sured system and the detector depends only on their state at the present time. Then the
superoperator S, describing the evolution of the measured system and the detector, obeys
the equation

∂

∂t
S = L(t)S, (4.111)

where L is the Liouvilian. There is a small perturbation of the measured system, given by
the operator V̂ . We can write L = L0 +LV , where LV is a small perturbation. We expand
the superoperator S into powers of V

S = S(0) + S(1) + S(2) + · · · (4.112)
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4 Quantum Zeno and anti-Zeno effects

Then from Eq. (4.111) it follows

∂

∂t
S(0) = L0(t)S(0), (4.113)

∂

∂t
S(i) = L0(t)S(i) + LV (t)S(i−1). (4.114)

We will denote as S(0)(t, t0) the solution of Eq. (4.113) with the initial condition S(0)(t =
t0, t0) = 1. The formal solutions of Eqs. (4.113) and (4.114) are

S(0)(t, t0) = T exp

(∫ t

t0

L0(t
′)dt′

)
(4.115)

and

S(i)(t, 0) =

∫ t

0

dt1S(0)(t, t1)LV (t1)S(i−1)(t1, 0). (4.116)

Here T represents the time-ordering. In the second-order approximation we have

S(t, 0) = S(0)(t, 0) +

∫ t

0

dt1S(0)(t, t1)LV (t1)S(0)(t1, 0)

+

∫ t

0

dt1

∫ t1

0

dt2S(0)(t, t1)LV (t1)S(0)(t1, t2)LV (t2)S(0)(t2, 0). (4.117)

Using Eq. (4.112), the full density matrix of the measured system and the detector can be
represented as

ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t) + · · · , (4.118)

where
ρ̂(i)(t) = S(i)(t, 0)ρ̂(0). (4.119)

Let the initial density matrix of the system and detector is

ρ̂(0) = |iα〉〈iα| ⊗ ρ̂D(0). (4.120)

The probability of the jump from the level |iα〉 into the level |fα′〉 during the measurement
is

W (iα → fα′) = Tr{|fα′〉〈fα′|ρ̂(τ)}. (4.121)

Using the equation (4.107) we can write

S(0)(t, t0) [|nα〉〈mα′| ⊗ ρ̂D(0)] = |nα〉〈mα′|eiωmα′,nα(t−t0) ⊗ S(0)
nα,mα′(t, t0)ρ̂D(0). (4.122)

From Eq. (4.122) it follows that the superoperator S(0)
mα,mα with the equal indices does not

change the trace of the density matrix ρ̂D, since the trace of the full density matrix of the
measured system and the detector must remain unchanged during the evolution.

When the system is perturbed by the operator V̂ (t) then the superoperator LV is defined
by the equation

LV (t)ρ̂ =
1

i~
[V̂ (t), ρ̂]. (4.123)
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4.5 General expression for the quantum Zeno and anti-Zeno effects

The first-order term is ρ̂(1)(t) = S(1)(t, 0)ρ̂(0). Using Eqs. (4.116), (4.120), (4.122), and
(4.123), this term can be written as

ρ̂(1)(t) =
∑
pα1

1

i~

∫ t

0

dt2

(
|pα1〉Vpα1,iα(t2)e

iωiα,pα1
(t−t2)〈iα| ⊗ S(0)

pα1,iα(t, t2)

− |iα〉Viα,pα1(t2)e
iωpα1,iα(t−t2)〈pα1| ⊗ S(0)

iα,pα1
(t, t2)

)
S(0)

iα,iα(t2, 0)ρ̂D(0). (4.124)

When i 6= f then the first-order term does not contribute to the jump probability, since
from Eqs. (4.121) and (4.124) it follows that the expression for this contribution contains
the scalar product 〈fα′|iα〉 = 0.

For the second-order term ρ̂(2)(t) = S(2)(t, 0)ρ̂(0), using Eqs. (4.116) and (4.122), we
obtain the equality

Tr{|fα′〉〈fα′|ρ̂(2)(t)} =
1

i~

∫ t

0

dt1 Tr
{
〈fα′|V̂ (t1)ρ̂

(1)(t1)|fα′〉 − 〈fα′|ρ̂(1)(t1)V̂ (t1)|fα′〉
}

.

(4.125)

In Eq. (4.125) the superoperator S(0)
fα′,fα′ is omitted, since it does not change the trace.

Then from Eqs. (4.124) and (4.125) we obtain the jump probability

W (iα → fα′) =
1

~2

∫ τ

0

dt1

∫ t1

0

dt2 Tr
{(

Vfα′,iα(t1)Viα,fα′(t2)S(0)
iα,fα′(t1, t2)e

iωfα′,iα(t1−t2)

+ Vfα′,iα(t2)Viα,fα′(t1)S(0)
fα′,iα(t1, t2)e

iωiα,fα′ (t1−t2)
)

× S(0)
iα,iα(t2, 0)ρ̂D(0)

}
. (4.126)

Equation (4.126) allows us to calculate the jump probability during the measurement
when the evolution of the measured unperturbed system is known. The explicit form of
the superoperator S(0)

nα,mα′ can be obtained from a concrete model of the measurement.
The main assumptions, used in the derivation of Eq. (4.126), are Eqs. (4.107) and (4.111),
i.e., the assumptions that the quantum measurement of the unperturbed system is non-
demolition measurement and that the Markovian approximation is valid. Thus, Eq. (4.126)
is quite general.

The probability that the measured system remains in the initial state |iα〉 is

W (iα) = 1−
∑

f,α′
W (iα → fα′). (4.127)

After N measurements the probability that the measured system remains in the initial
state equals to

W (iα)N ≈ exp(−RNτ), (4.128)

where R is the jump rate

R =
∑

f,α′

1

τ
W (iα → fα′). (4.129)
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4.5.3 Free evolution and measurements

In practice, it is impossible to perform the measurements one after another without the
period of the measurement-free evolution between two successive measurements. Such
intervals of the measurement-free evolution were also present in the experiments demon-
strating the quantum Zeno effect [13, 18, 21]. Therefore, it is important to consider such
measurements. This problem for the definite model was investigated in Ref. [59].

We have the repeated measurements separated by the free evolution of the measured
system. For the purpose of the description of such measurements we can use Eq. (4.126),
obtained in Sec. 4.5.2. The duration of the free evolution is τF , the duration of the free
evolution and the measurement together is τ . The superoperator of the free evolution
without the perturbation V̂ is S(0)

F (t), the superoperator of the measurement is S(0)
M (t, t0).

We will assume that during the measurement the superoperator L0 does not depend on
time t. Then the superoperator S(0)

M (t, t0) depends only on the time difference t − t0.

Therefore, we will write S(0)
M (t − t0) instead of S(0)

M (t, t0). When the free evolution comes
first and then the measurement is performed, the full superoperator equals to

S(0)
nα,mα′(t, t1) =





S(0)
M nα,mα′(t− t1), τ > t1 > τF and τ > t > t1,

S(0)
F (t− t1), τF > t1 > 0and τF > t > t1,

S(0)
M nα,mα′(t− τF )S(0)

F (τF − t1), τF > t1 > 0and τ > t > τF .

(4.130)

Equation (4.130) can be written as

S(0)
nα,mα′(t, t1) = S(0)

M nα,mα′(t− t1)Θ(t1 − τF ) + S(0)
F (t− t1)Θ(τF − t)

+ S(0)
M nα,mα′(t− τF )S(0)

F (τF − t1)Θ(t− τF )Θ(τF − t1), (4.131)

where Θ is Heaviside unit step function. From Eqs. (4.126) and (4.131) it follows that the
jump probability consists of three terms

W (iα → fα′) = WM(iα → fα′) + WF (iα → fα′) + WI(iα → fα′), (4.132)

where the jump probability during the free evolution is

WF (iα → fα′) =
1

~2

∫ τF

0

dt1

∫ τF

0

dt2Vfα′,iα(t1)Viα,fα′(t2)e
iωfα′,iα(t1−t2), (4.133)

the jump probability during the measurement

WM(iα → fα′) =
1

~2

∫ τ

τF

dt1

∫ t1

τF

dt2 Tr
{(

Vfα′,iα(t1)Viα,fα′(t2)S(0)
M iα,fα′(t1 − t2)e

iωfα′,iα(t1−t2)

+ Vfα′,iα(t2)Viα,fα′(t1)S(0)
M fα′,iα(t1 − t2)e

iωiα,fα′ (t1−t2)
)

× S(0)
M iα,iα(t2 − τF )S(0)

F (τF )ρ̂D(0)
}

, (4.134)

and the interference term is

WI(iα → fα′) =
1

~2

∫ τ

τF

dt1

∫ τF

0

dt2 Tr
{(

Vfα′,iα(t1)Viα,fα′(t2)S(0)
M iα,fα′(t1 − τF )eiωfα′,iα(t1−t2)

+ Vfα′,iα(t2)Viα,fα′(t1)S(0)
M fα′,iα(t1 − τF )eiωiα,fα′ (t1−t2)

)
S(0)

F (τF )ρ̂D(0)
}

.

(4.135)
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If we assume that the free evolution does not change the density matrix of the detector
and the perturbation V̂ does not depend on time, we have the jump probability during
the measurement-free evolution

WF (iα → fα′) = |Viα,fα′|2
4 sin2

(
1
2
ωfα′,iατF

)

~2ω2
fα′,iα

, (4.136)

the jump probability during the measurement

WM(iα → fα′) =
1

~2
|Viα,fα′|2

∫ τ

τF

dt1

∫ t1

τF

dt2 Tr
{(
S(0)

M iα,fα′(t1 − t2)e
iωfα′,iα(t1−t2)

+ S(0)
M fα′,iα(t1 − t2)e

iωiα,fα′ (t1−t2)
)

× S(0)
M iα,iα(t2 − τF )ρ̂D(0)

}
, (4.137)

and the interference term

WI(iα → fα′) = |Viα,fα′ |2
2 sin

(
1
2
ωfα′,iατF

)

~2ωfα′,iα

×
∫ τ

τF

dt1 Tr
{(
S(0)

M iα,fα′(t1 − τF )eiωfα′,iα(t1− 1
2
τF )

+ S(0)
M fα′,iα(t1 − τF )eiωiα,fα′(t1− 1

2
τF )

)
ρ̂D(0)

}
. (4.138)

4.5.4 Simplification of the expression for the jump probability

The expression for the jump probability during the measurement can be simplified if the
operator V̂ does not depend on time t. Then Eq. (4.126) can be written as

W (iα → fα′) =
2

~2
|Viα,fα′|2 Re

∫ τ

0

dt1

∫ t1

0

dt2e
iωfα′,iα(t1−t2) Tr{S(0)

iα,fα′(t1, t2)S(0)
iα,iα(t2, 0)ρ̂D(0)}.

(4.139)
Introducing the function

Gfα′,iα(ω) = |Viα,fα′|2δ
(

1

~
(Eα′ − Eα)− ω

)
(4.140)

we can rewrite Eq. (4.139) in the form

W (iα → fα′) =
2πτ

~2

∫ ∞

−∞
Gfα′,iα(ω)Piα,fα′(ω)dω, (4.141)

where

P (ω)iα,fα′ =
1

πτ
Re

∫ τ

0

dt1

∫ t1

0

dt2e
i(ω−ωif )(t1−t2) Tr{S(0)

iα,fα′(t1, t2)S(0)
iα,iα(t2, 0)ρ̂D(0)}.

(4.142)
Equation (4.141) is similar to that obtained by Kofman and Kurizki in Ref. [26].
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4 Quantum Zeno and anti-Zeno effects

Further simplification can be achieved when the superoperator L0 does not depend on

time t and the order of the superoperators in the expression Tr
{
S(0)

iα,fα′(t1, t2)S(0)
iα,iα(t2)ρ̂D(0)

}

can be changed. Under such assumptions we have

Tr
{
S(0)

iα,fα′(t1, t2)S(0)
iα,iα(t2)ρ̂D(0)

}
= Tr

{
S(0)

iα,iα(t2)S(0)
iα,fα′(t1, t2)ρ̂D(0)

}
= Fiα,fα′(t1 − t2),

(4.143)
where Fiα,fα′(t) is defined by Eq. (4.110). After changing the variables into u = t1− t2 and
v = t1 + t2 from Eq. (4.142) we obtain

P (ω)iα,fα′ =
1

π
Re

∫ τ

0

(
1− u

τ

)
Fiα,fα′(u) exp (i(ω − ωif )u) du. (4.144)

Decaying system

We consider a decaying system with the Hamiltonian Ĥ0 which due to the interaction with
the field decays from the level |i〉 into the level |f〉. The field initially is in the vacuum
state |α = 0〉. Only the energy levels of the decaying system are measured and the detector

does not interact with the field. Then S(0)
iα,fα′ and Piα,fα′(ω) do not depend on α and α′.

Using Eqs. (4.129) and (4.141) we obtain the decay rate of the measured system

R =
∑

α

1

τ
W (i0 → fα) =

2π

~2

∫ ∞

−∞
Gf,i(ω)Pi,f (ω)dω, (4.145)

where
Gf,i(ω) =

∑
α

Gfα,i0(ω). (4.146)

The function Pi,f (ω) is related to the measurement-induced broadening of the spectral
line [26, 47, 60]. For example, when the instantaneous ideal measurements are performed
at time intervals τ , we can take Fiα,fα′(t) = Θ(τ − t), where Θ(t) is the unit step function.
Then from Eq. (4.144) we get

Pi,f (ω) =
2 sin2

(
1
2
τ(ω − ωif )

)

πτ(ω − ωif )2
.

We have that the width of the function Pi,f (ω) increases when the duration of the mea-
surement τ decreases.

Equation (4.141) represents a universal result: the decay rate of the frequently measured
decaying system is determined by the overlap of the reservoir coupling spectrum Gf,i(ω)
and the measurement-modified level width Pi,f (ω).

Depending on the reservoir spectrum Gf,i(ω) and the frequency of the measurements
1/τ the inhibition or acceleration of the decay can be obtained. If the frequency of the
measurements is small and, consequently, the measurement-induced broadening of the
spectral line is much smaller than the width of the reservoir coupling spectrum, the decay
rate equals the decay rate of the unmeasured system, given by the Fermi’s Golden Rule.
In the intermediate region, when the width of the spectral line is rather small compared
with the distance between ωif and the nearest maximum in the reservoir spectrum, the
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4.6 Influence of the detector’s temperature on the quantum Zeno effect

decay rate grows with the increase of the frequency of the measurements. This results in
the anti-Zeno effect.

If the width of the spectral line is much greater compared both with the width of the
reservoir spectrum and the distance between ωif and the centrum of the reservoir spectrum,
the decay rate decreases when the frequency of measurements increases. This results in
the quantum Zeno effect.

4.6 Influence of the detector’s temperature on the
quantum Zeno effect

In this section we extend the model, used in Ref. [47], including the interaction of the
detector with the environment. Then it becomes possible to study the influence of other
parameters of the detector on the evolution of the measured system, too. Using our model
we analyze the influence of the detector’s temperature on the measured system.

To describe the decoherence and dissipation we use the the Lindblad-type master equa-
tion. Semigroup theories pioneered by Lindblad [61] demonstrated that density-matrix
positivity, translational invariance and approach to thermal equilibrium cannot be satis-
fied simultaneously. Under the assumption of Markovian dynamics and initial decoupling
of system and bath, the semigroup approach adds dissipative dynamics to the quantum
master equations by means of the Lindblad dissipation operators.

Recently the semigroup formalism has attracted much attention. Quantum computing
is one of the fields in which quantum dissipation finds the most recent applications. In
physical chemistry semigroup theories have been utilized to model dynamics of ultrafast
predissociation in a condensed-phase or cluster environment [62], and electronic quenching
due to the coupling of the adsorbate negative ion in resonance to the metal electrons in the
desorption of neutral molecules on metal surfaces [63]. In nuclear physics, the semigroup
formalism is applied to model giant resonances in the nuclear spectra above the neutron
emission threshold [64].

4.6.1 Model of the measurement

The measured system is described in section 4.2. As the detector we use a harmonic
oscillator with the Hamiltonian

ĤD = ~Ω
(

b̂†b̂ +
1

2

)
, (4.147)

where b̂ and b̂† are the creation and anihillation operators, respectively. We choose the
interaction operator ĤI in the form

ĤI = λq̂Ĥ0, (4.148)

where q̂ = b̂†+b̂ is the coordinate of the detector and the parameter λ describes the strength
of the interaction. This system — detector interaction is similar to that considered by von
Neumann [5] and in Refs. [43–47, 53]. In order to obtain a sensible measurement, the
parameter λ must be large.
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4 Quantum Zeno and anti-Zeno effects

The measurement begins at time moment t0. At the beginning of the interaction with
the detector, the detector’s density matrix is ρ̂D(t0). The detector initially is in the thermal
equilibrium with the temperature T . Therefore,

ρ̂D(t0) = ρ̂T = exp

(
−~Ωn̂

kBT

)(
1− exp

(
− ~Ω

kBT

))
, (4.149)

where n̂ = b̂†b̂. The average excitation of the detector in thermal equilibrium with the
temperature T is

n̄(T ) =

(
exp

(
~Ω
kBT

)
− 1

)−1

. (4.150)

The full density matrix of the system and detector is ρ̂(t0) = ρ̂S(t0)⊗ ρ̂D(t0) where ρ̂S(t0)
is the density matrix of the system.

The detector is interacting with the environment. The master equation for the density
matrix of the system and the detector in the Lindblad form is (Ref. [61])

∂ρ̂(t)

∂t
=

1

i~
[Ĥ, ρ̂(t)] + LD[ρ̂(t)], (4.151)

where
LD[ρ̂(t)] =

∑
µ

([V̂µρ̂(t), V̂ †
µ ] + [V̂µ, ρ̂(t)V̂ †

µ ]), (4.152)

and V̂µ are the Lindblad dissipation operators. We use the equation of a dissipative phase
damped oscillator discussed in quantum optic [4]. The Lindblad dissipation operators are
chosen as follows,

V̂1 =

√
γ

2
b̂†b̂, V̂2 =

√
γ↑
2

b̂†, V̂3 =

√
γ↓
2

b̂. (4.153)

Then the equation (4.151) for the density matrix becomes

∂ρ̂(t)

∂t
=

1

i~
[Ĥ, ρ̂(t)] +

γ

2
(2n̂ρ̂(t)n̂− n̂2ρ̂(t)− ρ̂(t)n̂2)

+
γ↑
2

(2b̂†ρ̂(t)b̂− (n̂ + 1)ρ̂(t)− ρ̂(t)(n̂ + 1))

+
γ↓
2

(2b̂ρ̂(t)b̂† − n̂ρ̂(t)− ρ̂(t)n̂). (4.154)

The approach to the thermal equilibrium is obtained when the parameters γ↑ and γ↓ satisfy
the condition [65]

γ↑ = γ↓ exp

(
− ~Ω

kBT

)
. (4.155)

4.6.2 Solution of the master equation

For the solution of the equation (4.154) we adopt the technique used in Ref. [66]. We
introduce the quantum characteristic function [67]

χ(ξ, ξ∗) = Tr{ρ̂eξb̂†e−ξ∗b̂}. (4.156)
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4.6 Influence of the detector’s temperature on the quantum Zeno effect

The quantum characteristic function of the detector at the thermal equilibrium is

χT (ξ, ξ∗) = exp(−ξξ∗n̄(T )). (4.157)

We multiply the equation (4.151) by exp(−ξ∗b̂) from the left and by exp(ξb̂†) from the
right and take the trace. When the interaction between the measured system and the
detector is absent (i.e., λ = 0), we obtain the equation

∂

∂t
χ(ξ, ξ∗; t) = iΩ

(
ξ

∂

∂ξ
χ− ξ∗

∂

∂ξ∗
χ

)

+
γ

2

(
2ξ∗ξ

∂2

∂ξ∂ξ∗
χ− ξ∗2

∂2

∂ξ∗2
χ− ξ2 ∂2

∂ξ2
χ− ξ∗

∂

∂ξ∗
χ− ξ

∂

∂ξ
χ

)

+
γ↑
2

(
ξ

∂

∂ξ
χ + ξ∗

∂

∂ξ∗
χ− 2ξξ∗χ

)

− γ↓
2

(
ξ

∂

∂ξ
χ + ξ∗

∂

∂ξ∗
χ

)
. (4.158)

We will search the solution of Eq. (4.158) in the form

χ(ξ, ξ∗) = exp

(∑

j,k

Cj,k(t)ξ
j(−ξ∗)k

)
, (4.159)

where Cj,k are the coefficients to be determined. Substituting Eq. (4.159) into Eq. (4.158)
we obtain the set of equations for the coefficients Cj,k

∂Cj,k(t)

∂t
= iΩ(j − k)Cj,k(t)− γ

2
(j − k)2Cj,k(t)

+
1

2
(γ↑ − γ↓)(j + k)Cj,k(t) + γ↑δj,1δk,1. (4.160)

The solution of Eq. (4.160) is

C1,1(t) = C1,1(0)e−(γ↓−γ↑)t + n̄(T )
(
1− e−(γ↓−γ↑)t

)
, (4.161)

Cj,k(t) = Cj,k(0)eiΩ(j−k)te−
γ
2
(j−k)2t− 1

2
(γ↓−γ↑)(j+k)t, j 6= 1, k 6= 1 (4.162)

From the solution we see that the function χ approaches the function at the equilibrium
χT as the time t grows. The detector’s density matrix ρ̂D, correspondingly, tends to the
ρ̂T .

4.6.3 Measurement of the unperturbed system

At first, we will consider the case when the perturbation is absent, i.e., V̂ (t) = 0. Since
the Hamiltonian of the measured system does not depend on t we will omit the parameter
t0 in this section.

We introduce the density matrix ρ̂m,n =
∑

α〈mα|ρ̂|nα〉 and the characteristic function

χm,n(ξ, ξ∗; t) = Tr{ρ̂m,n(t)eξb̂†e−ξ∗b̂}. (4.163)
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4 Quantum Zeno and anti-Zeno effects

From Eq. (4.151) we obtain the equation for the density matrix ρ̂m,n

∂

∂t
ρ̂m,n = −iωmnρ̂m,n − iλ(ωmq̂ρ̂m,n − ρ̂m,nq̂ωn) + LD[ρ̂m,n], (4.164)

where

ωn =
En

~
, (4.165)

ωmn = ωm − ωn. (4.166)

Equation (4.164) may be solved similarly as in Sec. 4.6.2. When the detector is initially
at equilibrium then χmn(ξ, ξ∗; 0) = χmn(0) exp(−ξξ∗n̄(T )). As in Sec. 4.6.2 we take the
characteristic function of the form (4.159) and obtain the equations for the coefficients Cj,k

∂C0,0

∂t
= −iωmn (1 + λ(C1,0 + C0,1)) , (4.167)

∂C1,0

∂t
= (iΩ− γeff)C1,0 + iλ(ωn − ωmnC1,1), (4.168)

∂C0,1

∂t
= −(iΩ + γeff)C0,1 − iλ(ωm + ωmnC1,1), (4.169)

∂C1,1

∂t
= (γ↑ − γ↓)C1,1 + γ↑ (4.170)

with the initial conditions C0,0(0) = 0, C1,0(0) = 0, C0,1(0) = 0, C1,1(0) = n̄(T ). Here

γeff =
1

2
(γ + γ↓ − γ↑). (4.171)

The solutions of Eqs. (4.167)–(4.170) are

C1,1(t) = n̄(T ), (4.172)

C1,0(t) = iλ
ωn − ωmnn̄(T )

γeff − iΩ

(
1− e(iΩ−γeff)t

)
, (4.173)

C0,1(t) = −iλ
ωm + ωmnn̄(T )

γeff + iΩ

(
1− e−(iΩ+γeff)t

)
, (4.174)

C0,0(t) = −iωmnt + λ2ωmn
ωn − ωmnn̄(T )

γeff − iΩ

(
t +

1

γeff − iΩ

(
e(iΩ−γeff)t − 1

))

− λ2ωmn
ωm + ωmnn̄(T )

γeff + iΩ

(
t +

1

γeff + iΩ

(
e−(iΩ+γeff)t − 1

))
. (4.175)

Using Eqs. (4.159) and (4.175) we find that the non-diagonal elements of the density matrix
of the measured system become small as the time t grows. This represents the decoherence
induced by the measurement. The diagonal elements of the density matrix do not change.

4.6.4 Measurement of the perturbed system

The operator V̂ (t) represents the perturbation of the unperturbed Hamiltonian Ĥ0 + Ĥ1.
We assume that diagonal matrix elements of the perturbation operator V are zeros. We will
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4.6 Influence of the detector’s temperature on the quantum Zeno effect

take into account the influence of the operator V̂ by the perturbation method, assuming
that the strength of the interaction λ between the system and detector is large. This
method was developed in Sec. 4.5.2.

Using Eq. (4.126) we obtain the probability of the jump during the measurement

W (iα → fα1, t) =
1

~2
|Viα,fα1|2

∫ t

0

dt1

∫ t1

0

dt2 Tr
{(

S
(0)
iα,fα1

(t1 − t2)

+ S
(0)
fα1,iα(t1 − t2)

)
S

(0)
iα,iα(t2)ρ̂D

}
. (4.176)

Defining a new characteristic function similarly as in Eq. (4.163)

χiα,fα1(ξ, ξ
∗; t1, t2) = Tr{eξb̂†e−ξ∗b̂S

(0)
iα,fα1

(t1 − t2)S
(0)
iα,iα(t2)ρ̂D} (4.177)

the jump probability (4.176) can be expressed as

W (iα → fα1, t) =
1

~2
|Viα,fα1|2

∫ t

0

dt1

∫ t1

0

dt2 (χiα,fα1(0, 0; t1, t2) + χfα1,iα(0, 0; t1, t2)) .

(4.178)
The detector initially (at t = 0) is in the thermal equilibrium with the temperature

T , ρ̂D = ρ̂T (Eq. (4.149)). The initial characteristic function is χiα,fα1(ξ, ξ
∗; 0, 0) =

exp (−ξξ∗n̄(T )). Using the results of the Sec. 4.6.3 (Eqs. (4.159) and (4.172)–(4.175)
), we obtain the characteristic function of the density matrix at time t2

χiα,fα1(ξ, ξ
∗; t2, t2) = Tr{eξb̂†e−ξ∗b̂S

(0)
iα,iα(t2)ρ̂D}

= exp

(
iξλωi

γeff − iΩ

(
1− ei(Ω−γeff)t2

))

× exp

(
iξ∗λωi

γeff + iΩ

(
1− e−i(Ω+γeff)t2

)− ξξ∗n̄(T )

)
. (4.179)

Taking the function χiα,fα1(ξ, ξ
∗; t2, t2) from Eq. (4.179) as the initial characteristic function

and proceding further as in Sec. 4.6.3, we have the value of the characteristic function,
defined by Eq. (4.177) with the parameters ξ = ξ∗ = 0

χiα,fα1(0, 0; t1, t2) = exp

(
− iωiα,fα1(t1 − t2)

+ λ2ωif
ωf − ωif n̄(T )

γeff − iΩ

(
t1 − t2 +

1

γeff − iΩ

(
e(iΩ−γeff)(t1−t2) − 1

))

− λ2ωif
ωi + ωif n̄(T )

γeff + iΩ

(
t1 − t2 +

1

γeff + iΩ

(
e−(iΩ+γeff)(t1−t2) − 1

))

+
λ2ωifωi

(γeff − iΩ)2

(
1− e(iΩ−γeff)t2

) (
1− e(iΩ−γeff)(t1−t2)

)

− λ2ωifωi

(γeff + iΩ)2

(
1− e−(iΩ+γeff)t2

) (
1− e−(iΩ+γeff)(t1−t2)

) )
. (4.180)

Here

ωiα,fα1 = ωif +
1

~
(Eα − Eα1). (4.181)
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Approximations

When the dissipation is fast, i.e., the dissipation time is much less than the period of the
oscillator, we have Ω ¿ γeff . Then

χiα,fα1(0, 0; t1, t2) = exp (−iωiα,fα1(t1 − t2))

× exp

(
−(1 + 2n̄(T ))

λ2ω2
if

γeff

(
t1 − t2 +

1

γeff

(
e−γeff(t1−t2) − 1

)))
.

The probability of the jump from the level |iα〉 to the level |fα1〉 during the measurement
according to Eq. (4.178) is

W (iα → fα1, t) =
2t

~2
|Viα,fα1|2 Re

∫ t

0

du
(
1− u

t

)
eiωfα1,iαu

× exp

(
−(1 + 2n̄(T ))λ2ω2

if

γeff

(
u +

1

γeff

(e−γeffu − 1)

))
. (4.182)

We introduce the function

Φfα1,iα(t) = |Viα,fα1|2 exp

(
i

~
[E1(f, α1)− E1(i, α)]t

)
(4.183)

and the Fourier transformation of Φfα1,iα(t)

Gfα1,iα(ω) =
1

2π

∫ ∞

−∞
dtΦfα1,iα(t) exp(−iωt). (4.184)

Then we can rewrite Eq. (4.182) in the form

W (iα → fα1, t) =
2πt

~2

∫ ∞

−∞
dωGfα1,iα(ω)Pif (ω), (4.185)

where

Pif (ω) =
1

π
Re

∫ t

0

du
(
1− u

t

)
exp (i(ω − ωif )u)

× exp

(
−(1 + 2n̄(T ))λ2ω2

if

γeff

(
u +

1

γeff

(e−γeffu − 1)

))
. (4.186)

The equation (4.185) is of the form, obtained by Kofman and Kurizki [26], assuming the
ideal instantaneous projections. The function P (ω)if is the measurement-modified shape
of the spectral line (Refs. [26,47,60]). Here we have shown that Eq. (4.185) can be derived
from more realistic model as well. The assumption that dissipation is fast, Ω ¿ γeff is
crucial. Without this assumption the jump probability cannot have the form of Eq. (4.185),
since then χiα,fα1(0, 0; t1, t2) depends not only on the difference t1 − t2 but also on t2.

When λ is big then to the integral in Eq. (4.182) contribute only small values of u and
we can expand the exponent exp(−γeffu) into Taylor series keeping the first three terms
only. We obtain the jump rate

R(iα → fα1) ≈ 2

~2
|Viα,fα1|2 Re

∫ ∞

0

du exp

(
iωfα1,iαu− 1

2
(1 + 2n̄(T ))λ2ω2

ifu
2

)
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4.7 Quantum trajectory method for the quantum Zeno and anti-Zeno effects

or

R(iα → fα1) ≈ 2|Viα,fα1|2
~2λ|ωif |

√
π

2(1 + 2n̄(T ))
(4.187)

The obtained decay rate inversely proportional to the measurement strength λ. The mea-
surement strength appears in the equations multiplied by

√
1 + 2n̄(T ), therefore, the effect

of the measurement increases as the temperature of the detector grows.

4.7 Quantum trajectory method for the quantum Zeno
and anti-Zeno effects

The density matrix analysis assumes that the experiment is performed on a large num-
ber of systems. An alternative to the density matrix analysis are stochastic simulation
methods [68–72]. Various stochastic simulation methods describe quantum trajectories for
the states of the system subjected to random quantum jumps. Using stochastic methods
one can examine the behaviour of individual trajectories, therefore such methods provide
the description of the experiment on a single system in a more direct way. The results
for the ensemble are obtained by repeating the stochastic simulations several times and
calculating the average.

Stochastic simulations of the quantum Zeno effect experiment were performed in Ref. [17].
In this Section we describe the evolution of the detector interacting with the environment
using the quantum jump model developed by Carmichael [70]. We use the quantum jump
method to describe the evolution of frequently measured systems and to compare the
numerical results with the analytically obtained decay rates.

4.7.1 Measurement of the unperturbed system

The measured system is described in section 4.2. In this Section we consider the Hamil-
tonian Ĥ0 with two eigenstates: ground |g〉 and excited |e〉. At first we investigate the
measurement of the unperturbed system, i.e., the case when V̂ = 0.

We assume that the Markovian approximation is valid i.e., the evolution of the measured
system and the detector depends only on their state at the present time. The master
equation for the full density matrix of the detector and the measured system is

∂

∂t
ρ̂(t) =

1

i~
[Ĥ0, ρ̂(t)] +

1

i~
[ĤI , ρ̂(t)] +

1

i~
[ĤD, ρ̂(t)] + LDρ̂(t), (4.188)

where the superoperator LD accounts for the interaction of the detector with the envi-
ronment. We assume that the measurement of the unperturbed system is a quantum
non-demolition measurement [54–57]. The measurement of the unperturbed system does
not change the state of the measured system when initially the system is in an eigenstate
of the Hamiltonian Ĥ0. This can be if [Ĥ0, ĤI ] = 0.

We introduce the superoperator Ln,m acting only on the density matrix of the detector

Ln,mρ̂ =
1

i~
(〈n|ĤI |n〉ρ̂− ρ̂〈m|ĤI |m〉) +

1

i~
[ĤD, ρ̂] + LDρ̂ (4.189)
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and the superoperator Sn,m(t) obeying the equation

∂

∂t
Sn,m(t) = Ln,mSn,m(t), (4.190)

with the initial condition Sn,m(0) = 1. Then the full density matrix of the detector and
the measured system after the measurement is

ρ̂(τM) = S(τM)ρ̂(0) =
∑
n,m

|n〉(ρS)n,m(0)eiωm,nτM 〈m| ⊗ Sn,m(τM)ρ̂D(0), (4.191)

where τM is the duration of the measurement and

ωm,n = ωm − ωn (4.192)

with ωn = En/~. From Eq. (4.191) it follows that the non-diagonal matrix elements of the
density matrix of the system after the measurement (ρS)n,m(τM) ≡ (ρS)n,m(0)eiωm,nτM are
multiplied by the quantity

Fn,m(τM) ≡ Tr{Sn,m(τM)ρ̂D(0)}. (4.193)

Since after the measurement the non-diagonal matrix elements of the density matrix of
the measured system should become small (they must vanish in the case of an ideal mea-
surement), Fn,m(τM) must be also small when n 6= m.

4.7.2 The detector

We take an atom with two energy levels, the excited level |a〉 and the ground level |b〉, as
the detector. The Hamiltonian of the detecting atom is

ĤD =
~ΩD

2
σ̂z. (4.194)

Here ~ΩD defines the separation between levels |a〉 and |b〉, σ̂x, σ̂y, σ̂z are Pauli matrices.

The interaction Hamiltonian ĤI we take as

ĤI = ~λ|g〉〈g|(σ̂+ + σ̂−), (4.195)

where σ̂± = 1
2
(σ̂x ± iσ̂y). The parameter λ describes the strength of the coupling with the

detector. The detecting atom interacts with the electromagnetic field. The interaction of
the atom with the field is described by the term

LDρ̂D = −Γ

2
(σ̂+σ̂−ρ̂D − 2σ̂−ρ̂Dσ̂+ + ρ̂Dσ̂+σ̂−), (4.196)

where Γ is the atomic decay rate.
At the equilibrium, when there is no interaction with the measured system, the density

matrix of the detector is ρ̂D(0) = |b〉〈b|.
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4.7 Quantum trajectory method for the quantum Zeno and anti-Zeno effects

Duration of measurement

We can estimate the characteristic duration of one measurement τM as the time during
which the non-diagonal matrix elements of the measured system become negligible. There-
fore, in order to estimate the duration of the measurement τM , we need to calculate the
quantity

Fe,g(t) = Tr{Se,g(t)ρ̂D(0)}.
We will solve the equation

∂

∂t
ρ̂D =

1

i~
[ĤD, ρ̂D] + Le,gρ̂D. (4.197)

For the matrix elements of the density matrix of the detector we have the equations

∂

∂t
ρaa = iλρab − Γρaa, (4.198)

∂

∂t
ρbb = iλρba + Γρaa, (4.199)

∂

∂t
ρab = −iΩDρab + iλρaa − 1

2
Γρab, (4.200)

∂

∂t
ρba = iΩDρba + iλρbb − 1

2
Γρba. (4.201)

with the initial conditions ρab(0) = ρba(0) = ρaa(0) = 0, ρbb(0) = 1.
Atom can act as an effective detector when the decay rate Γ of the excited state |a〉 is

large. In such a situation we can obtain approximate solution assuming that ρba and ρab

are small and ρbb changes slowly. Then the approximate equation for the matrix element
ρba is

∂

∂t
ρba = iλρbb(0)− 1

2
Γρba (4.202)

with the solution

ρba(t) = 2i
λ

Γ
(1− e−

1
2
Γt). (4.203)

Substituting this solution into the equation for the matrix element ρbb we get

∂

∂t
ρbb = −2

λ2

Γ
(1− e−

1
2
Γt). (4.204)

Taking the term linear in t we obtain the solution

ρbb(t) ≈ 1− 2
λ2

Γ
t ≈ e−2λ2

Γ
t. (4.205)

Since ρaa(t) = 0, using Eq. (4.205) we have

Fe,g(t) = ρbb(t) ≈ exp

(
− t

τM

)

where

τM =
Γ

2λ2
(4.206)

is the characteristic duration of the measurement. This estimate is justified comparing
with the exact solution of the equations. We get that the measurement duration is shorter
for bigger coupling strength λ.
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4 Quantum Zeno and anti-Zeno effects

4.7.3 Stochastic methods

The density matrix approach describes the evolution of a large ensemble of independent
systems. The observed signal allows us to generate an inferred quantum evolution condi-
tioned by a particular observed record [70]. This gives basis of the quantum jump models.
In such models the quantum trajectory is calculated by integrating the time-dependent
Schrödinger equation using a non-Hermitian effective Hamiltonian. Incoherent processes
such as spontaneous emission are incorporated as random quantum jumps that cause a
collapse of the wave function to a single state. Averaging over many realizations of the
trajectory reproduces the ensemble results.

The theory of quantum trajectories has been developed by many authors [68–70,73–76].
Quantum trajectories were used to model continuously monitored open systems [70,73,74],
in the numerical calculations for the study of dissipative processes [68,76], and in relation
to quantum measurement theory [69,75].

We assume that the Markovian approximation is valid. The dynamics of the total system
consisting of the measured system and the detector is described by a master equation

∂

∂t
ρ̂(t) = Mρ̂, (4.207)

where M is the superoperator describing the time evolution. The superoperator M can
be separated into two parts

M = L+ J . (4.208)

The part J is interpreted as describing quantum jumps, L describes the jump-free evolu-
tion. After a short time interval ∆t the density matrix is

ρ̂(t + ∆t) = ρ̂(t) + Lρ̂(t)∆t + J ρ̂(t)∆t. (4.209)

Since Eq. (4.207) should preserve the trace of the density matrix, we have the equality

Tr{Lρ̂(t)}+ Tr{J ρ̂(t)} = 0. (4.210)

Using Eq. (4.210) equation (4.209) can be rewritten in the form

ρ̂(t + ∆t) =
ρ̂(t) + Lρ̂(t)∆t

1 + Tr{Lρ̂(t)}∆t
(1− Tr{J ρ̂(t)}∆t) +

J ρ̂(t)

Tr{J ρ̂(t)} Tr{J ρ̂(t)}∆t. (4.211)

This equation can be interpreted in the following way: during the time interval ∆t two
possibilities can occur. Either after time ∆t the density matrix is equal to conditional
density matrix

ρ̂jump(t + ∆t) =
J ρ̂(t)

Tr{J ρ̂(t)} (4.212)

with the probability
pjump(t) = Tr{J ρ̂(t)}∆t (4.213)

or to the density matrix

ρ̂no−jump(t + ∆t) =
ρ̂(t) + L∆tρ̂(t)

1 + Tr{Lρ̂(t)}∆t
(4.214)
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4.7 Quantum trajectory method for the quantum Zeno and anti-Zeno effects

with the probability 1−pjump(t). Thus the equation (4.207) can be replaced by the stochas-
tic process.

Here we assume that the superoperators L and J have the form

Lρ̂ =
1

i~
(Ĥeff ρ̂− ρ̂Ĥ†

eff), (4.215)

J ρ̂ = Ĉρ̂Ĉ†. (4.216)

The operators Ĥeff and Ĉ are non-Hermitian in general. If the superoperators L and J
have the form given in Eqs. (4.215), (4.216) and the density matrix at the time t factorizes
as ρ̂(t) = |Ψ(t)〉〈Ψ(t)| then after time interval ∆t the density matrices ρ̂jump(t + ∆t) and
ρ̂no−jump(t + ∆t) factorize also. Therefore, equation for density matrix (4.211) can be
replaced by the corresponding equation for the state vectors. The state vector after time
∆t in which a jump is recorded is given by

|Ψjump(t + ∆t)〉 =
1√

〈Ψ(t)|Ĉ†Ĉ|Ψ(t)〉
Ĉ|Ψ(t)〉. (4.217)

The probability of a jump occurring in the time interval ∆t is

pjump(t) = 〈Ψ(t)|Ĉ†Ĉ|Ψ(t)〉∆t. (4.218)

If no jump occurs, the state vector evolves according to the non-Hermitian Hamiltonian
Ĥeff ,

|Ψjump(t + ∆t)〉 =
1√

〈Ψ(t)|
(
1 + i

~(Ĥ
†
eff − Ĥeff)∆t

)
|Ψ(t)〉

(
1− i

~
Ĥeff∆t

)
|Ψ(t)〉. (4.219)

Numerical simulation takes place over discrete time with time step ∆t. When the wave-
function |Ψ(tn)〉 is given, the wavefunction |Ψ(tn+1)〉 is determined by the following algo-
rithm [70]:

1. evaluate the collapse probability pjump(tn) according to Eq. (4.218)

2. generate a random number rn distributed uniformly on the interval [0, 1]

3. compare pjump(tn) with rn and calculate |Ψc(tn+1)〉 according to the rule

|Ψ(tn+1)〉 ∼ Ĉ|Ψc(tn)〉, pjump(tn) < rn,

|Ψ(tn+1)〉 ∼ exp

(
− i

~
Ĥeff∆t

)
|Ψ(tn)〉, pjump(tn) > rn.

We can approximate the second case as

|Ψ(tn+1)〉 ∼
(

1− i

~
Ĥeff∆t

)
|Ψ(tn)〉.
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4.7.4 Stochastic simulation of the detector

At first we consider the measurement of the unperturbed system and take the perturbation
V̂ = 0. The measured system is an atom with the states |g〉 and |e〉. The Hamiltonian of
the measured atom is

Ĥ0 = ~ωeg|e〉〈e|, (4.220)

where ~ωeg is the energy of the excited level.
The stochastic methods described in Sec. 4.7.3 were used to perform the numerical

simulations of the measurement process. Using the equation (4.196) we take the operator
Ĉ in Eq. (4.216) describing jumps in the form

Ĉ =
√

Γσ̂− (4.221)

and the effective Hamiltonian in Eq. (4.215) as

Ĥeff = Ĥ0 + ĤD + ĤI − i~
Γ

2
σ̂+σ̂−. (4.222)

The wavefunction of the measured system and the detector is expressed in the basis of the
eigenfunctions of the Hamiltonians of the measured system and the detector

|Ψ〉 = cea|e〉|a〉+ ceb|e〉|b〉+ cga|g〉|a〉+ cgb|g〉|b〉. (4.223)

The effective Hamiltonian produces the following equations for the coefficients of the wave
function |Ψ〉

ċea = −i

(
ωeg +

ΩD

2
− i

Γ

2

)
cea, (4.224)

ċeb = −i

(
ωeg − ΩD

2

)
ceb, (4.225)

ċga = −iλcgb − i
ΩD

2
cga − Γ

2
cga, (4.226)

ċgb = −iλcga + i
ΩD

2
cgb. (4.227)

Equations (4.224)–(4.227) are used in the numerical simulations to describe the evolution
between the jumps. After the jump in the detecting atom the unnormalized wavefunction
is

Ĉ|Ψ〉 =
√

Γ(cea|e〉|b〉+ cga|g〉|b〉). (4.228)

The jump occurs with the probability pjump obtained from Eq. (4.218),

pjump = Γ∆t
|cea|2 + |cga|2

|cea|2 + |cga|2 + |ceb|2 + |cgb|2 . (4.229)

For numerical simulation we take the measured system in an initial superposition state
1√
2
(|e〉 + |g〉). The typical quantum trajectories of the detector are shown in Fig. 4.4.

There are two kinds of trajectories corresponding to the collapse of the measured system
to the excited or the ground states. The trajectories corresponding to the collapse of
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Figure 4.4: Typical quantum trajectories of the detector. Figure shows the probability ρaa

of being in the excited level of the detector. The solid line corresponds to the case when
the measured system collapses to the ground state and the dashed line corresponds to the
case when the measured system collapses to the excited state. The parameters used for
numerical calculation are ∆t = 0.1, Γ = 10, λ = 1, and ΩD = 1.
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Figure 4.5: Probability for the detector to be in the excited state, after performing an
ensemble average over 1000 trajectories. The parameters used are the same as in Fig. 4.4.
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Figure 4.6: Non-diagonal matrix elements of the density matrix of the measured system.
The solid line corresponds to the numerical calculations and the dashed line corresponds to
the exponential decay with the characteristic time given by Eq. (4.206). The parameters
used are the same as in Fig. 4.4.

the measured system to the ground state show the repeated jumps. The mean interval
between jumps, obtained from the numerical simulation is of the same order of magnitude
as τM = 5 according to Eq. (4.206). After averaging over the realizations the probability
for the detector to be in the excited state is shown in Fig. 4.5. The figure shows that this
probability reaches the stationary value. The time dependency of the non-diagonal matrix
elements of the density matrix of the measured system is shown in Fig. 4.6. The figure
shows a good agreement between the results of numerical calculations and the exponential
decay with the characteristic time estimated from Eq. (4.206).

4.7.5 Frequently measured perturbed two level system

We consider an atom interacting with the classical external electromagnetic field as the
measured system. Interaction of the atom with the field is described by the operator

V̂ = −~ΩR(|e〉〈g|+ |g〉〈e|) cos Ωt, (4.230)

where Ω is the frequency of the field and ΩR is the Rabi frequency. In the interaction
representation and using the rotating-wave approximation the perturbation V̂ is

Ṽ (t) = −~ΩR

2
(ei∆ωt|e〉〈g|+ e−i∆ωt|g〉〈e|), (4.231)

where

∆ω = ωeg − Ω (4.232)

is the detuning. Here ~ωeg = ~ωe − ~ωg is the energy difference between the excited and
the ground levels of the measured atom.
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4.7 Quantum trajectory method for the quantum Zeno and anti-Zeno effects

If the measurements are not performed, the atom exhibits Rabi oscillations with the
frequency ΩR. If the measured atom is initially in the state |g〉, the time dependence of
the coefficient cg of the wavefunction |Ψ〉 = ce|e〉+ cg|g〉 is

cg(t) = e−
1
2
it∆ω

(
cos

(
1

2
t
√

∆ω2 + Ω2
R

)
+ i

∆ω√
∆ω2 + Ω2

R

sin

(
1

2
t
√

∆ω2 + Ω2
R

))
. (4.233)

In particular, if the detuning ∆ω is zero, we have

cg(t) = cg(0) cos

(
ΩR

2
t

)
. (4.234)

When the measured atom interacts with the detector, we take the wavefunction of the
measured system and of the detector as in Eq. (4.223). In the interaction representation the
equations for the coefficients, when the evolution is governed by the effective Hamiltonian
Ĥeff , defined by Eq. (4.215), are

ċea = i
ΩR

2
eit∆ωcga − i

ΩD

2
cea − Γ

2
cea (4.235)

ċeb = i
ΩR

2
eit∆ωcgb + i

ΩD

2
ceb (4.236)

ċga = i
ΩR

2
e−it∆ωcea − iλcgb − i

ΩD

2
cga − Γ

2
cga (4.237)

ċgb = i
ΩR

2
e−it∆ωceb − iλcga + i

ΩD

2
cgb (4.238)

The evolution of the measured atom significantly differs from the Rabi oscillations. We
are interested in the case when the duration of the measurement τM is much shorter than
the period of Rabi oscillations 2π/ΩR. In such a situation the non diagonal matrix elements
of the density matrix of the measured system remain small and the time evolution of the
diagonal matrix elements can be approximately described by the rate equations

d

dt
ρgg = Γe→gρee(t)− Γg→eρgg(t), (4.239)

d

dt
ρee = Γg→eρgg(t)− Γe→gρee(t). (4.240)

If the measured atom is initially in the state |g〉, the solution of Eqs. (4.239) and (4.240)
is

ρgg(t) =
Γe→g + Γg→ee

−(Γe→g+Γg→e)t

Γe→g + Γg→e

=
1

2

(
1 + e−2Γg→et

)
. (4.241)

We can estimate the rates Γe→g and Γg→e using equations from Ref. [77], i.e.,

Γe→g = 2π

∫ ∞

−∞
G(ω)Peg(ω)dω, (4.242)

Γg→e = 2π

∫ ∞

−∞
G(ω)Pge(ω)dω, (4.243)
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Figure 4.7: Typical quantum trajectory of the measured two level system (solid line).
Figure shows the probability ρgg for the measured atom to be in the ground level. The
dashed line shows the Rabi oscillations in the measurement-free evolution. The detuning
∆ω is zero. The parameters used for the numerical calculation are ∆t = 0.1, Γ = 10,
λ = 1, ΩD = 1, and ΩR = 0.1.

where

Peg(ω) =
1

π
Re

∫ ∞

0

Feg(τ)ei(ω−ωeg)τdτ (4.244)

Pge(ω) =
1

π
Re

∫ ∞

0

Fge(τ)ei(ω+ωeg)τdτ (4.245)

and

G(ω) =

(
ΩR

2

)2

[δ(ω − ωeg + ∆ω) + δ(ω + ωeg −∆ω)] . (4.246)

Here the expression for G(ω) is derived using Eq. (4.231). In contrast to Ref. [77] in the
expression for P (ω) we extended the range of the integration to the infinity since Feg(τ)
naturally limits the duration of the measurement. Expressions, analogous to (4.242), were
obtained in Refs. [26, 60], as well.

Using Eqs. (4.242)–(4.246) we can estimate the transition rates as

Γe→g ≈ Γg→e ≈ Ω2
R

2
Re

∫ ∞

0

Feg(τ)e−iτ∆ωdτ =
Ω2

R

2

∫ ∞

0

e
− τ

τM
−iτ∆ω

dτ =
Ω2

R

2

τM

1 + (τM∆ω)2
.

(4.247)
Here we used the expression exp(−τ/τM) for Feg(τ). When the detuning ∆ω is zero the
transition rates are

Γe→g ≈ Γg→e ≈ Ω2
RτM

2
. (4.248)

The transition rates are smaller for the shorter measurements. This is a manifestation of
the quantum Zeno effect.

For numerical simulation we take the measured system in an initial state |g〉. The typical
quantum trajectory of the measured system is shown in Fig. 4.7. The behaviour of the
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Figure 4.8: Probability for the measured atom to be in the ground level, after performing an
ensemble average over 1000 trajectories. The solid line shows the results of the numerical
calculations, the dashed line shows the approximation according to Eq. (4.241). The
parameters used are the same as in Fig. 4.7.

measured system strongly differs from the measurement-free evolution. The measurement-
free system oscillates with the Rabi frequency, while the measured system stays in one of
the levels and suddenly jumps to the other. The probability for the measured atom to be
in the ground state calculated after averaging over the realizations is shown in Fig. 4.8.
The figure shows that this probability exhibits almost the exponential decay and after
some time reaches the stationary value close to 1/2. The figure shows a good agreement
between the results of the numerical calculations and the estimate (4.241).

When the detuning ∆ω is not zero, the frequently measured two level system can exhibit
the anti-Zeno effect. This is pointed out in Ref. [78]. For the case of nonzero detuning the
probability that the atom is in the ground state is shown in Fig. 4.9. The figure shows that
the probability for the atom to be in the initial (ground) state is smaller, and, consequently,
to be in the excited state is greater when the atom is measured. This is the manifestation
of the quantum anti-Zeno effect in the two level system.

4.7.6 Decaying system

We model the decaying system as two level system interacting with the reservoir consisting
of many levels. The full Hamiltonian of the system is

Ĥ = Ĥ0 + Ĥ1 + V̂ , (4.249)

where
Ĥ0 = ~ωeg|e〉〈e| (4.250)

is the Hamiltonian of the two level system,

Ĥ1 =
∑

k

~ωk|k〉〈k|. (4.251)
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Figure 4.9: Probability for the atom with the nonzero detuning to be in the ground level.
The solid line shows the results of the numerical simulation. The dotted line shows the
approximation according to Eq. (4.241), using the decay rate from Eq. (4.247). The dashed
line shows the evolution of a not measured system. The parameters used for numerical
calculation are ∆t = 0.001, Γ = 10, λ = 1, ΩD = 1, ΩR = 0.1, and ∆ω = 0.2.

is the Hamiltonian of the reservoir, and

V̂ = ~
∑

k

(g(k)|e〉〈k|+ g(k)∗|k〉〈e|) (4.252)

describes the interaction of the system with the reservoir, with g(k) being the strength of
the interaction with reservoir mode k. In the interaction representation the perturbation
V has the form

Ṽ (t) = e
i
~ (Ĥ0+Ĥ1)tV̂ e−

i
~ (Ĥ0+Ĥ1)t = ~

∑

k

(g(k)ei(ωeg−ωk)t|e〉〈k|+ g(k)∗e−i(ωeg−ωk)t|k〉〈e|).

The wavefunction of the system in the interaction representation is expressed as

|Ψ̃〉 = ce(t)|e〉|0〉+
∑

k

ck|g〉|k〉. (4.253)

One can then obtain from the Schrödinger equation the following equations for the coeffi-
cients

ċe = −i
∑

k

g(k)ei(ωeg−ωk)tck, (4.254)

ċk = −ig(k)∗e−i(ωeg−ωk)tce. (4.255)

The initial condition is |Ψ〉 = |e〉|0〉. Formally integrating the equation (4.255) we obtain
the expression

ck = −ig(k)∗
∫ t

0

e−i(ωeg−ωk)t′ce(t
′)dt′. (4.256)
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Inserting Eq. (4.256) into Eq. (4.254), we obtain the exact integro-differential equation

d

dt
ce = −

∫ t

0

dt′
∑

k

|g(k)|2ei(ωeg−ωk)(t−t′)ce(t
′). (4.257)

The sum over k may be replaced by an integral

∑

k

→
∫

dωkρ(ωk)

with ρ(ωk) being the density of states in the reservoir. The integration in Eq. (4.257) can
be carried out in the Weisskopf-Wigner approximation. We get the equation

d

dt
ce = −Γ

(0)
e→g

2
ce, (4.258)

where the decay rate Γ
(0)
e→g is given by the Fermi’s Golden Rule:

Γ(0)
e→g = 2πρ(ωeg)|g(ωeg)|2. (4.259)

In order to observe the quantum anti-Zeno effect one needs to have sufficiently big
derivative of the quantity ρ(ω)|g(ω)|2. In such a case the decay rate given by Fermi
Golden Rule (4.259) is no longer valid. The corrected decay rate may be obtained solving
Eq. (4.257) by the Laplace transform method [79]. The the Laplace transform of the
solution of Eq. (4.257) is

c̃e(z) =
1

H(z)
, (4.260)

where H(z) is the resolvent function

H(z) = z +

∫
ρ(ω)|g(ω)|2

z + i(ω − ωeg)
dω. (4.261)

In the numerical calculations we take the frequencies of the reservoir ω distributed in the
region [ωeg − Λ, ωeg + Λ] with the constant spacing ∆ω. Therefore, the density of states
is constant ρ(ω) = 1/∆ω ≡ ρ0. The simplest choice of the interaction strength g(ω) is to
make it linearly dependent on ω,

g(ω) = g0

(
1 +

a

Λ
(ω − ωeg)

)
, (4.262)

where a is dimensionless parameter. Using Eq. (4.262) one obtains the expression for the
resolvent

H(z) = z + πρ0g
2
0

[
1− 2

π
arctan

( z

Λ

)
+

(
a2 z

Λ
− i2a

) (
2

π
− z

Λ
+

2

π

z

Λ
arctan

( z

Λ

))]
.

The real part of z at which the resolvent H(z) is equal to zero gives the decay rate.
Expanding the resolvent into the series of powers of Λ−1 and keeping only the first-order
terms we obtain the decay rate

Γ(1)
e→g ≈ Γ(0)

e→g

(
1− Γ

(0)
e→g

πΛ
(5a2 − 1)

)
. (4.263)

57



4 Quantum Zeno and anti-Zeno effects

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0  200  400  600  800  1000

t/∆t

ρee

 0.94

 0.96

 0.98

 1

 0  20  40  60  80

t/∆t

Figure 4.10: Time dependence of the occupation of the exited level of the decaying system.
Solid line shows the results of the numerical calculation, dashed line shows the exponential
decay according to the Fermi’s Golden Rule. The parameters used for the numerical
calculation are ∆t = 0.1, ∆ω = 0.001, Λ = 0.5, and g0 = 0.001262. For the parameters
used the decay rate is Γ

(0)
e→g = 0.01.

We solve Eqs. (4.254) and (4.255) numerically, replacing them with discretized versions
with the time step ∆t. For calculations we used N = 1000 levels in the reservoir. The
numerical results for constant interaction strength are g(k) = g0 presented in Fig. 4.10.
The figure shows a good agreement between the numerical results and the exponential
law according to the Fermi’s Golden Rule at intermediate times. At very short time
the occupation of the excited level exhibits quadratic behaviour, which, for the repeated
frequent measurements, may result in the quantum Zeno effect.

Numerical results in the case when the interaction with the reservoir modes is described
by Eq. (4.262) with nonzero parameter a are presented in Fig. 4.11. The figure shows good
agreement between the numerical results and the exponential decay with the decay rate
given by Eq. (4.263) at intermediate times. For very short time we observe the acceleration
of the decay due to the interaction with the reservoir. This acceleration for the repeated
frequent measurements results in the quantum anti-Zeno effect.

4.7.7 Measurement of the decaying system

In this section we consider the decaying system, described in Sec. 4.7.6 and interacting
with the detector. The wavefunction of the measured system and the detector, when the
detector interacts with the decaying system in the ground state only, we take in the form

|Ψc〉 = cea|e〉|0〉|a〉+ ceb|e〉|0〉|b〉+
∑

k

(cka|g〉|k〉|a〉+ ckb|g〉|k〉|b〉). (4.264)
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Figure 4.11: Time dependence of the occupation of the exited level of the decaying system
when the interaction with the reservoir modes is described by Eq. (4.262). Solid line shows
results of numerical calculation, dashed line shows exponential decay using the decay rate
from Eq. (4.263), dotted line shows exponential decay according to Fermi’s Golden Rule
(4.259). In the calculations we used a = 2, other parameters are the same as in Fig. 4.10.

The equations for the coefficients, when the evolution is governed by the effective Hamil-
tonian Ĥeff , are

ċea = −i
∑

k

g(k)ei(ωeg−ωk)tcka − i
ΩD

2
cea − Γ

2
cea, (4.265)

ċeb = −i
∑

k

g(k)ei(ωeg−ωk)tckb + i
ΩD

2
ceb, (4.266)

ċka = −ig(k)∗e−i(ωeg−ωk)tcea − iλckb − i
ΩD

2
cka − Γ

2
cka, (4.267)

ċkb = −ig(k)∗e−i(ωeg−ωk)tceb − iλcka + i
ΩD

2
ckb. (4.268)

After the jump in the detecting atom the unnormalized wavefunction becomes

Ĉ|Ψc〉 =
√

Γ(cea|e〉|0〉|b〉+
∑

k

cka|g〉|k〉|b〉). (4.269)

According to Ref. [77], the decay rate of the measured system is given by expression
(4.242) with

G(ω) = ρ(ω)|g(ω)|2 (4.270)

and

P (ω) =
1

π
Re

∫ ∞

0

Feg(τ)ei(ω−ωeg)τdτ. (4.271)

Using Feg(τ) = exp(−τ/τM) we obtain

P (ω) =
1

π

τM

1 + (ω − ωeg)2τ 2
M

. (4.272)
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Figure 4.12: Typical quantum trajectory (solid line) of the measured decaying system when
the detector interacts with the ground state of the measured system. Figure shows the
probability ρee that the measured atom is in the excited level. The dashed line shows the
exponential decay according to the Fermi’s Golden Rule in the measurement-free evolution.
The parameters used for the numerical calculation are ∆t = 0.1, Γ = 10, λ = 1, ΩD = 1,
∆ω = 0.001, Λ = 0.5, and g0 = 0.001262. For the parameters used the decay rate is
Γe→g = 0.01.

In order to obtain the quantum Zeno effect we take G(ω) as a constant

G(ω) =
~2g2

0

∆ω
, ωeg − Λ ≤ ω ≤ ωeg + Λ. (4.273)

Here ∆ω is the spacing between the modes of the reservoir. Using Eq. (4.242) we get the
decay rate of the measured decaying system

Γe→g = Γ(0)
e→g

2

π
arctan(ΛτM). (4.274)

When ΛτM is big, we obtain the expression

Γe→g = Γ(0)
e→g

(
1− 2

π

1

ΛτM

+ · · ·
)

(4.275)

by expanding Eq. (4.274) into series of the powers of (ΛτM)−1. The second term in
Eq. (4.275) shows that the decay rate decreases with the decreasing duration of the mea-
surement τM . This is the manifestation of the quantum Zeno effect.

The results of the numerical simulation are presented in Figs. 4.12 and 4.13. Typical
quantum trajectory of the measured decaying system is shown in Fig. 4.12. This trajectory
is compatible with the intuitive quantum jump picture: the system stays in the excited
state for some time and then suddenly jumps to the ground state. The probability that
the measured system stays in the excited state is presented in Fig. 4.13. Figure shows a
good agreement between the numerical simulation and the exponential law approximation
with the exponent given in Eq. (4.274). Also the quantum Zeno effect is apparent.
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Figure 4.13: Time dependence of the occupation of the exited level of the decaying system.
Solid line shows results of numerical calculation, dashed line shows exponential decay
according to Fermi’s Golden Rule. The dotted line shows approximation according to
Eq. (4.274). The parameters used are the same as in Fig. 4.12.
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Figure 4.14: Typical quantum trajectory of the measured decaying system (solid line) when
the detector interacts with the excited level. Figure shows the probability ρee that the
measured atom is in the excited level. The dashed line shows exponential decay according
to the Fermi’s Golden Rule in the measurement-free evolution. The parameters used are
the same as in Fig. 4.12.
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When the detector interacts with the excited state of the decaying system the interaction
term is

ĤI = ~λ|e〉〈e|(σ̂+ + σ̂−) (4.276)

and the quantum trajectories are different. Typical quantum trajectory is shown in
Fig. 4.14. This difference can be explained in the following way: when the detector inter-
acts with the ground state, the interaction effectively begins only after some time, when
the probability to find the system in the ground state is sufficiently big. This explains the
absence of the collapses at short times in Fig. 4.12. Then, the measurement result after
the collapse most likely will be that the system is found in the ground state. When the
detector interacts with the excited state of the system, the interaction starts immediately
and soon after that the most probable result of the measurement is that the measured
system is in the excited state. It should be noted, that the averaged evolution shown in
Fig. 4.13 does not depend on the state the detector is interacting.

The model used for the decaying system when g(ω) = const does not allow to obtain the
quantum anti-Zeno effect, since the conditions for the quantum anti-Zeno effect, presented
in Ref. [26], are not satisfied. In order to obtain the quantum ant-Zeno effect we use the
interaction with the reservoir modes described by Eq. (4.262). In such a case we have

G(ω) =
~2g2

0

∆ω

(
1 +

a

Λ
(ω − ωeg)

)2

, ωeg − Λ ≤ ω ≤ ωeg + Λ. (4.277)

Equation (4.242) in this case does not give correct decay rate of the measured system.
In order to estimate the decay rate, we solve the Liouville-von Neumann equation i~ρ̇ =
[Ĥ, ρ] for the density matrix of the system with the Hamiltonian (4.249)–(4.252), including
additional terms describing decay of the non-diagonal elements with rate 1/τM , i.e.,

ρ̇e0,e0 = −i
∑

k

(g(k)ρgk,e0 − ρe0,gkg(k)∗), (4.278)

ρ̇gk,gk′ = −iωkk′ρgk,gk′ − i(g(k)∗ρe0,gk′ − ρgk,e0g(k′)), (4.279)

ρ̇e0,gk =

(
−i(ωeg − ωk)− 1

τM

)
ρe0,gk − i(

∑

k′
g(k′)ρgk′,gk − ρe0,e0g(k)), (4.280)

ρ̇gk,e0 =

(
−i(ωk − ωeg)− 1

τM

)
ρgk,e0 − i(g(k)∗ρe0,e0 −

∑

k′
ρgk,gk′g(k′)∗). (4.281)

We solve equations (4.278)–(4.281) using the Laplace transform method. Eliminating ρ̃e0,gk

and ρ̃gk,e0 from the Laplace transform of Eqs. (4.278)–(4.281) one gets the equations for
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the Laplace transforms of the matrix elements of the density matrix,

zρ̃e0,e0(z)− 1 = −
∑

k

|g(k)|2
(

1

z + i(ωk − ωeg) + 1
τM

+
1

z + i(ωeg − ωk) + 1
τM

)
ρ̃e0,e0(z)

+
∑

k,k′

(
1

z + i(ωk − ωeg) + 1
τM

+
1

z + i(ωeg − ωk′) + 1
τM

)

× g(k)g(k′)∗ρ̃gk,gk′(z), (4.282)

(z + iωkk′)ρ̃gk,gk′(z) = −
∑

k′′

(
g(k′)g(k′′)∗

z + i(ωk − ωeg) + 1
τM

ρ̃gk,gk′′(z) +
g(k′′)g(k)∗

z + i(ωeg − ωk′) + 1
τM

ρ̃gk′′,gk′(z)

)

+ g(k′)g(k)∗
(

1

z + i(ωk − ωeg) + 1
τM

+
1

z + i(ωeg − ωk′) + 1
τM

)
ρ̃e0,e0(z).

(4.283)

On the r.h.s. of Eq. (4.283) we will neglect the small terms not containing ρ̃e0,e0(z). Ex-
pressing ρ̃gk,gk′(z) via ρ̃e0,e0(z) from Eq. (4.283), substituting into Eq. (4.282) and replacing
the sum over k by an integral we obtain

1

ρ̃e0,e0(z)
= z +

∫
dωG(ω)

(
1

z + i(ω − ωeg) + 1
τM

+
1

z + i(ωeg − ω) + 1
τM

)

−
∫

dω

∫
dω′G(ω)G(ω′)

1

z + i(ω − ω′)

×
(

1

z + i(ω − ωeg) + 1
τM

+
1

z + i(ωeg − ω′) + 1
τM

)2

. (4.284)

The value of z at which the r.h.s of Eq. (4.284) is equal to zero gives the decay rate. Using
the expression (4.277) for G(ω) and keeping only the first-order terms of the expansion
into series of the powers of Λ−1 we get the measurement-modified decay rate

Γe→g = Γ(0)
e→g

(
1− Γ

(0)
e→g

πΛ
(5a2 − 1)

)
+ Γ(0)

e→g

2

π

(a2 − 1)

ΛτM

. (4.285)

Equation (4.285) is valid only for sufficiently large duration of the measurement τM , since
expansion into series requires that ΛτM À 1. From Eq. (4.285) one can see that in order to
obtain the quantum anti-Zeno effect the parameter a should be greater than 1. When the
parameter a is less than 1 we get the Zeno effect, and when a = 1 the decay rate coincides
with the decay rate of the free system.

The probability that the measured system stays in the excited state, obtained from
numerical simulation is presented in Fig. 4.15. Figure clearly demonstrates the quan-
tum anti-Zeno effect, the decay rate of the measured system is bigger than that of the
measurement-free system.
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Figure 4.15: Time dependence of the occupation of the exited level of the decaying system
when the interaction with the reservoir modes is described by Eq. (4.262). Solid line
shows results of the numerical calculation, dashed line shows exponential decay of the
measurement-free system with the decay rate given by Eq. (4.263). The dotted line shows
approximation according to Eq. (4.285). In the calculations we used a = 2, while other
parameters are the same as in Fig. 4.12.

4.8 Summary

In this work we investigate the quantum Zeno effect using different models of the measure-
ment. We take into account the finite duration and the finite accuracy of the measurement.
At first we consider a simple model of the measurement without taking into account the
interaction of the detector with the environment. Using this model of the measurement the
general equation for the probability of the jump during the measurement is derived (4.36).
The behavior of the system under the repeated measurements depends on the strength of
measurement and on the properties of the system.

When the the strength of the interaction with the measuring device is sufficiently large,
the frequent measurements of the system with discrete spectrum slow down the evolution.
However, the evolution cannot be fully stopped. Under the repeated measurements the
occupation of the energy levels changes exponentially with time, approaching the limit of
the equal occupation of the levels. The jump probability is inversely proportional to the
strength of the interaction with the measuring device.

In the case of a continuous spectrum the measurements can cause inhibition or acceler-
ation of the evolution. Our model of the continuous measurement gives the same result
as the approach based on the projection postulate [26]. The decay rate is equal to the
convolution of the reservoir coupling spectrum with the measurement-modified shape of
the spectral line. The width of the spectral line is proportional to the strength of the
interaction with the measuring device. When this width is much greater than the width of
the reservoir, the quantum Zeno effect takes place. Under these conditions the decay rate
is inversely proportional to the strength of the interaction with the measuring device. In a
number of decaying systems, however, the reservoir spectrum G(ω) grows with frequency

64



4.8 Summary

almost up to the relativistic cut-off and the strength of the interaction required for the
appearance of the quantum Zeno effect is so high that the initial system is significantly
modified. When the spectral line is not very broad, the decay rate may be increased by
the measurements more often than it may be decreased and the quantum anti-Zeno effect
can be obtained.

The quantum Zeno effect is often analysed using the succession of the instantaneous
measurements with free evolution of the measured system between the measurements. We
analyze the measurements with finite duration, instead. We apply the simple model of
the measurement, developed in Ref. [47]. The equations for the jump probability (4.86)-
(4.89) are obtained. Applying the equations to the measured two-level system we obtain a
simple expression for the probability of the jump from one level to the other (4.104). The
influence of the finite duration of the measurement is expressed as the small correction.

Furhther we analyze the quantum Zeno and quantum anti-Zeno effects without using
any particular model of the measurement. The general expression (4.126) for the jump
probability during the measurement is derived. The main assumptions, used in the deriva-
tion of Eq. (4.126), are the assumptions that the quantum measurement is non-demolition
measurement (Eq. (4.107)) and the Markovian approximation for the quantum dynamics
is valid (Eq. (4.111)). We have shown that Eq. (4.126) is also suitable for the description
of the pulsed measurements, when there are intervals of the measurement-free evolution
between the successive measurements (Eqs. (4.132)–(4.135)). When the operator V̂ induc-
ing the jumps from one state to another does not depend on time Eq. (4.141), which is of
the form obtained by Kofman and Kurizki [26], is derived as a special case.

We apply the equations derived in Sec. 4.5 using a concrete irreversible model of the
measurement. The detector is modeled as a harmonic oscillator, initially being at the
thermal equilibrium. The interaction of the detector with the system is modeled similarly
as in Ref. [47]. The Lindblad-type master equation for the detectors density matrix is
solved analytically. An equation for the probability of the jump between measured system’s
states during the measurement, similar to that of Refs. [26, 47, 60], is obtained (4.185).
From the used model it follows that the increase of the detector’s temperature leads to the
enhancement of the quantum Zeno or quantum anti-Zeno effects.

Another model of the detector is considered in Sec. 4.7. The detector is a two level
system interacting with the environment. The influence of the environment is taken into
account using quantum trajectory method. The quantum trajectories produced by stochas-
tic simulations show the probabilistic behavior exhibiting the collapse of the wave-packet
in the measured system, although the quantum jumps were performed only in the detec-
tor. Both quantum Zeno and anti-Zeno effects were demonstrated for the measured two
level system and for the decaying system. The results of the numerical calculations are
compared with the analytical expressions for the decay rate of the measured system. It is
found that the general expression (4.242), obtained in Ref. [77], gives good agreement with
the numerical data for the measured two level system and for the decaying one showing the
quantum Zeno effect. Nevertheless, when the interaction of the measured system with the
reservoir is strongly mode-dependent, this expression does not give the correct decay rate.
The decay rate in this case was estimated including additional terms describing decay of
non-diagonal elements into the equation for the density matrix of the measured system
and a good agreement with the numerical calculations is found. A good agreement of the
numerical results with the analytical estimates of the decay rates of the measured system
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shows that the particular model of the detector is not important, since the decay rates
mostly depend only on one parameter, i.e., the duration of the measurement (4.206).
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5 Weak measurements and time
problem in quantum mechanics

5.1 Introduction

Time plays a special role in quantum mechanics. Unlike other observables, time remains
a classical variable. It cannot be simply quantized because, as it is well known, the self-
adjoint operator of time does not exist for bounded Hamiltonians. The problems with
the time also rise from the fact that in quantum mechanics many quantities cannot have
definite values simultaneously. The absence of the time operator makes this problem even
more complicated. However, in practice the time often is important for an experimenter.
If quantum mechanics can correctly describe the outcomes of the experiments, it must also
give the method for the calculation of the time the particle spends in some region.

The most-known problem of time in quantum mechanics is the so-called ”tunneling time
problem”. Tunneling phenomena are inherent in numerous quantum systems, ranging
from atom and condensed matter to quantum fields. Therefore, the questions about the
tunneling mechanisms are important. There have been many attempts to define a physical
time for tunneling processes, since this question has been raised by MacColl [80] in 1932.
This question is still the subject of much controversy, since numerous theories contradict
each other in their predictions for “the tunneling time”. Some of these theories predict
that the tunneling process is faster than light, whereas the others state that it should be
subluminal. This subject has been covered in a number of reviews (Hauge and Støvneng
[81], 1989; Olkholovsky and Recami [82], 1992; Landauer and Martin [83], 1994 and Chiao
and Steinberg [84], 1997). The fact that there is a time related to the tunneling process
has been observed experimentally [85–93]. However, the results of the experiments are
ambiguous.

Many problems with time in quantum mechanics arise from the noncommutativity of
the operators in quantum mechanics. The noncommutativity of the operators in quantum
mechanics can be circumvented by using the concept of weak measurements. The concept
of weak measurement was proposed by Aharonov, Albert and Vaidman [94–99]. Such
an approach has several advantages. It gives, in principle, the procedure for measuring
the physical quantity. Since in the classical mechanics all quantities can have definite
values simultaneously, weak measurements give the correct classical limit. The concept of
weak measurements has been already applied to the time problem in quantum mechanics
[53,100,101].

The time in classical mechanics describes not a single state of the system but the process
of the evolution. This property is an essential concept of the time. We speak about the
time belonging to a certain evolution of the system. If the measurement of the time
disturbs the evolution we cannot attribute this measured duration to the undisturbed
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evolution. Therefore, we should require that the measurement of the time does not disturb
the motion of the system. This means that the interaction of the system with the measuring
device must be weak. In quantum mechanics this means that we cannot use the strong
measurements described by the von-Neumann’s projection postulate. We have to use the
weak measurements of Aharonov, Albert and Vaidman [94–99], instead.

This Chapter is organized as follows: In Sec. 5.2 we present the model of the weak
measurements. Sec. 5.3 presents the time on condition that the system is in the given final
state. In Sec. 5.4 our formalism is applied for the tunneling time problem. In Sec. 5.5
the weak measurement of the quantum arrival time distribution is presented. Section 5.6
summarizes our findings.

5.2 The concept of weak measurements

In this section we present the concept of weak measurement, proposed by Aharonov, Albert
and Vaidman [94–99]. We measure quantity represented by the operator Â

We have the detector in the initial state |Φ〉. In order the weak measurements can
provide the meaningful information, the measurements must be performed on an ensemble
of identical systems. Each system with its own detector is prepared in the same initial
state. The readings of the detectors are collected and averaged.

Our model consists of the system S under consideration and of the detector D. The
Hamiltonian is

Ĥ = ĤS + ĤD + ĤI (5.1)

where ĤS and ĤD are the Hamiltonians of the system and of the detector, respectively.
We take the operator describing the interaction between the particle and the detector of
the form [47,53,58,59,77,100]

ĤI = λq̂Â, (5.2)

λ characterizes the strength of the interaction with the detector. A very small parameter
λ ensures the undisturbance of the system’s evolution. The measurement time is τ . In
this section we assume that the interaction strength λ and the time τ are small. The
operator q̂ acts in the Hilbert space of the detector. We require a continuous spectrum
of the operator q̂. For simplicity, we can consider this operator as the coordinate of the
detector. The momentum, conjugate to q, is pq.

The interaction operator (5.2) only slightly differs from the one used by Aharonov, Albert
and Vaidman [95]. The similar interaction operator has been considered by von Neumann
[102] and has been widely used in the strong measurement models (e.g., [43–46, 58, 103]
and many others).

Hamiltonian (5.2) represents the constant force acting on the detector. This force results
in the change of the detector’s momentum. From the classical point of view, the change
of the momentum is proportional to the force acting on the detector. Since interaction
strength λ and the duration of the measurement τ are small, the average 〈Â〉 does not
change significantly during the measurement. The action of the Hamiltonian (5.2) results
in the small change of the mean detector’s momentum 〈p̂q〉 − 〈p̂q〉0 = −λτ〈Â〉, where
〈p̂q〉0 = 〈Φ(0)|p̂q|Φ(0)〉 is the mean momentum of the detector at the beginning of the
measurement and 〈p̂q〉 = 〈Φ(τ)|p̂q|Φ(τ)〉 is the mean momentum of the detector after the
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5.2 The concept of weak measurements

measurement. Therefore, in analogy to Ref. [95], we define the “weak value” of the average
〈Â〉,

〈Â〉 =
〈p̂q〉0 − 〈p̂q〉

λτ
. (5.3)

In the time moment t = 0 the density matrix of the whole system is ρ̂(0) = ρ̂S(0)⊗ρ̂D(0),
where ρ̂S(0) is the density matrix of the system and ρ̂D(0) = |Φ〉〈Φ| is the density ma-
trix of the detector. After the interaction the density matrix of the detector is ρ̂D(t) =

TrS

{
Û(t) (ρ̂S(0)⊗ |Φ〉〈Φ|) Û †(t)

}
where Û(t) is the evolution operator. Later on, for sim-

plicity we will neglect the Hamiltonian of the detector. Then, the evolution operator in
the first-order approximation is [100]

Û(t) ≈ ÛS(t)

(
1 +

λq̂

i~

∫ t

0

Ã(t1)dt1

)
(5.4)

where ÛS(t) is the evolution operator of the unperturbed system and Ã(t) = Û †
S(t)ÂÛS(t).

From Eq. (5.3) we obtain that the weak value coincides with the usual average 〈Â〉 =
Tr{Âρ̂S(0)}.

The influence of the weak measurement on the evolution of the measured system can
be made arbitrary small using small parameter λ. Therefore, after the interaction of the
measured system with the detector we can try to measure second observable B̂ using
usual, strong measurement. As far as our model gives the correct result for the value of A
averaged over the entire ensemble of the systems, we can try to take the average only over
the subensemble of the systems with the given value of the quantity B. We measure the
momenta pq of each measuring device after the interaction with the system. Subsequently
we perform the final, postselection measurement of B on the systems of our ensemble.
Then we collect the outcomes pq only of the systems which have given value of B.

The joint probability that the system has the given value of B and the detector has the
momentum pq(t) at the time moment t is W (B, pq; t) = Tr {|B〉〈B|pq〉〈pq|ρ̂(t)}, where |pq〉
is the eigenfunction of the momentum operator p̂q. In quantum mechanics the probabil-
ity that two quantities simultaneously have definite values does not always exist. If the
joint probability does not exist then the concept of the conditional probability is meaning-
less. However, in our case operators B̂ and |pq〉〈pq| act in different spaces and commute,
therefore, the probability W (B, pq; t) exists.

Let us define the conditional probability, i.e., the probability that the momentum of the
detector is pq provided that the system has the given value of B. This probability is given
according to Bayes theorem as

W (pq; t|B) =
W (B, pq; t)

W (B; t)
(5.5)

where W (B; t) = Tr{|B〉〈B|ρ̂(t)} is the probability that the system has the given value
of B. The average momentum of the detector on condition that the system has the given
value of B is

〈pq(t)〉 =

∫
pqW (pq; t|B)dpq . (5.6)
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5 Weak measurements and time problem in quantum mechanics

From Eqs. (5.3) and (5.6), in the first-order approximation we obtain the mean value of
A on condition that that the system has the given value of B (see for analogy Ref. [100])

〈A〉B =
1

2〈B|ρ̂S|B〉
〈
|B〉〈B|Â + Â|B〉〈B|

〉

+
1

i~〈B|ρ̂S|B〉 (〈q〉〈pq〉 − Re〈q̂p̂q〉)
〈[
|B〉〈B|, Â

]〉
. (5.7)

If the commutator
[
|B〉〈B|, Â

]
in Eq. (5.7) is not zero then, even in the limit of the very

weak measurement, the measured value depends on the particular detector. This fact
means that in such a case we cannot obtain the definite value. Moreover, the coefficient
(〈q〉〈pq〉 − Re〈q̂p̂q〉) may be zero for the specific initial state of the detector, e.g., for the
Gaussian distribution of the coordinate q and momentum pq.

5.3 The time on condition that the system is in the given
final state

The most-known problem of time in quantum mechanics is the so-called ”tunneling time
problem”. We can raise another, more general, question about the time. Let us consider
a system which evolves with time. Let χ is one of the observables of the system. During
the evolution the value of χ changes. We are considering a subset Γ of possible values of
χ. The question is how much time the values of χ belong to this subset?.

There is another version of the question. If we know the final state of the system, we
may ask how much time the values of χ belong to the subset under consideration when the
system evolves from the initial to the definite final state. The question about the tunneling
time belongs to such class of the problems. Really, in the tunneling time problem we ask
about the duration the particle spends in a specified region of the space and we know that
the particle has tunneled, i.e., it is on the other side of the barrier. We can expect that
such a question may not always be answered. Here our goal is to obtain the conditions
under which it is possible to answer such a question.

One of the possibilities to solve the problem of time is to answer what exactly the
word “time” means. The meaning of every quantity is determined by the procedure of
measurement. Therefore, we have to construct a scheme of an experiment (this can be a
gedanken experiment) to measure the quantity with the properties corresponding to the
classical time.

5.3.1 The model of the time measurement

We consider a system evolving with time. One of the quantities describing the system is
χ. Operator χ̂ corresponds to this quantity. For simplicity we assume that the operator χ̂
has a continuous spectrum. The case with discrete spectrum will be considered later.

The measuring device interacts with the system only if χ is near some point χD, de-
pending only on the detector. If we want to measure the time the system is in a large
region of χ, we have to use many detectors. In the case of tunneling a similar model had
been introduced by Steinberg [104] and developed in our paper [53]. The strong limit of
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5.3 The time on condition that the system is in the given final state

such a model for analysis of the measurement effect for the quantum jumps has been used
in Ref. [47].

We use the weak measurement, described in Sec. 5.2. As the operator Â we take the
operator

D̂(χD) = |χD〉〈χD| = δ(χ̂− χD). (5.8)

After time t the readings of the detectors are collected and averaged.
Hamiltonian (5.2) with D̂ given by (5.8) represents the constant force acting on the

detector D when the quantity χ is very close to the value χD. This force induces the
change of the detector’s momentum. From the classical point of view, the change of the
momentum is proportional to the time the particle spends in the region around χD and
the coefficient of proportionality equals the force acting on the detector. We assume that
the change of the mean momentum of the detector is proportional to the time the constant
force acts on the detector and that the time the particle spends in the detector’s region is
the same as the time the force acts on the detector.

We can replace the δ function by the narrow rectangle of height 1/L and of width L
in the χ space. From Eq. (5.2) it follows that the force acting on the detector when the
particle is in the region around χD is F = −λ/L. The time the particle spends until time
moment t in the unit-length region is

τ(t) = −1

λ
(〈pq(t)〉 − 〈pq〉) (5.9)

where 〈pq〉 and 〈pq(t)〉 are the mean initial momentum and momentum after time t, re-
spectively. If we want to find the time the system spends in the region of the finite width,
we have to add many times (5.9).

When the operator χ̂ has a discrete spectrum, we may ask how long the quantity χ has
the value χD. To answer this question the detector must interact with the system only
when χ = χD. In such a case the operator D̂(χD) takes the form

D̂(χD) = |χD〉〈χD|. (5.10)

The force, acting on the detector in this case equals to −λ. The time the quantity χ has
the value χD is given by Eq. (5.9), too. Further formulae do not depend on the spectrum
of the operator χ̂.

5.3.2 The dwell time

For shortening of the notation we introduce the operator

F̂ (χD, t) =

∫ t

0

D̃(χD, t1)dt1 , (5.11)

where
D̃(χD, t) = Û †

S(t)D̂(χD)ÛS(t). (5.12)

From the density matrix of the detector after the measurement in the first-order approx-
imation we find that the average change of the momentum of the detector during the time
t is −λ〈F̂ (χD, t)〉. From Eq. (5.9) we obtain the dwell time until time moment t,

τ(χ, t) =
〈
F̂ (χ, t)

〉
. (5.13)

71



5 Weak measurements and time problem in quantum mechanics

The time spent in the region Γ is

t(Γ; t) =

∫

Γ

τ(χ, t)dχ =

∫ t

0

dt′
∫

Γ

dχP (χ, t′), (5.14)

where P (χ, t′) = 〈D̃(χ, t)〉 is the probability for the system to have the value χ at time
moment t′.

In the case when χ is the coordinate of the particle Eq. (5.14) yields the well-known
expression for the dwell time [53,82]. This time is the average over the entire ensemble of
the systems, regardless of their final states.

5.3.3 The time on condition that the system is in the given final state

Further we will consider the case when the final state of the system is known. We ask how
much time the values of χ belong to the subset under consideration, Γ, on condition that
the system evolves to the definite final state f . More generally, we might know that the
final state of the system belongs to the certain subspace Hf of system’s Hilbert space.

The projection operator which projects the vectors from the Hilbert space of the system
into the subspaceHf of the final states is P̂f . As far as our model gives the correct result for
the time averaged over the entire ensemble of the systems, we can try to take the average
only over the subensemble of the systems with the given final states. We measure the
momenta pq of each measuring device after the interaction with the system. Subsequently
we perform the final, postselection measurement on the systems of our ensemble. Then we
collect the outcomes pq only of the systems the final state of which turns out to belong to
the subspace Hf .

Using Eq. (5.7) from Sec. 5.2 we obtain the duration on condition that the final state of
the system belongs to the subspace Hf [100]

τf(χ, t) =
1

2〈P̃f(t)〉
〈
P̃f(t)F̂ (χ, t) + F̂ (χ, t)P̃f(t)

〉

+
1

i~〈P̃f(t)〉
(〈q〉〈pq〉 − Re〈q̂p̂q〉)

〈[
P̃f(t), F̂ (χ, t)

]〉
. (5.15)

Eq. (5.15) consists of two terms and we can introduce two expressions with the dimension
of time

τ
(1)
f (χ, t) =

1

2〈P̃f(t)〉
〈
P̃f(t)F̂ (χ, t) + F̂ (χ, t)P̃f(t)

〉
, (5.16)

τ
(2)
f (χ, t) =

1

2i〈P̃f(t)〉
〈[

P̃f(t), F̂ (χ, t)
]〉

. (5.17)

Then the time the system spends in the subset Γ on condition that the final state of the
system belongs to the subspace Hf can be rewritten in the form

τf(χ, t) = τ
(1)
f (χ, t) +

2

~
(〈q〉〈pq〉 − Re〈q̂p̂q〉) τ

(2)
f (χ, t). (5.18)

The quantities τ
(1)
f (χ, t) and τ

(2)
f (χ, t) are related to the real and imaginary parts of the

complex time, introduced by D. Sokolovski et. al [105]. In our model the quantity τf(χ, t)
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5.3 The time on condition that the system is in the given final state

is real, contrary to the complex-time approach. The components of time τ
(1)
f and τ

(2)
f are

real, too. Therefore, this time can be interpreted as the duration of an event.

If the commutator
[
P̃f(t), F̂ (χ, t)

]
in Eq. (5.15) is not zero then, even in the limit of the

very weak measurement, the measured value depends on the particular detector. This fact
means that in such a case we cannot obtain the definite value for the conditional time.
Moreover, the coefficient (〈q〉〈pq〉 − Re〈q̂p̂q〉) may be zero for the specific initial state of
the detector, e.g., for the Gaussian distribution of the coordinate q and momentum pq.

The conditions of the possibility to determine the time uniquely in a case when the final
state of the system is known takes the form

[
P̃f(t), F̂ (χ, t)

]
= 0. (5.19)

This result can be understood basing on general principles of quantum mechanics, too. We
ask how much time the values of χ belong to the certain subset when the system evolves to
the given final state. We know with certainty the final state of the system. In addition, we
want to have some information about the values of the quantity χ. However, if we know
the final state with certainty, we may not know the values of χ in the past and, vice versa,
if we know something about χ, we may not definitely determine the final state. Therefore,
in such a case the question about the time when the system evolves to the given final state
cannot be answered definitely and the conditional time has no reasonable meaning.

The quantity τf(t) according to Eqs. (5.15) and (5.16) has many properties of the classical
time. So, if the final states {f} constitute the full set, then the corresponding projection
operators obey the equality of completeness

∑
f P̂f = 1. Then from Eq. (5.15) we obtain

the expression ∑

f

〈P̃f(t)〉τf(χ, t) = τ(χ, t). (5.20)

The quantity 〈P̃f(t)〉 is the probability that the system at the time t is in the state f .
Eq. (5.20) shows that the full duration equals to the average over all possible final states,
as it is a case in the classical physics. From Eq. (5.20) and Eqs. (5.16), (5.17) it follows

∑

f

〈P̃f(t)〉τ (1)
f (χ, t) = τ(χ, t), (5.21)

∑

f

〈P̃f(t)〉τ (2)
f (χ, t) = 0. (5.22)

We suppose that quantities τ
(1)
f (χ, t) and τ

(2)
f (χ, t) can be useful even in the case when the

time has no definite value, since in the tunneling time problem the quantities (5.16) and
(5.17) correspond to the real and imaginary parts of the complex time, respectively [53].

The eigenfunctions of the operator χ̂ constitute the full set
∫ |χ〉〈χ|dχ = 1 where the

integral must be replaced by the sum for the discrete spectrum of the operator χ̂. From
Eqs. (5.8), (5.11), (5.15) we obtain the equality

∫
τf(χ, t)dχ = t. (5.23)

Eq. (5.23) shows that the time during which the quantity χ has any value equals to t, as
it is in the classical physics.
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5 Weak measurements and time problem in quantum mechanics

5.3.4 Example: two-level system

The obtained formalism can be applied to the tunneling time problem [53]. In this section,
however, we will consider a simpler system than the tunneling particle, i.e., a two-level
system. The system is forced by the perturbation V which causes the jumps from one
state to another. We will determine the time the system is in the given state.

The Hamiltonian of this system is

Ĥ = Ĥ0 + V̂ (5.24)

where Ĥ0 = ~ωσ̂3/2 is the Hamiltonian of the unperturbed system and V̂ = vσ̂+ + v∗σ̂− is
the perturbation. Here σ1, σ2, σ3 are Pauli matrices and σ± = 1

2
(σ1±iσ2). The Hamiltonian

Ĥ0 has two eigenfunctions |0〉 and |1〉 with the eigenvalues −~ω/2 and ~ω/2, respectively.
The initial state of the system is |0〉.

From Eq. (5.13) we obtain the times the system spends in the energy levels 0 and 1,
respectively,

τ(0, t) =
1

2

(
1 +

ω2

Ω2

)
t +

1

2Ω
sin(Ωt)

(
1− ω2

Ω2

)
, (5.25)

τ(1, t) =
1

2

(
1− ω2

Ω2

)
t− 1

2Ω
sin(Ωt)

(
1− ω2

Ω2

)
(5.26)

where Ω =
√

ω2 + 4(|v|/~)2. From Eqs. (5.16) and (5.17) we can obtain the conditional
time. The components τ (1) (5.16) and τ (2) (5.17) of the time the system spends in the level
0 on condition that the final state is |1〉 are

τ
(1)
1 (0, t) =

t

2
, (5.27)

τ
(2)
1 (0, t) =

ω

2Ω

(
1− t cot

(
Ω

2
t

))
. (5.28)

When Ωt = 2πn, n ∈ Z, the quantity τ
(2)
1 (0, t) tends to infinity. This is because at these

time moments the system is in state |1〉 with the probability 0 and we cannot consider the
interaction with the detector as very weak.

The components of the time (5.16) and (5.17) the system spends in level 0 on condition
that the final state is |0〉 are

τ
(1)
0 (0, t) =

(
1 + 3ω2

Ω2

)
t +

(
1− ω2

Ω2

) (
2
Ω

sin(Ωt) + t cos(Ωt)
)

2
((

1 + ω2

Ω2

)
+

(
1− ω2

Ω2

)
cos(Ωt)

) , (5.29)

τ
(2)
0 (0, t) =

ω
Ω

(
1− ω2

Ω2

)
sin

(
Ω
2
t
) (

t cos
(

Ω
2
t
)− 2

Ω
sin

(
Ω
2
t
))

2
((

1 + ω2

Ω2

)
+

(
1− ω2

Ω2

)
cos(Ωt)

) . (5.30)

The time the system spends in level 1 on condition that the final state is |0〉 may be
expressed as

τ
(1)
0 (1, t) =

(
1− ω2

Ω2

) (
t + t cos(Ωt)− 2

Ω
sin(Ωt)

)

2
((

1 + ω2

Ω2

)
+

(
1− ω2

Ω2

)
cos(Ωt)

) . (5.31)
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Figure 5.1: The times the system spends in the energy levels 0, τ(0, t) (dashed line) and
level 1, τ(1, t) (dotted line), according to Eqs. (5.25) and (5.26), respectively. The quantity

τ
(1)
1 (0, t), Eq. (5.27), is shown as solid straight line. The quantities τ

(1)
0 (0, t) (1) and τ

(1)
0 (1, t)

(2) are calculated according to Eqs. (5.29) and (5.31), respectively. The parameters are
ω = 2 and Ω = 4.
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Figure 5.2: The quantity τ
(2)
0 (0, t), Eq. (5.30). The parameters are the same as in Fig. 5.1.
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The quantities τ(0, t), τ(1, t), τ
(1)
1 (0, t), τ

(1)
0 (0, t) and τ

(1)
0 (1, t) are shown in Fig. 5.1. The

quantity τ
(2)
0 (0, t) is shown in Fig. 5.2. Note that the duration with the given final state is

not necessarily monotonic as it is with the full duration because this final state at different
time moments can be reached by different ways. We can interpret the quantity τ

(1)
0 (0, t)

as the time the system spends in the level 0 on condition that the final state is |0〉, but

at certain time moments this quantity is greater than t. The quantity τ
(1)
0 (1, t) becomes

negative at certain time moments. This is the consequence of the fact that for the system
under consideration the condition (5.19) is not fulfilled. The peculiarities of the behavior
of the conditional times show that it is impossible to decompose the unconditional time
into two components having all classical properties of the time.

5.4 Tunneling time

The most-known problem of time in quantum mechanics is the so-called ”tunneling time
problem”. This problem is still the subject of much controversy, since numerous theories
contradict each other in their predictions for “the tunneling time”. Many of the theoretical
approaches can be divided into three categories. First, one can study evolution of the
wave packets through the barrier and get the phase time. However, the correctness of
the definition of this time is highly questionable [106]. Another approach is based on the
determination of a set of dynamic paths, i.e., the calculation of the time the different paths
spend in the barrier and averaging over the set of the paths. The paths can be found from
the Feynman path integral formalism [105], from the Bohm approach [107–110], or from
the Wigner distribution [111]. The third class uses a physical clock which can be used for
determination of the time elapsed during the tunneling (Büttiker and Landauer used an
oscillatory barrier [106], Baz’ suggested the Larmor time [112]).

The problems rise also from the fact that the arrival time of a particle to the definite
spatial point is a classical concept. Its quantum counterpart is problematic even for the
free particle case. In classical mechanics, for the determination of the time the particle
spends moving along a certain trajectory, we have to measure the position of the particle
at two different moments of time. In quantum mechanics this procedure does not work.
From Heisenberg’s uncertainty principle it follows that we cannot measure the position of
a particle without alteration of its momentum. To determine exactly the arrival time of
a particle, one has to measure the position of the particle with great precision. Because
of the measurement, the momentum of the particle will have a big uncertainty and the
second measurement will be indefinite. If we want to ask about the time in quantum
mechanics, we need to define the procedure of measurement. We can measure the position
of the particle only with a finite precision and get a distribution of the possible positions.
Applying such a measurement, we can expect to obtain not a single value of the traversal
time but a distribution of times.

The question of how much time does the tunneling particle spend in the barrier region
is not precise. There are two different but related questions connected with the tunneling
time problem [113]:

(i). How much time does the tunneling particle spend under the barrier?

(ii). At what time does the particle arrive at the point behind the barrier?
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There have been many attempts to answer these questions. However, there are several
papers showing that according to quantum mechanics the question (i) makes no sense
[113–116]. Our goal is to investigate the possibility to determine the tunneling time using
weak measurements.

5.4.1 Determination of the tunneling time

To answer the question of how much time does the tunneling particle spends under the
barrier, we need a criterion of the tunneling. We accept the following criterion: the
particle had tunneled in the case when it was in front of the barrier at first and later it
was found behind the barrier. We require that the mean energy of the particle and the
energy uncertainty must be less than the height of the barrier. Following this criterion, we
introduce an operator corresponding to the “tunneling-flag” observable

f̂T (X) = Θ(x̂−X) (5.32)

where Θ is the Heaviside unit step function and X is a point behind the barrier. This
operator projects the wave function onto the subspace of functions localized behind the
barrier. The operator has two eigenvalues: 0 and 1. The eigenvalue 0 corresponds to the
fact that the particle has not tunneled, while the eigenvalue 1 corresponds to the tunneled
particle.

We will work with the Heisenberg representation. In this representation, the tunneling
flag operator is

f̃T (t,X) = exp

(
i

~
Ĥt

)
f̂T (X) exp

(
− i

~
Ĥt

)
. (5.33)

To take into account all the tunneled particles, the limit t → +∞ must be taken. So,
the “tunneling-flag” observable in the Heisenberg picture is represented by the operator
f̃T (∞, X) = limt→+∞ f̃T (t,X). We can obtain an explicit expression for this operator.

The operator f̃T (t, X) obeys the equation

i~
∂

∂t
f̃T (t,X) =

[
f̃T (t,X), Ĥ

]
. (5.34)

The commutator in Eq. (5.34) may be expressed as

[
f̃T (t,X), Ĥ

]
= exp

(
i

~
Ĥt

) [
f̂T (X), Ĥ

]
exp

(
− i

~
Ĥt

)
.

If the Hamiltonian has the form Ĥ = 1
2M

p̂2 + V (x̂), then the commutator takes the form

[
f̂T (X), Ĥ

]
= i~Ĵ(X) (5.35)

where Ĵ(X) is the probability flux operator,

Ĵ(x) =
1

2M
(|x〉〈x|p̂ + p̂|x〉〈x|) . (5.36)
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Therefore, we have an equation for the commutator
[
f̃T (t,X), Ĥ

]
= i~J̃(X, t). (5.37)

The initial condition for the function ˜f(t,X) may be defined as

f̃T (t = 0, X) = f̂T (X).

From Eqs. (5.34) and (5.37) we obtain the equation for the evolution of the tunneling flag
operator

i~
∂

∂t
f̃T (t,X) = i~J̃(X, t). (5.38)

From Eq. (5.38) and the initial condition, an explicit expression for the tunneling flag
operator follows

f̃T (t,X) = f̂T (X) +

∫ t

0

J̃(X, t1)dt1. (5.39)

In the question of how much time does the tunneling particle spends under the barrier,
we ask about the particles, which we know with certainty have tunneled. In addition,
we want to have some information about the location of the particle. However, does
quantum mechanics allow us to have the information about the tunneling and location
simultaneously? A projection operator

D̂(Γ) =

∫

Γ

|x〉〈x|dx (5.40)

represents the probability for the particle to be in the region Γ. Here |x〉 is the eigenfunction
of the coordinate operator. In Heisenberg representation this operator takes the form

D̃(Γ, t) = exp

(
i

~
Ĥt

)
D̂(Γ) exp

(
− i

~
Ĥt

)
. (5.41)

From Eqs. (5.36), (5.39) and (5.41) we see that the operators D̃(Γ, t) and f̃T (∞, X) in
general do not commute. This means that we cannot simultaneously have the information
about the tunneling and location of the particle. If we know with certainty that the
particle has tunneled then we can say nothing about its location in the past and if we know
something about the location of the particle, we cannot determine definitely whether the
particle will tunnel. Therefore, the question of how much time does the tunneling particle
spend under the barrier cannot have definite answer, if the question is so posed that its
precise definition requires the existence of the joint probability that the particle is found in
Γ at time t and whether or not it is found on the right side of the barrier at a sufficiently
later time. A similar analysis has been performed in Ref. [116]. It has been shown that
due to noncommutability of operators there exist no unique decomposition of the dwell
time.

This conclusion is, however, not only negative. We know that
∫ +∞
−∞ |x〉〈x|dx = 1 and[

1, f̃T (∞, X)
]

= 0. Therefore, if the region Γ is large enough, one has a possibility to

answer the question about the tunneling time.
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5.4 Tunneling time

Figure 5.3: The configuration of the measurements of the tunneling time. The particle
P is tunneling along x coordinate and it is interacting with detectors D. The barrier is
represented by the rectangle. The interaction with the definite detector occurs only in the
narrow region limited by the horizontal lines. The changes of the momenta of the detectors
are represented by arrows.

From the fact that the operators D̃(Γ, t) and f̃T (∞, X) do not commute we can predict
that the measurement of the tunneling time will yield a value dependent on the particular
detection scheme. The detector is made so that it yields some value. But if we try
to measure noncommuting observables, the measured values depend on the interaction
between the detector and the measured system. So, in the definition of the Larmor time
there is a dependence on the type of boundary attributed to the magnetic-field region [82].

5.4.2 The model of the time measurement

We consider a model for the tunneling time measurement which is somewhat similar to
the “gedanken” experiment used to obtain the Larmor time, but it is simpler and more
transparent. This model had been proposed by Steinberg [104], however, it was treated in
a nonstandard way, introducing complex probabilities. Here we use only the formalism of
the standard quantum mechanics.

Our system consists of particle P and several detectors D [53]. Each detector interacts
with the particle only in the narrow region of space. The configuration of the system is
shown in Fig. 5.3. When the interaction of the particle with the detectors is weak, the
detectors do not influence the state of the particle. Therefore, we can analyze the action
of detectors separately. This model is a particular case of time measurement, presented in
Sec. 5.3.1, with χD being the position of the detector xD. Similar calculations were done
for detector’s position rather than momentum by G. Iannaccone [117].

In the moment t = 0 the particle must be before the barrier, therefore, 〈x|ρP (0)|x′〉 6= 0
only when x < 0 and x′ < 0, where ρ̂P (0) is the density matrix of the particle.
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5 Weak measurements and time problem in quantum mechanics

5.4.3 Measurement of the dwell time

As in Sec. 5.3.2 we obtain the time the particle spends in the unit length region between
time momentum t = 0 and t

τDw(x, t) = 〈F̂ (x, t)〉. (5.42)

The time spent in the space region restricted by the coordinates x1 and x2 is

tDw(x2, x1) =

∫ x2

x1

τDw(x, t →∞)dx =

∫ x2

x1

dx

∫ ∞

0

ρ(x, t)dt. (5.43)

This is a well-known expression for the dwell time [82]. The dwell time is the average over
entire ensemble of particles regardless they are tunneled or not. The expression for the
dwell time obtained in our model is the same as the well-known expression obtained by
other authors. Therefore, we can expect that our model can yield a reasonable expression
for the tunneling time as well.

5.4.4 Conditional probabilities and the tunneling time

Having seen that our model gives the time averaged over the entire ensemble of particles,
let us now take the average only over the subensemble of the tunneled particles. This is
done similarly to Sec. 5.3.3 with P̂f replaced by the tunneling flag operator f̂T (X), defined
by Eq. (5.32). From Eq. (5.15) we obtain the time the tunneled particle spends in the unit
length region around x until time t [53]

τ(x, t) =
1

2〈f̃T (t,X)〉
〈
f̃T (t,X)F̂ (x, t) + F̂ (x, t)f̃T (t, X)

〉

+
1

i~〈f̃T (t,X)〉 (〈q〉〈pq〉 − Re〈q̂p̂q〉)
〈[

f̃T (t,X), F̂ (x, t)
]〉

. (5.44)

The obtained expression (5.44) for the tunneling time is real, contrary to the complex-
time approach. It should be noted that this expression even in the limit of the very weak
measurement depends on the particular detector. If the commutator [f̃T (t,X), F̂ (x, t)] is
zero, the time has a precise value. If the commutator is not zero, only the integral of this
expression over a large region has the meaning of an asymptotic time related to the large
region as we will see in Sec. 5.4.7.

Equation (5.44) can be rewritten as a sum of two terms, the first term being independent
of the detector and the second dependent, i.e.,

τ(x, t) = τTun(x, t) +
2

~
(〈q〉〈pq〉 − Re〈q̂p̂q〉) τTun

corr (x, t) (5.45)

where

τTun(x, t) =
1

2〈f̃T (t,X)〉
〈
f̃T (t,X)F̂ (x, t) + F̂ (x, t)f̃T (t,X)

〉
, (5.46)

τTun
corr (x, t) =

1

2 i〈f̃T (t,X)〉
〈[

f̃T (t,X), F̂ (x, t)
]〉

. (5.47)
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5.4 Tunneling time

The quantities τTun(x, t) and τTun
corr (x, t) do not depend on the detector.

In order to separate the tunneled and reflected particles we have to take the limit t →∞.
Otherwise, the particles that tunnel after the time t would not contribute to the calculation.
So we introduce operators

F̂ (x) =

∫ ∞

0

D̃(x, t1)dt1, (5.48)

N̂(x) =

∫ ∞

0

J̃(x, t1)dt1. (5.49)

From Eq. (5.39) it follows that the operator f̃T (∞, X) is equal to f̂T (X) + N̂(X). As long
as the particle is initially before the barrier

f̂T (X)ρ̂P (0) = ρ̂P (0)f̂T (X) = 0.

In the limit t →∞ we have

τTun(x) =
1

2〈N̂(X)〉
〈
N̂(X)F̂ (x) + F̂ (x)N̂(X)

〉
, (5.50)

τTun
corr (x) =

1

2 i〈N̂(X)〉
〈[

N̂(X), F̂ (x)
]〉

. (5.51)

Let us define an “asymptotic time” as the integral of τ(x,∞) over a wide region con-
taining the barrier. Since the integral of τTun

corr (x) is very small compared to that of τTun(x)
as we will see later, the asymptotic time is effectively the integral of τTun(x) only. This
allows us to identify τTun(x) as “the density of the tunneling time”.

In many cases for the simplification of mathematics it is common to write the integrals
over time as the integrals from −∞ to +∞. In our model we cannot without additional
assumptions integrate in Eqs. (5.48), (5.49) from −∞ because the negative time means the
motion of the particle to the initial position. If some particles in the initial wave packet
had negative momenta then in the limit t → −∞ it was behind the barrier and contributed
to the tunneling time.

5.4.5 Properties of the tunneling time

As it has been mentioned above, the question of how much time does a tunneling parti-
cle spends under the barrier has no exact answer. We can determine only the time the
tunneling particle spends in a large region containing the barrier. In our model this time
is expressed as an integral of quantity (5.50) over the region. In order to determine the
properties of this integral it is useful to determine properties of the integrand.

To be able to expand the range of integration over time to −∞, it is necessary to have
the initial wave packet far to the left from the points under the investigation and this wave
packet must consist only of the waves moving in the positive direction.

It is convenient to make calculations in the energy representation. Eigenfunctions of
the Hamiltonian ĤP are |E, α〉, where α = ±1. The sign ’+’ or ’−’ corresponds to the
positive or negative initial direction of the wave, respectively. Outside the barrier these
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5 Weak measurements and time problem in quantum mechanics

eigenfunctions are

〈x|E, +〉 =





√
M

2π~pE

(
exp

(
i
~pEx

)
+ r(E) exp

(− i
~pEx

))
, x < 0,√

M
2π~pE

t(E) exp
(

i
~pEx

)
, x > L,

(5.52)

〈x|E,−〉 =





√
M

2π~pE
t(E) exp

(− i
~pEx

)
, x < 0,√

M
2π~pE

(
exp

(− i
~pEx

)− t(E)
t∗(E)

r∗(E) exp
(

i
~pEx

))
, x > L

(5.53)

where t(E) and r(E) are transmission and reflection amplitudes respectively,

pE =
√

2ME, (5.54)

the barrier is in the region between x = 0 and x = L and M is the mass of the particle.
These eigenfunctions are orthonormal, i.e.,

〈E, α|E ′, α′〉 = δα,α′δ(E − E ′). (5.55)

The evolution operator is

ÛP (t) =
∑

α

∫ ∞

0

|E, α〉〈E, α| exp

(
− i

~
Et

)
dE.

The operator F̂ (x) is given by the equation

F̂ (x) =

∫ ∞

−∞
dt1

∑

α,α′

∫∫
dE dE ′|E,α〉〈E, α|x〉〈x|E ′, α′〉〈E ′, α′| exp

(
i

~
(E − E ′) t1

)

where the integral over the time is 2π~δ(E − E ′) and, therefore,

F̂ (x) = 2π~
∑

α,α′

∫
dE|E, α〉〈E, α|x〉〈x|E, α′〉〈E, α′|.

In an analogous way

N̂(x) = 2π~
∑

α,α′

∫
dE|E,α〉〈E, α|Ĵ(x)|E, α′〉〈E, α′|.

We consider the initial wave packet consisting only of the waves moving in the positive
direction. Then we have

〈N̂(x)〉 = 2π~
∫

dE
〈
|E, +〉〈E, +|Ĵ(x)|E, +〉〈E, +|

〉
,

〈F̂ (x)N̂(X)〉 = 4π2~2
∑

α

∫
dE

〈
|E, +〉〈E, +|x〉〈x|E, α〉〈E, α|Ĵ(X)|E, +〉〈E, +|

〉
.

From the condition X > L it follows

〈N̂(X)〉 =

∫
dE

〈|E, +〉|t(E)|2〈E, +|〉 . (5.56)
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5.4 Tunneling time

For x < 0 we obtain the following expressions for the quantities τTun(x, t) and τTun
corr (x, t)

τTun (x, t) =
M

〈N̂(X)〉

∫
dE

〈
|E, +〉 1

2pE

|t(E)|2
(

2 + r(E) exp

(
−2

i

~
pEx

)

+ r∗(E) exp

(
2

i

~
pEx

))
〈E, +|

〉
, (5.57)

τTun
corr (x, t) =

M

2〈N̂(X)〉

∫
dE

〈
|E, +〉 1

ipE

|t(E)|2
(

r(E) exp

(
−2

i

~
pEx

)

− r∗(E) exp

(
2

i

~
pEx

))
〈E, +|

〉
. (5.58)

For x > L these expressions take the form

τTun(x, t) =
M

〈N̂(X)〉

∫
dE

〈
|E, +〉 1

2pE

|t(E)|2
(

2− t(E)

t∗(E)
r∗(E) exp

(
2

i

~
pEx

)

− t∗(E)

t(E)
r(E) exp

(
−2

i

~
pEx

))
〈E, +|

〉
, (5.59)

τTun
corr (x, t) =

M

2〈N̂(X)〉

∫
dE

〈
|E, +〉 i

pE

|t(E)|2
(

t(E)

t∗(E)
r∗(E) exp

(
2

i

~
pEx

)

− t∗(E)

t(E)
r(E) exp

(
−2

i

~
pEx

))
〈E, +|

〉
. (5.60)

We illustrate the obtained formulae for the δ-function barrier

V (x) = Ωδ(x)

and for the rectangular barrier. The incident wave packet is Gaussian and it is localized
far to the left from the barrier.

In Fig. 5.4 and 5.5, we see interferencelike oscillations near the barrier. Oscillations
are not only in front of the barrier but also behind the barrier. When x is far from the
barrier the “time density” tends to a value close to 1. This is in agreement with classical
mechanics because in the chosen units the mean velocity of the particle is 1. In Fig. 5.5,
another property of “tunneling time density” is seen: it is almost zero in the barrier region.
This explains the Hartmann and Fletcher effect [118,119]: for opaque barriers the effective
tunneling velocity is very large.

5.4.6 The reflection time

We can easily adapt our model for the reflection too. For doing this, we should replace
the tunneling-flag operator f̂T by the reflection flag operator

f̂R = 1− f̂T . (5.61)

Replacing f̂T by f̂R in Eqs. (5.50) and (5.51) we obtain the equality

〈f̃R(t = ∞, X)〉τRefl(x) = τDw(x)− 〈f̃T (t = ∞, X)〉τTun(x). (5.62)
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Figure 5.4: The asymptotic time density for δ-function barrier with the parameter Ω = 2.
The barrier is located at the point x = 0. The units are such that ~ = 1 and M = 1 and
the average momentum of the Gaussian wave packet 〈p〉 = 1. In these units length and
time are dimensionless. The width of the wave packet in the momentum space σ = 0.001.
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Figure 5.5: The asymptotic time density for rectangular barrier. The barrier is localized
between the points x = 0 and x = 5 and the height of the barrier is V0 = 2. The used
units and parameters of the initial wave packet are the same as in Fig. 5.4.
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5.4 Tunneling time

We see that in our model the important condition

τDw = TτTun + RτRefl (5.63)

where T and R are transmission and reflection probabilities is satisfied automatically.
If the wave packet consists of only the waves moving in the positive direction, the density

of dwell time is

τDw(x, t) = 2π~
∫

dE 〈|E, +〉〈E, +|x〉〈x|E, +〉〈E, +|〉 . (5.64)

For x < 0 we have

τDw(x, t) = M

∫
dE

〈
|E, +〉 1

pE

(
1 + |r(E)|2 + r(E) exp

(
−2

i

~
pEx

)

+ r∗(E) exp

(
2

i

~
pEx

))
〈E, +|

〉
(5.65)

and for the reflection time we obtain the “time density”

τRefl(x) =
M

1− 〈N̂(X)〉

∫
dE

〈
|E, +〉 1

pE

(
2|r(E)|2

+
1

2

(
1 + |r(E)|2) r(E) exp

(
−2

i

~
pEx

)
+ r∗(E) exp

(
2

i

~
pEx

))
〈E, +|

〉
. (5.66)

For x > L the density of the dwell time is

τDw(x, t) = M

∫
dE

〈
|E, +〉 1

pE

|t(E)|2〈E, +|
〉

(5.67)

and the “density of the reflection time” may be expressed as

τRefl(x) =
M

2

∫
dE

〈
|E, +〉 1

pE

|t(E)|2
(

t(E)

t∗(E)
r∗(E) exp

(
2

i

~
pEx

)

+
t∗(E)

t(E)
r(E) exp

(
−2

i

~
pEx

))
〈E, +|

〉
. (5.68)

We illustrate the properties of the reflection time for the same barriers. The incident
wave packet is Gaussian and it is localized far to the left from the barrier. In Figs. 5.6
and 5.7, we also see the interferencelike oscillations at both sides of the barrier. As far as
for the rectangular barrier the “time density” is very small, the part behind the barrier is
presented in Fig. 5.8. Behind the barrier, the “time density” in certain places becomes
negative. This is because the quantity τRefl(x) is not positive definite. Nonpositivity is
the direct consequence of noncommutativity of operators in Eqs. (5.50) and (5.51). There
is nothing strange in the negativity of τRefl(x) because this quantity itself has no physical
meaning. Only the integral over the large region has the meaning of time. When x is far
to the left from the barrier the “time density” tends to a value close to 2 and when x is
far to the right from the barrier the “time density” tends to 0. This is in agreement with
classical mechanics because in the chosen units, the velocity of the particle is 1 and the
reflected particle crosses the area before the barrier two times.
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Figure 5.6: Reflection time density for the same conditions as in Fig. 5.4.
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Figure 5.7: Reflection time density for the same conditions as in Fig. 5.5.
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Figure 5.8: Reflection time density for rectangular barrier in the area behind the barrier.
The parameters and the initial conditions are the same as in Fig. 5.5

5.4.7 The asymptotic time

As mentioned above, we can determine only the time that the tunneling particle spends
in a large region containing the barrier, i.e., the asymptotic time. In our model this time
is expressed as an integral of quantity (5.50) over this region. We can do the integration
explicitly.

The continuity equation yields

∂

∂t
D̃(xD, t) +

∂

∂xD

J̃(xD, t) = 0. (5.69)

The integration can be performed by parts

∫ t

0

D̃(xD, t1)dt1 = tD̃(xD, t) +
∂

∂x

∫ t

0

t1J̃(xD, t1)dt1 .

If the density matrix ρ̂P (0) represents localized particle then limt→∞
(
D̃(x, t)ρ̂P (0)

)
= 0.

Therefore we can write an effective equality

∫ ∞

0

D̃(xD, t1)dt1 =
∂

∂x

∫ ∞

0

t1J̃(xD, t1)dt1. (5.70)

We introduce the operator

T̂ (x) =

∫ ∞

0

t1J̃(x, t1)dt1. (5.71)

We consider the asymptotic time, i.e., the time the particle spends between points x1 and
x2 when x1 → −∞, x2 → +∞,

tTun(x2, x1) =

∫ x2

x1

τTun(x)dx.
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After the integration we have

tTun(x2, x1) = tTun(x2)− tTun(x1) (5.72)

where

tTun(x) =
1

2〈N̂(x)〉
〈
N̂(x)T̂ (x) + T̂ (x)N̂(x)

〉
. (5.73)

If we assume that the initial wave packet is far to the left from the points under the
investigation and consists only of the waves moving in the positive direction, then Eq. (5.72)
may be simplified.

In the energy representation

T̂ (x) =

∫ ∞

−∞
t1dt1

∑

α,α′

∫∫
dE dE ′|E, α〉〈E, α|Ĵ(x)|E ′, α′〉〈E ′, α′| exp

(
i

~
(E − E ′)t1

)
.

The integral over time is equal to 2iπ~2 ∂
∂E′ δ(E − E ′) and we obtain

T̂ (x) = −i~2π~
∑

α,α′

∫
dE|E,α〉

(
∂

∂E ′ 〈E, α|Ĵ(x)|E ′, α′〉
∣∣∣∣
E′=E

〈E,α′|

+ 〈E, α|Ĵ(x)|E, α′〉 ∂

∂E
〈E,α′|

)
,

〈N̂(X)T̂ (x)〉 = −i~4π2~2
∑

α

∫
dE〈Ψ|E, +〉〈E, +|Ĵ(X)|E, α〉

×
(

∂

∂E ′ 〈E, α|Ĵ(x)|E ′, +〉
∣∣∣∣
E′=E

+ 〈E, α|Ĵ(x)|E, +〉 ∂

∂E

)
〈E, +|Ψ〉.

Substituting expressions for the matrix elements of the probability flux operator we obtain
equation

〈N̂(X)T̂ (x)〉 =

∫
dE〈Ψ|E, +〉t∗(E)

~
i

∂

∂E
t(E)〈E, +|Ψ〉

+ Mx

∫
dE〈Ψ|E, +〉 1

pE

|t(E)|2〈E, +|Ψ〉

+ i~
M

2

∫
dE〈Ψ|E, +〉 1

p2
E

r∗(E)t2(E) exp

(
2

i

~
pEx

)
〈E, +|Ψ〉.

When x → +∞, the last term vanishes and we have

〈N̂(X)T̂ (x)〉 =

∫
dE〈Ψ|E, +〉t∗(E)

~
i

∂

∂E
t(E)〈E, +|Ψ〉

+ Mx

∫
dE〈Ψ|E, +〉 1

pE

|t(E)|2〈E, +|Ψ〉, x → +∞. (5.74)

This expression is equal to 〈T̂ (x)〉,

〈N̂(X)T̂ (x)〉 → 〈T̂ (x)〉, x → +∞. (5.75)
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When the point with coordinate x is in front of the barrier, we obtain an equality

〈N̂(X)T̂ (x)〉 = −i~
∫

dE〈Ψ|E, +〉|t(E)|2
(

i

~
M

pE

x

− M

2p2
E

r(E) exp

(
− i

~
2pEx

)
+

∂

∂E

)
〈E, +|Ψ〉

When |x| is large the second term vanishes and we have

〈N̂(X)T̂ (x)〉 → Mx

∫
dE〈Ψ|E, +〉 1

pE

|t(E)|2〈E, +|Ψ〉

+

∫
dE〈Ψ|E, +〉|t(E)|2~

i

∂

∂E
〈E, +|Ψ〉. (5.76)

The imaginary part of expression (5.76) is not zero. This means that for determination of
the asymptotic time it is insufficient to integrate only in the region containing the barrier.
For quasimonochromatic wave packets from Eqs. (5.71), (5.72), (5.73), (5.74) and (5.76)
we obtain limits

tTun(x2, x1) → tPh
T +

1

pE

M(x2 − x1), (5.77)

tTun
corr(x2, x1) → −tImT (5.78)

where

tPh
T = ~

d

dE
(arg t(E)) (5.79)

is the phase time and

tImT = ~
d

dE
(ln |t (E)|) (5.80)

is the imaginary part of the complex time.
In order to take the limit x → −∞ we have to perform more exact calculations. We

cannot extend the range of the integration over the time to −∞ because this extension
corresponds to the initial wave packet being infinitely far from the barrier. We can extend
the range of the integration over the time to −∞ only for calculation of N̂(X). For x < 0
we obtain the following equality

〈N̂(X)T̂ (x)〉 =
1

4πM i

∫ ∞

0

tdt

(
I∗1 (x, t)

∂

∂x
I2(x, t)− I2(x, t)

∂

∂x
I∗1 (x, t)

)
(5.81)

where

I1(x, t) =

∫
dE

1√
pE

|t(E)|2 exp

(
i

~
(pEx− Et)

)
〈E, +|Ψ〉, (5.82)

I2(x, t) =

∫
dE

1√
pE

(
exp

(
i

~
pEx

)
+ r(E) exp

(
− i

~
pEx

))
exp

(
− i

~
Et

)
〈E, +|Ψ〉.

(5.83)

I1(x, t) is equal to the wave function in the point x at the time moment t when the
propagation is in the free space and the initial wave function in the energy representation
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5 Weak measurements and time problem in quantum mechanics

Figure 5.9: The quantity τTun
corr (x) for δ function barrier with the parameters and initial

conditions as in Fig. 5.4. The initial packet is shown with dashed line.

is |t(E)|2〈E, +|Ψ〉. When t ≥ 0 and x → −∞, then I1(x, t) → 0. That is why the
initial wave packet contains only the waves moving in the positive direction. Therefore
〈N̂(X)T̂ (x)〉 → 0 when x → −∞. From this analysis it follows that the region in which
the asymptotic time is determined has to contain not only the barrier but also the initial
wave packet.

In such a case from Eqs. (5.72) and (5.73) we obtain expression for the asymptotic time

tTun(x2, x1 → −∞) =
1

〈N̂(X)〉

∫
dE〈Ψ|E, +〉t∗(E)

(
M

pE

x2 − i~
∂

∂E

)
t(E)〈E, +|Ψ〉.

(5.84)
From Eq. (5.75) it follows that

tTun(x2, x1 → −∞) =
1

〈N̂(X)〉〈T̂ (x2)〉 (5.85)

where T̂ (x2) is defined as the probability flux integral (5.71). Equations (5.84) and (5.85)
give the same value for tunneling time as an approach in Refs. [120,121]

The integral of quantity τTun
corr (x) over a large region is zero. We have seen that it is not

enough to choose the region around the barrier—this region has to include also the initial
wave packet location. We illustrate this fact by numerical calculations.

The quantity τTun
corr (x) for δ-function barrier is represented in Fig. 5.9. We see that

τTun
corr (x) is not equal to zero not only in the region around the barrier but also it is not

zero in the location of the initial wave packet. For comparison, the quantity τTun(x) for
the same conditions is represented in Fig. 5.10.

5.5 Weak measurement of arrival time

The detection of the particles in time-of-flight and coincidence experiments are common,
and quantum mechanics should give a method for the calculation of the arrival time.
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Figure 5.10: Tunneling time density for the same conditions and parameters as in Fig. 5.9.

The arrival time distribution may be useful in solving the tunneling time problem, as well.
Therefore, the quantum description of arrival time has attracted much attention [120–130].

Aharonov and Bohm introduced the arrival time operator [122]

T̂AB =
m

2

(
(X − x̂)

1

p̂
+

1

p̂
(X − x̂)

)
. (5.86)

By imposing several conditions (normalization, positivity, minimum variance, and sym-
metry with respect to the arrival point X) a quantum arrival time distribution for a free
particle was obtained by Kijowski [123]. Kijowski’s distribution may be associated with
the positive operator valued measure generated by the eigenstates of T̂AB. However, Ki-
jowski’s set of conditions cannot be applied in a general case [123]. Nevertheless, arrival
time operators can be constructed even if the particle is not free [131,132].

Since the mean arrival time even in classical mechanics can be infinite or the particle may
not arrive at all, it is convenient to deal not with the mean arrival time and corresponding
operator T̂ , but with the probability distribution of the arrival time [101]. The probability
distribution of the arrival time can be obtained from a suitable classical definition. The
noncommutativity of the operators in quantum mechanics is circumvented by using the
concept of weak measurements.

5.5.1 Arrival time in classical mechanics

In classical mechanics the particle moves along the trajectory H(x, p) = const as t increases.
This allows us to work out the time of arrival at the point x(t) = X, by identifying the
point (x0, p0) of the phase space where the particle is at t = 0, and then following the
trajectory that passes by this point, up to arrival at the point X. If multiple crossings
are possible, one may define a distribution of arrival times with contributions from all
crossings, when no distinction is made between first, second and nth arrivals. In this
article we will consider such a distribution.
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5 Weak measurements and time problem in quantum mechanics

We can ask whether there is a definition of the arrival time that is valid in both classical
and quantum mechanics. In our opinion, the words “the particle arrives from the left at
the point X at the time t” mean that: (i) at time t the particle was in the region x < X
and (ii) at time t + ∆t (∆t → 0) the particle is found in the region x > X. Now we apply
this definition, given by (i) and (ii), to the time of arrival in the classical case.

Since quantum mechanics deals with probabilities, it is convenient to use probabilistic
description of the classical mechanics, as well. Therefore, we will consider an ensemble of
noninteracting classical particles. The probability density in the phase space is ρ(x, p; t).

Let us denote the region x < X as Γ1 and the region x > X as Γ2. The probability
that the particle arrives from region Γ1 to region Γ2 at a time between t and t + ∆t is
proportional to the probability that the particle is in region Γ1 at time t and in region Γ2

at time t + ∆t. This probability is

Π+(t)∆t =
1

N+

∫

Ω

dp dx ρ(x, p; t), (5.87)

where N+ is the constant of normalization and the region of phase space Ω has the following
properties: (i) the coordinates of the points in Ω are in the space region Γ1 and (ii) if the
phase trajectory goes through a point of the region Ω at time t then the particle at time
t + ∆t is in the space region Γ2. Since ∆t is infinitesimal, the change of coordinate during
the time interval ∆t is equal to p

m
∆t. Therefore, the particle arrives from region Γ1 to

region Γ2 only if the momentum of the particle at the point X is positive. The phase space
region Ω consists of the points with positive momentum p and with coordinates between
X − p/m∆t and X. Then from Eq. (5.87) we have the probability of arrival time

Π+(t)∆t =
1

N+

∫ ∞

0

dp

∫ X

X− p
m

∆t

dx ρ(x, p; t). (5.88)

Since ∆t is infinitesimal and the momentum of every particle is finite, we can replace x in
Eq. (5.88) by X and obtain the equality

Π+(t,X) =
1

N+

∫ ∞

0

p

m
ρ(X, p; t)dp . (5.89)

The obtained arrival time distribution Π+(t,X) is well known and has appeared quite often
in the literature (see, e.g., the review [131] and references therein).

The probability current in classical mechanics is

J(x; t) =

∫ +∞

−∞

p

m
ρ(x, p; t)dp. (5.90)

From Eqs. (5.89) and (5.90) it is clear that the time of arrival is related to the probability
current. This relation, however, is not straightforward. We can introduce the “positive
probability current”

J+(x; t) =

∫ ∞

0

p

m
ρ(x, p; t)dp (5.91)

and rewrite Eq. (5.89) as

Π+(t,X) =
1

N+

J+(X; t). (5.92)
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5.5 Weak measurement of arrival time

The proposed [133–135] various quantum versions of J+ even in the case of the free particle
can be negative (the so-called backflow effect). Therefore, the classical expression (5.92)
for the time of arrival becomes problematic in quantum mechanics.

Similarly, for arrival from the right we obtain the probability density

Π−(t,X) =
1

N−
J−(X; t), (5.93)

where the negative probability current is

J−(x; t) =

∫ 0

−∞

|p|
m

ρ(x, p; t)dp. (5.94)

We see that our definition, given at the beginning of this section, leads to the proper
result in classical mechanics. The conditions (i) and (ii) does not involve the concept of
the trajectories. We can try to use this definition also in quantum mechanics.

5.5.2 Weak measurement of arrival time

The proposed definition of the arrival time probability distribution can be used in quantum
mechanics only if the determination of the region in which the particle is does not disturb
the motion of the particle. This can be achieved using the weak measurements of Aharonov,
Albert and Vaidman [94–99].

We use the weak measurement, described in Sec. 5.2. The detector interacts with the
particle only in region Γ1. As the operator Â we take the the projection operator P̂1,
projecting into region Γ1. In analogy to Ref. [95], we define the “weak value” of the
probability of finding the particle in the region Γ1 ,

W (1) ≡ 〈P̂1〉 =
〈p̂q〉0 − 〈p̂q〉

λτ
. (5.95)

In order to obtain the arrival time probability using the definition from Sec. 5.5.1, we
measure the momenta pq of each detector after the interaction with the particle. After
time ∆t we perform the final, postselection measurement on the particles of our ensemble
and measure if the particle is found in region Γ2. Then we collect the outcomes pq only
for the particles found in region Γ2.

The projection operator projecting into the region Γ2 is P̂2. In the Heisenberg represen-
tation this operator is

P̃2(t) = Û(t)†P̂2Û(t), (5.96)

where Û is the evolution operator of the free particle. Taking the operator B from Sec. 5.2
as P̃2(∆t) and using Eq. (5.95) we can introduce the weak value W (1|2) of probability to
find the particle in region Γ1 on condition that the particle after time ∆t is in region Γ2.
The probability that the particle is in region Γ1 and after time ∆t is in region Γ2 equals to

W (1, 2) = W (2)W (1|2). (5.97)

When the measurement time τ is sufficiently small, the influence of the Hamiltonian of the
particle can be neglected. Using Eq. (5.7) from Sec. 5.2 we obtain

W (1, 2) ≈ 1

2
〈P̃2(∆t)P̂1 + P̂1P̃2(∆t)〉+

i

~
(〈p̂q〉〈q̂〉 − Re〈q̂p̂q〉) 〈[P̂1, P̃2(∆t)]〉. (5.98)
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5 Weak measurements and time problem in quantum mechanics

The probability W (1, 2) is constructed using conditions (i) and (ii) from Sec. 5.5.1: the
weak measurement is performed to determine if the particle is in region Γ1 and after time
∆t the strong measurement determines if the particle is in region Γ2. Therefore, according
to Sec. 5.5.1, the quantity W (1, 2) after normalization can be considered as the weak value
of the arrival time probability distribution.

Equation (5.98) consists of two terms and we can introduce two quantities

Π(1) =
1

2∆t
〈P̂1P̃2(∆t) + P̃2(∆t)P̂1〉 (5.99)

and

Π(2) =
1

2i∆t
〈[P̂1, P̃2(∆t)]〉. (5.100)

Then

W (1, 2) = Π(1)∆t− 2∆t

~
(〈p̂q〉〈q̂〉 − Re〈q̂p̂q〉) Π(2). (5.101)

If the commutator [P̂1, P̃2(∆t)] in Eqs. (5.99)–(5.101) is not zero, then, even in the limit
of the very weak measurement, the measured value depends on the particular detector.
This fact means that in such a case we cannot obtain a definite value for the arrival time
probability. Moreover, the coefficient (〈p̂q〉〈q̂〉 −Re〈q̂p̂q〉) may be zero for a specific initial
state of the detector, e.g., for a Gaussian distribution of the coordinate q and momentum
pq.

The quantities W (1, 2), Π(1) and Π(2) are real. However, it is convenient to consider the
complex quantity

ΠC = Π(1) + iΠ(2) =
1

∆t
〈P̂1P̃2(∆t)〉. (5.102)

We call it the “complex arrival probability”. We can introduce the corresponding operator

Π̂+ =
1

∆t
P̂1P̃2(∆t). (5.103)

By analogy, the operator

Π̂− =
1

∆t
P̂2P̃1(∆t) (5.104)

corresponds to arrival from the right.
The introduced operator Π̂+ has some properties of the classical positive probability

current. From the conditions P̂1 + P̂2 = 1 and P̃1(∆t) + P̃2(∆t) = 1 we have

Π̂+ − Π̂− =
1

∆t
(P̃2(∆t)− P̂2).

In the limit ∆t → 0 we obtain the probability current Ĵ = lim∆t→0(Π̂+−Π̂−), as in classical
mechanics. However, the quantity 〈Π̂+〉 is complex and the real part can be negative, in
contrst to the classical quantity J+. The reason for this is the noncommutativity of the
operators P̂1 and P̃2(∆t). When the imaginary part is small, the quantity 〈Π̂+〉 after
normalization can be considered as the approximate probability distribution of the arrival
time.
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5.5 Weak measurement of arrival time

5.5.3 Arrival time probability

The operator Π̂+ is obtained without specification of the Hamiltonian of the particle and
is suitable for free particles and for particles subjected to an external potential as well. In
this section we consider the arrival time of the free particle.

The calculation of the “weak arrival time distribution” W (1, 2) involves the average
〈Π̂+〉. Therefore, it is useful to have the matrix elements of the operator Π̂+. It should be
noted that the matrix elements of the operator Π̂+ as well as the operator itself are only
auxiliary and do not have independent meaning.

In the basis of momentum eigenstates |p〉, normalized according to the condition 〈p1|p2〉 =
2π~δ(p1 − p2), the matrix elements of the operator Π̂+ are

〈p1|Π̂+|p2〉 =
1

∆t
〈p1|P̂1Û(∆t)†P̂2Û(∆t)|p2〉

=
1

∆t

∫ X

−∞
dx1

∫ ∞

X

dx2e
− i
~p1x1〈x1|Û(∆t)†|x2〉e i

~p2x2− i
~

p2
2

2m
∆t. (5.105)

After performing the integration we obtain

〈p1|Π̂+|p2〉 =
i~

2∆t(p2 − p1)
exp

(
i

~
(p2 − p1)X

)

×
(

e
i
~

∆t
2m

(p2
1−p2

2) erfc

(
−p1

√
i∆t

2~m

)
− erfc

(
−p2

√
i∆t

2~m

))
, (5.106)

where
√

i = exp(iπ/4). When

1

~
∆t

2m
(p2

1 − p2
2) ¿ 1, p1

√
∆t

2~m
> 1, p2

√
∆t

2~m
> 1,

the matrix elements of the operator Π̂+ are

〈p1|Π̂+|p2〉 ≈ p1 + p2

2m
exp

(
i

~
(p2 − p1)X

)
. (5.107)

This equation coincides with the expression for the matrix elements of the probability
current operator.

From Eq. (5.106) we obtain the diagonal matrix elements of the operator Π̂+ ,

〈p|Π̂+|p〉 =
p

2m
erfc

(
−p

√
i∆t

2~m

)
+

~√
i2π~m∆t

e−
i
~

p2

2m
∆t. (5.108)

The real part of the quantity 〈p|Π̂+|p〉 is shown in Fig. 5.11 and the imaginary part in
Fig. 5.12.

Using the asymptotic expressions for the function erfc we obtain from Eq. (5.108) that

lim
p→+∞

〈p|Π̂+|p〉 → p

m
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Figure 5.11: The real part of the quantity 〈p|Π̂+|p〉, according to Eq. (5.108). The corre-
sponding classical positive probability current is shown with the dashed line. The param-
eters used are ~ = 1, m = 1, and ∆t = 1. In this system of units, the momentum p is
dimensionless.
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Figure 5.12: The imaginary part of the quantity 〈p|Π̂+|p〉. The parameters used are the
same as in Fig. 5.11
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Figure 5.13: The dependence of the quantity Re〈p|Π̂+|p〉 according to Eq. (5.108) on the
resolution time ∆t. The corresponding classical positive probability current is shown with
the dashed line. The parameters used are ~ = 1, m = 1, and p = 1. In these units, the
time ∆t is dimensionless.

and 〈p|Π̂+|p〉 → 0, when p → −∞, i.e., the imaginary part tends to zero and the real
part approaches the corresponding classical value as the modulus of the momentum |p|
increases. Such behaviour is evident from Figs. 5.11 and 5.12 also.

The asymptotic expressions for function erfc are valid when the argument of the erfc is

large, i.e., |p|
√

∆t
2~m > 1 or

∆t >
~
Ek

. (5.109)

Here Ek is the kinetic energy of the particle.

The dependence of the quantity Re〈p|Π̂+|p〉 from ∆t is shown in Fig. 5.13. For small ∆t
the quantity 〈p|Π̂+|p〉 is proportional to 1/

√
∆t. Therefore, unlike in classical mechanics,

in quantum mechanics ∆t cannot be zero. Equation (5.109) imposes the lower bound on
the resolution time ∆t. It follows that our model does not permit determination of the
arrival time with resolution greater than ~/Ek. A relation similar to Eq. (5.109) based on
measurement models was obtained by Aharonov et al. [103]. The time-energy uncertainty
relations associated with the time of arrival distribution are also discussed in Refs. [129,136]

5.6 Summary

The generalization of the theoretical analysis of the time problem in quantum mechanics
and weak measurements are presented. The tunneling time problem is a part of this more
general problem. The problem of time is solved adapting the weak measurement theory
to the measurement of time. In this model expression (5.13) for the duration when the
arbitrary observable χ has the certain value is obtained. This result is in agreement with
the known results for the dwell time in the tunneling time problem.
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Further we consider the problem of the duration when the observable χ has the certain
value with condition that the system is in the given final state. Our model of measurement
allows us to obtain the expression (5.15) of this duration as well. This expression has many
properties of the corresponding classical time. However, such a duration not always has
the reasonable meaning. It is possible to obtain the duration the quantity χ has the certain
value on condition that the system is in a given final state only when the condition (5.19)
is fulfilled. In the opposite case, there is a dependence in the outcome of the measurements
on particular detector even in an ideal case and, therefore, it is impossible to obtain the
definite value of the duration. When the condition (5.19) is not fulfilled, we introduce
two quantities (5.16) and (5.17), characterizing the conditional time. These quantities
are useful in the case of tunneling and we suppose that they can be useful also for other
problems.

In order to investigate the tunneling time problem, we consider a procedure of time
measurement, proposed by Steinberg [104]. This procedure shows clearly the consequences
of noncommutativity of the operators and the possibility of determination of the asymptotic
time. Our model also reveals the Hartmann and Fletcher effect, i.e., for opaque barriers
the effective velocity is very large because the contribution of the barrier region to the time
is almost zero. We cannot determine whether this velocity can be larger than c because
for this purpose one has to use a relativistic equation (e.g., the Dirac equation).

The definition of density of one sided arrivals is proposed. This definition is extended to
quantum mechanics, using the concept of weak measurements by Aharonov et al. [94–99].
The proposed procedure is suitable for free particles and for particles subjected to an
external potential, as well. It gives not only a mathematical expression for the arrival time
probability distribution but also a way of measuring the quantity obtained. However, this
procedure gives no unique expression for the arrival time probability distribution.

In analogy with the complex tunneling time, the complex arrival time “probability dis-
tribution” is introduced (Eq. (5.102)). It is shown that the proposed approach imposes an
inherent limitation, Eq. (5.109), on the resolution time of the arrival time determination.
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6 Summary of the results and
conclusions

1. A simple model of the measurement without taking into account the interaction of the
detector with the environment is considered. Using this model of the measurement
the general equation for the probability of the jump during the measurement is
derived. The behavior of the system under the repeated measurements depends on
the strength of the interaction with the measuring device and on the properties of
the system.

2. When the the strength of the interaction with the measuring device is sufficiently
large, the frequent measurements of the system slow down the evolution. However,
the evolution cannot be fully stopped.

3. Measurements can cause inhibition or acceleration of the evolution. The decay rate
may be increased by the measurements and the quantum anti-Zeno effect can be
obtained.

4. General expression for the jump probability during the measurement, first obtained
by Kofman and Kurizki [26], is derived. The main assumptions, used in the deriva-
tion, are the assumptions that the quantum measurement is non-demolition measure-
ment and the Markovian approximation for the quantum dynamics of the detector
is valid. We have shown that this expression is also suitable for the description of
the pulsed measurements, when there are intervals of the measurement-free evolution
between the successive measurements.

5. A model of the measurement in which the detector is modeled as a harmonic oscil-
lator, initially being at the thermal equilibrium, is investigated. The Lindblad-type
master equation for the detectors density matrix is solved analytically. An equa-
tion for the probability of the jump between measured system’s states during the
measurement is obtained. From the used model it follows that the increase of the
detector’s temperature leads to the enhancement of the quantum Zeno or quantum
anti-Zeno effects.

6. In another model the detector is a two level system interacting with the environment.
The influence of the environment is taken into account using quantum trajectory
method. The quantum trajectories produced by stochastic simulations show the
probabilistic behavior exhibiting the collapse of the wave-packet in the measured
system, although the quantum jumps were performed only in the detector. Both
quantum Zeno and anti-Zeno effects were demonstrated for the measured two level
system and for the decaying system. A good agreement of the numerical results
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with the analytical estimates of the decay rates of the measured system shows that
the particular model of the detector is not important, since the decay rates mostly
depend only on one parameter, i.e., the duration of the measurement.

7. Weak measurement theory by Aharonov et al. is used to investigate the measurement
of time in quantum mechanics. An expression for the duration when the arbitrary
observable χ has the certain value is obtained. This result is in agreement with the
known results for the dwell time in the tunneling time problem. The expression for
the duration when the observable χ has the certain value with condition that the
system is found in a given final state is introduced. This expression has many prop-
erties of the corresponding classical time. However, it is shown that this duration has
definite value only when commutativity condition (5.19) is fulfilled. In the opposite
case two characteristic durations can be introduced that can be combined into one
complex quantity.

8. Particular case of this duration is tunneling time. Weak measurement procedure
shows clearly the consequences of noncommutativity of the operators — we cannot
simultaneously have the information about the tunneling and location of the particle.
Our model also reveals the Hartmann and Fletcher effect, i.e., for opaque barriers
the contribution of the barrier region to the time is almost zero.

9. The definition of density of one sided arrivals is proposed. This definition is extended
to quantum mechanics, using the concept of weak measurements. The proposed pro-
cedure is suitable for free particles and for particles subjected to an external poten-
tial, as well. However, this procedure gives no unique expression for the arrival time
probability distribution. In analogy with the complex tunneling time, the complex
arrival time “probability distribution” is introduced. It is shown that the proposed
approach imposes an inherent limitation on the resolution of the arrival time.
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