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Abstract.  Nonlinear stochastic dierential equations  provide one of the 
mathematical models yielding 1/f noise. However, the drawback of a single 
equation  as a source of 1/f noise is the necessity of power-law steady-state 
probability density of the signal. In this paper we generalize this model and 
propose a system of two coupled nonlinear stochastic dierential equations. The 
equations are derived from the scaling properties necessary for the achievement 

of / βf1  noise. The first equation describes the changes of the signal, whereas the 

second equation represents a fluctuating rate of change. The proposed coupled 

stochastic dierential equations allow us to obtain a / βf1  spectrum in a wide 

range of frequencies together with the almost arbitrary steady-state density of 
the signal.
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1.  Introduction

Noise plays an essential role in many physical, biological and even social systems. 
Therefore, for the understanding of those systems it is important to characterize the 
noise and explain its origin. One of the characteristics used for description of noise is 
the power spectral density (PSD). In many cases the noise can be modeled as a white 
noise which has a frequency-independent PSD. However, there are various physical sys-
tems where noise has significant dependence on frequency. The characteristic behavior 
of the PSD is referred to as a ‘color’ of the noise. Pink noise or 1/f noise is a random 
process described by the PSD S( f ) inversely proportional to the frequency, that is 

( ) /∝ βS f f1  with β close to 1. 1/f noise was observed first as an excess low-frequency 
noise in vacuum tubes [1, 2]. Later, such noise was found in condensed matter [3–7] 
and other systems [8–10]. Origin and the general nature of 1/f noise has been, up to 
now, the subject of a number of discussions and investigations: for reviews see [10–13].

Many models have been proposed to explain the origin of 1/f noise; for a short over-
view of the models see the introduction of [14]. In many condensed matter systems the 
1/f spectrum is considered as a superposition of Lorentzians with a wide range distri-

bution of relaxation times [5, 6, 15–18]. In this approach / βf1  noise with the desirable 
slope β requires a certain distribution of parameters of the system [7, 8, 11, 17, 19, 20]. 
However, it has been shown that only several well-separated decay rates are sucient 
to yield an approximately 1/f power spectrum [21]. Self-organized criticality (SOC) 
provides models of 1/f noise relevant for the understanding of driven non-equilibrium 
systems [22, 23]. The mechanism of SOC does not necessarily yield 1/f fluctuations 
[24, 25]. The 1/f noise in the fluctuations of a mass was first seen in a sandpile model 
with threshold dissipation proposed in [26] and was analytically obtained in a one-
dimensional directed model of sandpiles [27]. Yet another model of 1/f noise represents 
the signals as sequences of the renewal pulses or events with the power-law distribution 
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of the inter-event time [28]. Recently, thermal finite-size fluctuations as a mechanism 
for 1/f noise have been proposed [29].

In some systems the 1/f fluctuations are non-Gaussian [30, 31]. Power-law distribution 
of signal intensity as well as power-law behavior of the PSD in a wide range of frequencies 
can be obtained using point processes where the time between the adjacent pulses experi-

ence relatively slow the Brownian-like motion [32–34]. Starting from this point process 

model nonlinear stochastic dierential equations (SDEs) generating / βf1  noise have been 
derived in [14, 35, 36]. Such nonlinear SDEs have been applied to describe signals in 
socio-economical systems [37, 38] and as a model of neuronal firing [39].

However, in most cases 1/f noise is a Gaussian process [12, 40]. The drawback of the 

nonlinear SDEs generating signals with / βf1  PSD, proposed in [35, 36], is the necessity 
of a power-law steady-state probability density function (PDF) of the signal. It is impos-
sible to obtain a Gaussian PDF together with a 1/f spectrum from such nonlinear SDEs. 
The purpose of this paper is to remedy this drawback of nonlinear SDEs as a source of 
1/f noise by considering not only one SDE, but a system of two coupled SDEs. In this 
system of coupled SDEs, we interpret the first equation as giving the signal, whereas 
the second equation represents a fluctuating rate of change. We demonstrate that the 
proposed coupled stochastic dierential equations allow us to obtain a 1/f spectrum in a 
wide range of frequencies together with almost arbitrary steady-state PDF of the signal.

The paper is organized as follows: in section 2 we obtain a system of coupled SDEs 

generating signals with / βf1  PSD by considering the scaling properties of the equa-
tions. Numerical methods of solution of such equations are discussed in section 3. SDEs 
obtained in section 2 do not have the most general form that is allowed by scaling prop-

erties required to get a / βf1  spectrum. For completeness, in section 4 we consider a more 
general, but more complicated form of equations. Section 5 summarizes our findings.

2. Derivation of coupled stochastic dierential equations using scaling properties

In this section we obtain a pair of coupled nonlinear SDEs by considering the scaling 

properties required to get a / βf1  PSD. The method we use is similar to that in [41], 
however now we consider two stochastic variables and two equations. We assume that 
the first equation describes the fluctuations of the signal, with the fluctuating rate of 
change described by the second equation.

We can obtain a pair of coupled nonlinear SDEs generating signals exhibiting 1/f 
noise by using the following considerations. The Wiener–Khintchine theorem

( ) ( ) ( )∫ π=
+∞

C t S f f fcos 2 d
0

� (1)

relates the PSD S( f ) to the autocorrelation function C(t). If the PSD has a power-law 

behavior ( )∼ β−S f f  in a wide range of frequencies � �f f fmin max, then, when the influence 
of the limiting frequencies fmin and fmax is neglected, the PSD has a scaling property

( ) ( )∼ β−S af a S f� (2)

http://dx.doi.org/10.1088/1742-5468/2016/04/043209
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for the frequencies in this range. In this paper we will consider signals with PSD having 

/ βf1  behavior only in some wide intermediate region of frequencies � �f f fmin max. To 
avoid the divergence of the total power occurring for pure 1/f behavior at arbitrarily 
small frequencies, we assume that the PSD is bounded for small frequencies �f fmin 
outside of this region. Compatibility with experimental data can be ensured by choos-
ing suciently small limiting frequency fmin.

From the Wiener–Khintchine theorem (1) and equation (2) it follows that the auto-
correlation function has the scaling property

( ) ( )∼ β−C at a C t1� (3)

in the time range / /� �f t f1 1max min. Assuming that we have two stochastic variables 
x and y with the signal represented by the stochastic variable x, the autocorrelation 
function can be written as [42–44]

∫ ∫ ∫= −′ ′ ′ ′ ′ ⎡
⎣⎢

⎤
⎦⎥C t x y x y xx P x y P x y t x y x y xP x yd d d d , , , , , 0 d d , .0 0

2

( ) ( ) ( | ) ( )
�

(4)

Here, P0(x, y) is the steady-state PDF and ( )|′ ′P x y t x y, , , , 0  is the transition probability 
(the conditional probability that at time t the stochastic variables have values ′x  and ′y  
with the condition that at time t  =  0 they had had the values x and y). The transition 
probability can be obtained from the solution of the Fokker–Planck equation with the 
initial condition ( ) ( ) ( )δ δ| = − −′ ′ ′ ′P x y x y x x y y, , 0 , , 0 . The last term in equation  (4), 
being a constant, does not influence the PSD at frequencies f  >  0. Therefore, we will 
neglect this term from now on.

One of the ways to obtain the required scaling property (3) is for the steady-state 
PDF to be a power-law function of the stochastic variable y,

( ) ( )∼ λ−P x y p x y, ,0� (5)

and for the transition probability to have the scaling property

=′ ′ ′ µaP x ay t x ay P x y a t x y, , , , 0 , , , , , 0 .( | ) ( | )� (6)
Here, μ is the scaling exponent and λ is the power-law exponent of the steady-state 
PDF of the stochastic variable y. equation (6) means that the change of the magnitude 
of the stochastic variable →y ay is equivalent to the change of time scale → µt a t. Using 
equations (4)–(6) and performing a change of variables we get

( ) ( ) ( )∫ ∫= |′ ′ ′ ′ ′C at x y x y xx P x y P x y at x yd d d d , , , , , 00� (7)

( ) ( )∫ ∫∼ |′ ′ ′ ′ ′λ µ µ µ−x y x y xx p x y a P x a y t x a yd d d d , , , , 0
1 1 1

� (8)

∫ ∫∼ ′ ′ ′ ′ ′
λ
µ λ− −a x u x u xx p x u P x u t x ud d d d , , , , 0 .

1
( ) ( | )� (9)

Therefore, the autocorrelation function has the required scaling property (3) with β 
given by

http://dx.doi.org/10.1088/1742-5468/2016/04/043209
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β
λ
µ

= +
−

1
1

.� (10)

We see that we obtain the pure 1/f noise when λ = 1.
In order to avoid the divergence of the steady-state PDF (5), the diusion of sto-

chastic variable y should be restricted at least from the side of small values. In gen-
eral, equation (5) can hold only in some region � �y y ymin max. When the diusion of 
stochastic variable y is restricted, equation (6) cannot also be exact. However, if the 
influence of the limiting values ymin and ymax can be neglected for the time t in some 
region � �t t tmin max, we can expect for the scaling (3) to be approximately valid in 
this time region.

To get the required scaling (6) of the transition probability, only powers of the sto-
chastic variable y should enter into the pair of SDEs. Assuming that the coecient in 
the noise term of the first equation is proportional to ηy , we will consider the following 
coupled Itô SDEs:

( ) ( )= +η ηx a x y t b x y Wd d d ,t t t t t
2

� (11)

( ) σ= + ′η η+ +y u x y t y Wd d d .t t t t t
2 1 1

� (12)

Here, Wt and ′Wt are standard Wiener processes. The parameter σ in equation (12) gives 
the intensity of the noise and the coecient u(x) needs to be determined. One can see 
that equations  (11) and (12) indeed lead to the scaling of transition probability (6). 
Changing the variable y in (11), (12) to the scaled variable =y ays  or introducing the 

scaled time = ηt a ts
2  and using the property of the Wiener process = ηW a Wd dt

d
ts  we get 

the same resulting equations. Therefore, the change of the scale of the variable y and 
change of time scale are equivalent, as in equation (6), and the scaling exponent μ is 
equal to

µ η= 2 .� (13)
To ensure steady-state PDF (5) and for determination the unknown coecient u(x) 

in equation (12) we write the Fokker–Planck equation corresponding to the system of 
SDEs (11) and (12) [44]

σ
∂
∂

= −
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

η η η η+ +

t
P y

x
a x P u x

y
y P y

x
b x P

y
y P

1

2

1

2
.2 2 1 2

2

2
2 2

2

2
2 2( ) ( ) ( )

�

(14)

The steady-state PDF P0(x, y) is the solution of the equation

( ) ( ) ( ) σ−
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

=η η η η+ +y
x
a x P u x

y
y P y

x
b x P

y
y P

1

2

1

2
0.2

0
2 1

0
2

2

2
2

0
2

2

2
2 2

0

�
(15)

Equation (15) can be written in terms of the components of the probability current

= −
∂
∂

η ηJ x y y a x P y
x
b x P,

1

2
,x

2
0

2 2
0( ) ( ) ( )� (16)

http://dx.doi.org/10.1088/1742-5468/2016/04/043209
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( ) ( ) σ= −
∂
∂

η η+ +J x y u x y P
y
y P,

1

2
y

2 1
0

2 2 2
0� (17)

as

( ) ( )∂
∂

+
∂
∂

=
x
J x y

y
J x y, , 0 .x y� (18)

Inserting equation (5) into (16) and (17) we get

= −η λ− ⎡
⎣⎢

⎤
⎦⎥J x y y a x p x

x
b x p x,

1

2

d

d
,x

2 2( ) ( ) ( ) ( ) ( )� (19)

σ η
λ

= − + −η λ+ − ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥J x y y p x u x, 1

2
.y

2 1 2( ) ( ) ( )� (20)

Assuming that the x-component of the probability current Jx should vanish at the 
reflective boundaries that are not parallel to x axis, then the expression in the square 
brackets in equation (19) should be zero for dierent values of y. Thus, the function p(x) 
in (5) should be a solution to the dierential equation

( ) ( ) ( ) ( )− =a x p x
x
b x p x

1

2

d

d
0.2

� (21)

This equation means that the steady-state PDF of the stochastic variable x is deter-
mined only by the coecients a(x) and b(x) of the SDE (11). Further, assuming that the 
y-component of the probability current Jy should vanish at the boundaries that are not 
parallel to the y axis, then the expression in the square brackets in equation (20) should 

be zero for dierent values of x. Therefore, ( ) ( / )σ η λ= + −u x 1 22  and the required sys-
tem of coupled SDEs is

( ) ( )= +η ηx a x y t b x y Wd d d ,t t t t t t
2

� (22)

⎜ ⎟
⎛
⎝

⎞
⎠σ η
λ

σ= + − + ′η η+ +y y t y Wd 1
2

d d .t t t t
2 2 1 1

� (23)

Note, that the second equation (23) has the form of nonlinear SDEs proposed in [35, 36].  
Equations  similar to (22), (23) have been considered in [45]. From equation  (10) it  
follows that the power-law exponent in the PSD of the signal generated by the  
SDEs (22), (23) is related to the parameters η and λ as

β
λ
η

= +
−

1
1

2
.� (24)

To get a stationary process and avoid the divergence of steady-state PDF, equation (23) 
should be considered together with boundaries restricting the diusion of stochastic 
variable y or be modified. The simplest choice restricting the range of diusion of the 
stochastic variable y is the reflective boundaries at =y ymin and =y ymax. Another pos-
sibility is the modification of equation (23) to get rapidly decreasing steady-state PDF 

http://dx.doi.org/10.1088/1742-5468/2016/04/043209
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when the stochastic variable y acquires values outside of the interval y y,min max[ ]. For 
example, the steady-state PDF

∼ − −λ−
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

P x y p x y
y

y

y

y
, exp

m m

0
min

max

( ) ( )� (25)

with m  >  0 has a power-law dependence on y when � �y y ymin max and exponential 
cut-os when y is outside of the interval y y,min max[ ] . This exponentially restricted 
steady-state PDF is a result of the SDE

σ η
λ

σ= + − + − + ′η η+ +
⎛

⎝
⎜⎜

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟⎟y

m y

y

y

y
y t y Wd 1

2 2
d dt

m

t
m

t
m

m t t t
2 min

max

2 1 1
� (26)

obtained from equation (23) by introducing additional terms into the drift.

2.1. Limiting frequencies

The restriction of the diusion of the stochastic variable y to the interval � �y y ymin max 
makes the scaling (6) only approximate. As a result, the power-law part of the PSD is 
limited to a finite range of frequencies � �f f fmin max. Let us estimate the limiting fre-
quencies fmin and fmax. The limiting values =y ymin and =y ymax should also participate 
in the scaling and equation (6) for the transition probability corresponding to SDEs 
(22) and (23) becomes

( | ) ( | )=′ ′ ′ µaP x ay t x ay ay ay P x y a t x y y y, , , , 0; , , , , , , 0; , .min max min max� (27)
Here, ymin, ymax enter as parameters of the transition probability. Similarly, the steady-
state PDF ( )P x y y y, ; ,0 min max  has the scaling property

=aP x ay ay ay P x y y y, ; , , ; , .0 min max 0 min max( ) ( )� (28)
Inserting equations (27) and (28) into (4) we get

( ) ( )= µC t ay ay C a t y y, , , , .min max min max� (29)
From this scaling of the autocorrelation function it follows that time t should enter only 

in combinations with the limiting values /µy tmin
1  and /µy tmax

1 . We can expect that the 
influence of the limiting values can be neglected and the scaling (6) be approximately 

valid when /µ�y t 1min
1  and /µ�y t 1max

1 . In other words, we expect that the scaling (6) 
holds when time t is in the interval σ σµ µ− − − −� �y t y2

max
2

min when µ> 0 and in the inter-
val σ σµ µ− − − −� �y t y2

min
2

max when µ< 0. Using equation (1) the frequency range where the 

PSD has / βf1  behavior can be estimated as

σ π σ µ>µ µy f y2 , 02
min

2
max� �� (30)

� �σ π σ µ<µ µy f y2 , 02
max

2
min� (31)

We see that the width of the frequency range where the PSD has / βf1  behavior grows 
with an increase of the ratio /y ymax min. For µ = 0 (which corresponds to η = 0) the width 

of the frequency region (30) is zero and we do not have / βf1  power spectral density.

http://dx.doi.org/10.1088/1742-5468/2016/04/043209
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3. Numerical approach

Since analytical solutions of stochastic dierential equations can be obtained only in 
particular cases, there is a need for numerical solution. Using the Euler–Maruyama 
method with small time step ∆t for numerical solutions of SDEs (22) and (23), we get 
the discretized equations

( ) ( ) ε= + ∆ + ∆η η
+x x a x y t b x y t ,k k k k k k k1

2
� (32)

σ η
λ

σ ξ= + + − ∆ + ∆η η
+

+ +⎜ ⎟
⎛
⎝

⎞
⎠y y y t y t1

2
.k k k k k1

2 2 1 1
� (33)

Here, εk and ξk are independent random variables with the standard normal distribution. 
However, for numerical solutions of nonlinear equations the solution schemes involving 
a fixed time step ∆t can be inecient. For example, in equations (22) and (23) with 
η> 0, large values of stochastic variable y lead to large coecients and thus require a 
very small time step. The numerical solution scheme can be improved by using a vari-
able time step that becomes small only when y becomes large. Such a method for the 
solution of a single nonlinear SDE has been proposed in [35, 46]. The variable time step 
is equivalent to the introduction of the internal time τ that is dierent from the real, 
physical, time t [46].

In order to make the solution more ecient we introduce an internal, operational, 
time τ by the equation

τ = ηy td d .t t
2

� (34)

We assume that the zero of the internal time τ coincides with the zero of the physical 
time t, thus the initial condition for the internal time is τ == 0t 0 . Since yt  >  0, from 
equation (34) it follows that τt is a strictly increasing function of time t. Let us obtain 
the SDEs for the stochastic variables x and y in the internal time τ. To do this we 
proceed similarly as in [46] and consider the joint PDF ( )ττP x y t, , ;x y, ,  of the stochastic 
variables x, y and τ. The PDF P(x, y;t) can be calculated using the equation

∫ τ τ= τP x y t P x y t, , , , ; d .x y x, ,( ) ( )� (35)

Equations (22), (23) and (34) lead to the Fokker–Planck equation  for the PDF 
( )ττP x y t, , ;x y, ,

( )

( )

σ η
λ

τ

σ

∂
∂

= −
∂
∂

− + −
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

τ
η

τ
η

τ
η

τ

η
τ

η
τ

+

+

⎜ ⎟
⎛
⎝

⎞
⎠t

P y
x
a x P

y
y P y P

y
x
b x P

y
y P

1
2

1

2

1

2
.

x y x y x y x y

x y x y

, ,
2

, ,
2 2 1

, ,
2

, ,

2
2

2
2

, ,
2

2

2
2 2

, ,

�

(36)

Since the zero of the internal time τ coincides with the zero of the physical time t, 
the initial condition for equation  (36) is ( ) ( ) ( )τ δ τ=τP x y P x y, , ; 0 , ; 0x y, , . Matching of 
the zeros of τ and t also leads to the boundary condition ( ) =τP x y t, , 0; 0x y, ,  for t  >  0, 
because τ and t are strictly increasing.

http://dx.doi.org/10.1088/1742-5468/2016/04/043209
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Instead of x, y and τ we can consider x, y and t as stochastic variables. The physical 
time t is related to the operational time τ via equation (34), therefore, the joint PDF 

( )τP x y t, , ;x y t, ,  of the stochastic variables x, y and t is related to the PDF ( )ττP x y t, , ;x y, ,  
according to the equation

τ τ= η
τP x y t y P x y t, , ; , , ; .x y t x y, ,

2
, ,( ) ( )� (37)

Another way to get this relation is to recognize that the third term on the right-hand 

side of equation (36) contains the derivative 
τ
∂
∂

 and thus should be equal to −
τ
∂
∂
Px y t, , . 

Inserting (37) into equation (36) we get

τ
σ η

λ

σ

∂
∂

= −
∂
∂

− + −
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

η
⎜ ⎟
⎛
⎝

⎞
⎠P

x
a x P

y
yP

t y
P

x
b x P

y
y P

1
2

1

1

2

1

2
.

x y t x y t x y t x y t

x y t x y t

, , , ,
2

, , 2 , ,

2

2
2

, ,
2

2

2
2

, ,

( )

( )
�

(38)

The initial condition for equation (38) is ( ) ( ) ( )δ=P x t P x y t, ; 0 , ; 0x y t, , . In addition, there 
is a boundary condition ( )τ =P x y, , 0; 0x y t, ,  for τ> 0. The Fokker–Planck equation (38) 
can be obtained from the coupled SDEs:

τ= +τ τ τ τx a x b x Wd d d ,( ) ( )� (39)

σ η
λ

τ σ= + − + ′τ τ τ τ⎜ ⎟
⎛
⎝

⎞
⎠y y y Wd 1

2
d d ,2

� (40)

τ=τ
τ
ηt
y

d
1

d .
2� (41)

Discretizing the internal time τ with the step τ∆  and using the Euler–Maruyama 
approximation for SDEs (39) and (40), we get

( ) ( )τ τ ε= + ∆ + ∆+x x a x b x ,k k k k k1� (42)

σ η
λ

τ σ τ ξ= + + − ∆ + ∆+ ⎜ ⎟
⎛
⎝

⎞
⎠y y y y1

2
,k k k k k1

2
� (43)

τ
= +

∆
η+t t
y

.k k

k

1 2� (44)

Equations (42)–(44) provide the numerical method for solving coupled SDEs (22) and 
(23). One can interpret equations (42)–(44) as an Euler–Maruyama scheme with a vari-

able time step /τ∆ = ∆ ηt yk k
2  that adapts to the coecients in the SDEs. As a conse-

quence of the introduction of the internal time the increments of the real, physical, time 
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t become random. To get the discretization of time with fixed steps the signal generated 
in such a way should be interpolated.

As an example, let us solve the equations

γ= − +η ηx y x t y Wd d d ,t t t t t
2

� (45)

⎜ ⎟
⎛
⎝

⎞
⎠σ η
λ

σ= + − + ′η η+ +y y t y Wd 1
2

d d .t t t t
2 2 1 1

� (46)

For the stochastic variable y we assume reflective boundaries at =y ymin and =y ymax. 
In this case the coecients a(x) and b(x) in equation (22) are ( ) γ= −a x x and b(x)  =  1, 
leading to the Gaussian steady-state PDF of x,

γ
π

= γ−p x e .x
2( )� (47)

The quantity ηy2  in equation (45) represents a fluctuating relaxation rate.
Comparison of the numerically obtained steady-state PDF and the PSD with ana-

lytical expressions for the system of SDEs (45) and (46) with η = 1 and λ = 1 is pre-
sented in figure 1. The typical signal xt generated by equations (45) and (46) is shown 
in figure 1(a). As one can see, the signal exhibits a structure consisting of the periods of 
slow and fast fluctuations. The fast fluctuations correspond to the peaks or bursts of the 
stochastic variable y. Note, that due to a large dierence between the slowest and fast-
est fluctuation rates the signal in the periods of fast fluctuations in figure 1(a) visually 
resembles white noise. However, the actual signal changes according to SDE (45), the 
periods of fast fluctuations are similar to the periods of slow fluctuations compressed 
in time. Analysis of nonlinear SDEs similar to (46), performed in [14], reveals that 
the sizes of the bursts are approximately proportional to the squared durations of the 
bursts. The distributions of burst and inter-burst durations have power-law parts, with 
the numerically estimated power-law exponent of the PDF of the inter-burst durations 
approximately equal to  −3/2. Intermittent behavior, similar to the behavior shown in 
figure 1(a), can be connected with 1/f noise. For example, it is known that intermittent 
behavior in iterative maps at the edge of chaos can lead to 1/f noise [47]. In figures 1(b) 
and (c) we see a good agreement of the numerically calculated steady-state PDFs of the 
stochastic variables x and y with the analytical expressions. The PSD of the signal xt is 
shown in figure 1(d). Numerical solutions of the equations confirm the presence of the 

frequency region for which the power spectral density has / βf1  dependence with β = 1.

4. More general form of equations

Coupled nonlinear SDEs (22) and (23) exhibit the separation between the magnitude 
of the fluctuations of the signal xt and the rate of fluctuations. The steady-state PDF 
of the signal is determined only by the coecients a(x) and b(x) in equation  (22), 
whereas equation (23) describes the fluctuating rate that does not depend on the signal. 
However, equations (22) and (23) are not the most general form of coupled SDEs that 
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are allowed by scaling properties required to get a / βf1  spectrum. For completeness, in 
this section we will consider a more general form of equations.

In general, scaling of time t in the transition probability can lead to scaling of both 
x and y, therefore instead of equation (6) in this section we will consider a more general 
scaling property of the transition probability:

( ) ( )| = |′ ′ ′ρ ρ ρ µ+a P a x ay t a x ay P x y a t x y, , , , 0 , , , , , 0 .1
� (48)

We also assume a scaling property of the steady-state PDF similar to the scaling prop-
erty (48) of the transition probability:

( ) ( )∼ρ λ−P a x ay a P x y, , .0 0� (49)

Here, μ, ρ and λ are the scaling exponents. From equation  (49) it follows that the 
steady-state PDF should have the form

( ) ( )= ρ λ− −P x y p xy y, ,0� (50)

where ( )⋅p  is an arbitrary function. Using equations (4), (48) and (49) and performing a 
change of variables we obtain

( ) ( ) ( )∫ ∫= |′ ′ ′ ′ ′C at x y x y xx P x y P x y at x yd d d d , , , , , 00� (51)

Figure 1.  (a) Typical signal x generated by equations  (45) and (46). Reflective 
boundaries at ymin and ymax have been used for equation (46). (b) The PDF of the 
signal intensity. The dashed (green) line shows the Gaussian curve. (c) The PDF 
of the stochastic variable y. The dashed (green) line shows the power-law with the 
exponent  −1. (d) The PSD of the signal x. The dashed (green) line shows the slope 
f  −1. Parameters used are η = 1, λ = 1, =y 1min , =y 1000max , γ = 1 and σ = 1.
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( ) ( )∫ ∫∼ |′ ′ ′ ′
λ
µ

ρ
µ µ

ρ
µ

ρ
µ µ

ρ
µ µ

+
x y x y xx a P a x a y a P a x a y t a x a yd d d d , , , , , 00

1 1 1 1
� (52)

( ) ( )∫ ∫∼ |′ ′ ′ ′
λ ρ
µ

− −
a u v u v uu P u v P u v t u vd d d d , , , , , 0 .

1 3

0� (53)

Therefore, the autocorrelation function has the scaling property (3) required to get / βf1  
PSD, with the exponent β given by equation

β
λ ρ
µ

= +
− −

1
1 3

.� (54)

In this case we obtain pure 1/f noise when λ ρ= +1 3 .
To get the scaling property (48) of the transition probability, we will consider the 

following coupled Itô SDEs:

= +ρ η ρ ρ η ρ− + − +x a x y y t b x y y Wd d d ,t t t t t t t t
2( ) ( )� (55)

= + ′ρ η ρ η− + − +y f x y y t g x y y Wd d d .t t t t t t t t
2 1 1( ) ( )� (56)

Here, Wt and ′Wt are standard Wiener processes. Note, that equations (55) and (56) do 
not have the most general form compatible with the scaling property (49), because in 

general both noises Wt and ′Wt can aect both stochastic variables x and y. However, for 
simplicity we will not consider the most general case. One can see that equations (55) 
and (56) indeed lead to the scaling of transition probability (48). Changing the vari-
ables x and y in equations (55) and (56) to the scaled variables = ρx a xs  and =y ays  or 
introducing the scaled time = ηt a t

s
2  and taking into account the property of the Wiener 

process = ηW d a Wd dt ts , we get the same resulting equations. Therefore, the change of the 

time scale is equivalent to the corresponding change of scale of the variables x and y, 
according to equation (48) with the scaling exponent µ η= 2 .

We will determine the connection between the coecients ( )⋅f  and ( )⋅g  by requiring 
the steady-state PDF of the form (50). The Fokker–Planck equation corresponding to 
the SDEs (55) and (56) is

( ) ( )

( ) ( )

∂
∂

= −
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

η ρ ρ ρ η

η ρ ρ ρ η

+ − − +

+ − − +

t
P y

x
a xy P

y
f xy y P

y
x
b xy P

y
g xy y P

1

2

1

2
,

2 2 1

2 2
2

2
2

2

2
2 2 2

�
(57)

therefore, the steady-state PDF P0(x, y) is the solution of the equation

−
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

=η ρ ρ ρ η η ρ ρ ρ η+ − − + + − − +y
x
a xy P

y
f xy y P y

x
b xy P

y
g xy y P

1

2

1

2
0.2 2 1 2 2

2

2
2

2

2
2 2 2( ) ( ) ( ) ( )

�

(58)
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Equation (58) can be written in terms of the components of the probability current

( ) ( ) ( )= −
∂
∂

η ρ ρ η ρ ρ+ − + −J x y y a xy P y
x
b xy P,

1

2
,x

2
0

2 2 2
0� (59)

= −
∂
∂

ρ η ρ η− + − +J x y f xy y P
y
g xy y P,

1

2
.y

2 1
0

2 2 2
0( ) ( ) ( )� (60)

Inserting steady-state PDF (50) into equations (59) and (60) we get

( ) ( ) ( ) ( ) ( )= −
∂
∂

η ρ λ ρ ρ ρ ρ ρ+ − − − − −⎡
⎣⎢

⎤
⎦⎥J x y y a xy p xy y

x
b xy p xy,

1

2
,x

2 2
� (61)

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

η
λ
ρ

=

× − − + + +
′ ′

η λ ρ ρ

ρ

ρ
ρ

ρ

ρ

ρ

ρ

+ − − −

−

−
−

−

−

−

−

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥

J x y y g xy p xy

f xy

g xy
xy

g xy

g xy

p xy

p xy

,

1
2

1

2
.

y
2 1 2

2

� (62)

Assuming that the x-component of the probability current Jx should vanish at the 
boundaries that are not parallel to the x axis, then the expression in the square brack-
ets in equation (61) should be zero for dierent values of y. Therefore, the function ( )⋅p  
should be a solution to the dierential equation

( ) ( ) ( ) ( )− =a z p z
z
b z p z

1

2

d

d
0.2

� (63)

This equation means that the function ( )⋅p  in equation (50) is determined only by the 
coecients of equation  (55). Similarly, assuming that the y-component of the prob-
ability current Jy should vanish at the boundaries that are not parallel to the y axis 
then the expression in the square brackets in equation (62) should be zero for dierent 
values of y. Therefore, the coecient ( )⋅f  is related to the coecients ( )⋅a , ( )⋅b  and ( )⋅g  
via the equation

( ) ( )
( )

( )
( )

( )η
λ
ρ= + − − +

′ ′⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥f z z

g z

g z

p z

p z
g z1

2

1

2
.2

� (64)

Let us consider some particular choices of the coecients ( )⋅f  and ( )⋅g  in equa-
tion (56). According to equation (64), constant coecient ( ) σ= =g z const. leads to

( ) ( )
( )

( )
( )

σ η
λ
ρ= + − − −

′⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥f z z

a z

b z

b z

b z
1

2
.2

2� (65)

Here, we used equation (63) for the function p(z). When

+ =
′ ′g z

g z

p z

p z

1

2
0,

( )
( )

( )
( )� (66)

From equation (64) it follows that the stochastic variable x enters into the coecients 
( )⋅f  and ( )⋅g  only as an argument of the function ( )⋅p . The solution of equation (66) is 
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( ) ( ) /σ= −g z p z 1 2. Consequently, ( ) ( / ) ( )σ η λ= + − −f z p z1 22 1 and equations (61) and (62) 
take the form

= +ρ η ρ ρ η ρ− + − +x a x y y t b x y y Wd d d ,t t t t t t t t
2( ) ( )� (67)

( ) ( )
σ η

λ σ
= + − + ′

η

ρ

η

ρ

+

−

+

−
⎜ ⎟
⎛
⎝

⎞
⎠y
y

p x y
t

y

p x y
Wd 1

2
d d .t

t

t t

t

t t

t
2

2 1 1

� (68)

As an example, let us take the SDE (55) describing the fluctuations of the signal x:

= − + νx y x t y Wd d d .t t t t t� (69)

The stochastic variable y in equation (69) represents a fluctuating relaxation rate. The 

value of ν = 1

2
 corresponds to the fluctuation-dissipation theorem. However, there are 

some cases where the fluctuation-dissipation theorem cannot be applied and other 
values of ν are possible. The violation of the fluctuation-dissipation theorem has been 
found in the finite dimensional spin glasses [48] and in the systems out of equilibrium 
[49]. The theoretical study of motion of colloidal particles being confined in a harmonic 
well and dragged by a shear flow also shows violation of the fluctuation-dissipation the-

orem [50]. Comparing equation (69) with equation (55) we have a(z)  =  −z, b(z), η = 1

2
, 

ρ ν= − 1

2
. Using equations (56) and (65) we obtain the second equation:

σ
λ

ν σ= − + − + ′ν−⎜ ⎟
⎛
⎝
⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟y y x y t y Wd

3

2 2

1

2
d d .t t t t t t

2 1 2 2 2
3
2� (70)

According to (54), equations (69) and (70) generate the signal xt with power-law behav-

ior / βf1  of the PSD in a wide range of frequencies, with the exponent ( )β λ ν= + −3
1

2
.

As an another example let us consider the SDE (55) with the coecients a(z)  =  0 
and ( ) =b z const:

= η ρ+x by Wd d .t t t� (71)

To get a stationary solution of the corresponding Fokker–Planck equation, equa-
tion (71) should be taken together with boundaries limiting the region of diusion of 
stochastic variable x. For such coecients a(z) and b(z) the solution of equation (63) is 

( ) =p z const.. Equations (56) and (65) yield the second SDE

σ η
λ

σ= + − + ′η η+ +⎜ ⎟
⎛
⎝

⎞
⎠y y t y Wd 1

2
d d .t t t t

2 2 1 1
� (72)

We see that in this case the second equation does not depend on x.

5. Discussion and conclusions

Coupled Langevin equations have been used to describe many physical phenomena. 
For example, hot-carrier transport in semiconductors has been modeled by linearly 
coupled Langevin equations [51]; nonlinear coupled Langevin equations have been used 
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to study pressure time series [52]. One nonlinear SDE with fluctuating parameters can 
be interpreted as a pair of coupled SDEs [53]. Equations with a time varying parameter 
being a Gaussian colored noise (Ornstein–Uhlenbeck process) have been used to model 
wind farm power production output dependence on wind velocity [54] and atmospheric 
turbulence in radio signal detection [55]. In this paper we study nonlinear SDEs where 
the fluctuating parameter enters both diusion and drift coecients as a power-law 
function.

Coupled SDEs are also used in finance and econophysics for stochastic volatility 
models [56]; some of those models correspond to equations presented in section 4. For 
example, SDE (71) and SDE (72) with an additional drift term causing exponential 

restriction of the steady-state PDF, when the parameters η and ρ take values η = − 1

2
, 

ρ = 1 have the form of the Heston model: [57]

=x y Wd d ,t t t� (73)

σ λ σ= − − + ′
⎛

⎝
⎜

⎞

⎠
⎟y

y

y
t y Wd

1

2
1 d d .t

t
t t

2

max
� (74)

In this model the stochastic variable x represents the logarithm of the price and the 
stochastic variable y is the volatility.

To illustrate the situation that can be described by the proposed SDEs (22) and 

(23), let us consider the case with η = − 1

2
. Equations (22) and (23) then become

= +x a x
y
t b x

y
Wd

1
d

1
d ,t t

t
t

t
t( ) ( )� (75)

( )σ λ σ= − + ′y t y Wd
1

2
1 d d .t t t

2
� (76)

The quantity y−1 in equation (75) has the meaning of the rate of change, whereas y has 
the meaning of the time interval. According to equation (54), the PSD of the signal xt 
has power-law behavior for a wide range of frequencies with the power-law exponent

β λ= −2 .� (77)
We get 1/f noise when λ = 1. Assuming that the coecients a(x) and b(x) are suciently 
small, we can take τ∆ = 1 in the numerical solution scheme (42)–(44), leading to the 
discrete equations

ε= + ++x x a x b x ,k k k k k1 ( ) ( )� (78)

σ λ σξ= + − ++ ⎜ ⎟
⎛
⎝

⎞
⎠y y 1

1

2
1 ,k k k1

2( )� (79)

= ++t t y .k k k1� (80)
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In particular, when λ = 1 and the signal x have a 1/f spectrum, equation (79) becomes 

( )σξ= ++y y 1k k k1 . We can interpret equations (78)–(80) as follows: equations (79) and 
(80) describe a process consisting of discrete events occurring at time moments tk. The 
inter-event duration is random and equal to the stochastic variable yk. This inter-event 
duration slowly changes with time in such a way that the duration of the next time 
interval is equal to the duration of the previous interval multiplied by some random 
factor close to 1. The signal xk changes only during the occurrence of the events at time 
moments tk and this change is described by equation (78).

Equation (76) results in the steady-state PDF ( )P yt0  of the stochastic variable yt 
having a power-law form with the exponent λ− . The PDF ( )P yk k  of a sequence of yk 
values generated according to equation (79) diers from ( )P yt0 . When yk changes slowly 

with the index k, the PDF ( )P yk k  should satisfy the equation  ( ) ( )
⟨ ⟩

≈P y P yk
y

y k k0
k

k

, because 

going back from discrete equations to the continuous time one should assume that each 
value yk lasts for the duration also equal yk. Consequently, the PDF ( )P yk k  is also a 
power-law with the exponent λ− ′, λ λ= +′ 1. Thus, if λ is close to 1 then λ′ is close to 2.

There are many processes in nature with the power-law inter-event time distribu-
tion. For example, many human-related activities show power-law decaying inter-event 
time distribution with exponents usually varying between 1 and 2 [58–61]. Power-law 
distribution of inter-event times has been observed in neuron-firing sequences [62] and 
in the timings of earthquakes [63, 64]. In addition, power-law decaying inter-event 
time distribution is often accompanied by the power-law decaying autocorrelation 
function [65].

Let us further assume that the events are due to jumps over the potential barrier 
of the height v. In many physical systems the escape rate exponentially depends on the 
barrier height; therefore we take =y ev. Changing the variables in equations (75) and 
(76) we get the SDEs

= +− −x a x t b x Wd e d e d ,t t
v

t
v

t
/2t t( ) ( )� (81)

σ λ σ= − + ′− −v t Wd
1

2
e d e d .t
v v

t
2 /2t t� (82)

Similar to equations (78)–(80), a numerical solution scheme with the variable time step 
∆ =t ek

vk yields discrete equations

ε= + ++x x a x b x ,k k k k k1 ( ) ( )� (83)

σ λ σξ= − ++v v
1

2
,k k k1

2
� (84)

= ++t t e .k k
v

1
k� (85)

From equation (84) we see that the potential v performs a simple random walk with a 
constant drift. When the potential has the value vk, the time interval that one needs to 
wait till the next event is evk. Both signal x and the potential v change during the jump 
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at time moment tk. One can also consider the case where the time interval between 
events is random, with the average equal to evk. We can expect that the randomness of 
the time interval should not change the PSD of the signal xt at low frequencies.

In conclusion, we have proposed a pair of coupled nonlinear SDEs (22) and (23) that 

generate the signal xt having the power-law PSD ( )∼ β−S f f  in an arbitrarily wide range 
of frequencies. The exponent β is given by equation (24). In contrast to a single non-

linear SDE generating β−f  noise, the signal xt generated by the proposed pair of SDEs 
can have almost arbitrary steady-state PDF. The steady-state PDF of the signal xt is 
determined only by the coecients a(x) and b(x) of the first SDE (22). One can interpret 
the first equation (22) as describing the fluctuations of the signal, with the fluctuating 
rate of change, described by the second equation (23). Thus, the proposed SDEs exhibit 
a separation between the magnitude of the fluctuations of the signal xt and the rate of 
fluctuations. We expect that the proposed equations will be useful for the description of 
1/f noise in various physical and social systems. In addition, the equations can be used 
for numerical generation of 1/f noise with the desired steady-state PDF of the signal.
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