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Notations and conventions

• Bold letters indicate multiple quantity structure, which may vary from case to case. For
example, τ denotes a triple of Pauli matrices (τ1, τ2, τ3), r denotes the spatial vector ~r and
U denotes the unitary field. Note that sometimes we do not follow this convention for the
coordinate q, momentum p and the variables α or κ in order to keep expressions more
compact.

• Calligraphic letters likeL,M,V ,H, etc. (with the exception of I andO) denote densities.

• The appearance of carets (R̂, L̂, Ĵ , etc.) indicate an operator or its component. Note that
we do not follow this convention for the coordinate q and momentum p operators in order
to keep notations simpler. This is also true for operators which are functions of q only.

• The dot over a symbol (q̇, α̇, etc.) denotes the full time derivative.

• The metric tensor gµν is g00 = 1, g0,i = 0, gi,j = −δi,j for spatial indices i, j = 1, 2, 3.
The derivative ∂µ ≡ ∂

∂xµ
has components (∂/∂t,−∇). The sign of totally anti-symmetric

tensors (Levi-Cevita symbols) εijk and εµνσγ are fixed by ε123 = −ε123 = 1 and ε0123 =
−ε0123 = 1, respectively.

• The isovector of Pauli isospin matrices τ in Cartesian coordinates have a form τ1 =
(

0 1
1 0

)
,

τ2 =
(

0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

• The symbol ∗ is a complex conjugation mark.

• The cross over some operators
+

A denotes hermitically conjugate functions and is equiva-
lent to notation A†.

• SU(2), SU(3), SO(3), SU(N), etc. denotes the symmetry groups.

• Greek letters α, β, γ . . . are the summation indices when used as upper indices. They
also represent Euler angles. The middle Greek letters λ, µ indicate representation of the
SU(3) group, whereas θ, ϕ represent angles of the spherical coordinates. The Latin letters
a, b, c, d . . . are the summation indices usually. Minuscule letters j, l, m, n . . . indicate
parameters of SU(2) group, whereas capital letters L, I, M,Z . . . represent parameters of
SU(3) or SO(3) groups. The index t denotes the time component.

• The symbol 1 denotes the unit matrix.

• The curly brackets
{

,
}

and the square brackets
[
,

]
denote the anti-commutator and the

commutator, respectively.
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8 Notations and conventions

• There is the assumed summation convention under the repeated (dummy) indices. The

symbol
(λ,µ)∑

indicates summation over SU(2) group representations, which are included in
(λ, µ) irreducible representation.
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Preface
The first suggestion that the ordinary proton and neutron might be viewed as topological solitons
was made by British physicist T.H.R. Skyrme in the sixties of last century. In his papers [1, 2]
he has described nucleons as a liquid of pions by using a Lagrangian in which only two phe-
nomenological constants were incorporated. The technology of the quantum field theory in the
sixties was not sufficiently advanced to treat solitons and it took almost twenty years before the
ideas of Skyrme were revived by Witten [3] and Balachandran et al. [4]. The first demonstra-
tion that the Skyrme model could fit the observed properties of the baryons to an accuracy of
about 30% was made by Adkins et al. [5]. The model was subsequently refined and extended
in many ways. From phenomenological applications in elementary particle and nuclear physics
the Skyrme model was applied to study the quantum Hall effect [6] and Bose-Einstein conden-
sates [7] as well as in cosmology [8].

The equations of solitons are highly nonlinear and almost always are not solvable analytically,
while the direct quantization of the solitonic solutions leads to rather complicated equations. In
our work we use the quantization in “zero modes” or “collective coordinate” approach [5, 9],
which leads to a consistent quantum description. Using the canonical quantization we consider
the Skyrme Lagrangian quantum mechanically ab initio. In this case the generalized coordinates
and velocities do not commute. The canonical quantization leads to quantum corrections, which
stabilize the soliton solutions. To obtain Euler-Lagrange equations, that are consistent with the
canonical equation of motion of the Hamiltonian, the general method of quantization on a curved
space developed by Sugano et al. [10] is employed.

The Skyrme model is usually formulated in the fundamental representation of SU(2) group,
where the field is a unitary 2 × 2 matrix. The model can also be generalized to unitary fields,
that belong to general representations of the SU(2) [11–13], along with a demonstration that the
quantum corrections are representation dependent.

The quantum SU(3) Skyrme model was generalized to arbitrary representation as well [14].
The algebraic structure of the SU(3) group is more plentiful, consequently it is possible to use
various classical solutions for the quantization. The choice of the noncanonically embedded
soliton is explored in Ref. [15]. The formalism of the noncanonical embedded soliton can be
expanded for the description of multisolitonic states by using rational map approximation. These
questions are considered in this dissertation.

The main goals of the research work

1. To investigate representation dependence of the canonically quantized SU(3) Skyrme model.

2. To explore the SU(3) Skyrme model with a noncanonically embedded SU(3) ⊃ SO(3)
soliton.

3. To investigate the SU(3) Skyrme model with the noncanonically embedded SU(3) ⊃
SO(3) soliton by using the rational map approximation with the baryon number B ≥ 2.

11
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Scientific novelty

This work exposes new possibilities of the extended basic SU(3) Skyrme model to general ir-
reducible representations (λ, µ). The strict canonical quantization of the model yields from
representation depended Lagrangian density, which can be treated as different solitons, conside-
ring different representations. The classical limit of these quantum Lagrangian densities is the
usual SU(3) Skyrme Lagrangian density. A new, nontrivial dependence in Wess-Zumino and the
symmetry breaking terms on the representation was observed.

The new ansatz for the Skyrme model is introduced. It is defined in the noncanonical SU(3) ⊃
SO(3) bases. Quantization of the soliton leads to new expressions of the soliton momenta of
inertia and quantum mass corrections. The rational map approximation for the Skyrme model
with noncanonically embedded ansatz is applied. This leads to five different quantum moments
of inertia and new quantum mass corrections. The explored ansatz can be used in nuclear physics
to describe a light nucleus.

Generalizations considered in the work are significant and can be extended to other models
and theories.

Thesis statements

1. Different Lagrangian and Hamiltonian operators of the quantum SU(3) Skyrme model
for different representations (λ, µ) were found. The explicit dependence on the repre-
sentation of the Wess-Zumino term, the symmetry breaking term and the quantum mass
corrections were derived in the framework of the canonical quantization. The dependence
on the irreducible representation (λ, µ) of the SU(3) group can be treated as a new discrete
phenomenological parameter of the model.

2. A new version of the Skyrme model is obtained introducing the new ansatz, which is de-
fined in the noncanonical SU(3) ⊃ SO(3) base. This is confirmed by the new expressions
of the soliton momenta of inertia and the quantum mass corrections.

3. The topological solitons carrying baryon number B ≥ 2 can be described using the ra-
tional map approximation ansatz, which is a noncanonically embedded SU(3) ⊃ SO(3)
soliton. The canonical quantization leads to five different quantum moments of inertia and
new quantum mass corrections.

Approbation of the results

Main results of the research described in this dissertation have been published in 3 scientific
papers and a few talks in the international conferences. A detailed list of publications is given in
previous section.

Personal contribution of the author

The author of the thesis performed many analytical derivations of the equations (shown in chap-
ters II – IV and the appendices) by using “pencil” and majority calculations by using computer
algebra system MATHEMATICA.



Preface 13

Manuscript organization

The manuscript is organized into four chapters and four appendices, containing some auxiliary
expressions connected with the analyzed problems in the dissertation. The chapters have short
introductions in the beginning, research of the problem and summaries at the end. It is useful to
describe the purpose of each chapter. Chapter I contains the mathematical formulation and the
physical motivation of the Skyrme model at the background level. This chapter contains no new
results. Chapter II describes the representation dependence of the canonically quantized SU(3)
Skyrmion. This chapter includes results of Ref. [14]. The formulation of the SU(3) Skyrme
model with the noncanonically embedded SU(3) ⊃ SO(3) soliton is presented in Chapter III
following Ref. [15]. The rational map approximation for the Skyrme model with the noncano-
nically embedded ansatz is explored in Chapter IV.
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I. Introduction to Skyrme model

1. Historical remarks
While deep inelastic electron-scattering experiments at high energy show the baryons to consist
of quarks, no such simplicity is revealed by the low energy observables of the baryons. In fact the
low energy structure of the baryons appears to represent the full complexity of the “vacuum” of
quantum chromodynamics (QCD), a description of which is entirely outside of the realm of the
extant perturbative methods of QCD. On the other hand, description of the baryon structure and
interactions on the basis of effective chiral meson models has been developed. The challenge
has therefore been to find a sound basis in QCD for this effective mesonic description. The
main task was to develop non-perturbative approaches to QCD, which could replace the basic
dynamical quark and gluon degrees of freedom by observable meson fields.

When the original fermion theory (QCD) is replaced by an effective boson theory, the fermions
(baryons) have to be described as soliton solutions, which are topologically stable, with a con-
served integer quantum number that is to be interpreted as the baryon number [3, 16]. The only
fundamental symmetry that survives the procedure of replacing the fundamental fields by the
effective meson fields is the chiral symmetry of QCD. Various models were created based on
the nonlinear chiral meson field theory. Their topological soliton solutions can be quantised as
fermions. The simplest of these models is the Skyrme model proposed by T.H.R. Skyrme in the
sixties of last century [1].

The Skyrme model is the simplest extension of the nonlinear σ-model [17] that has stable
soliton solutions with an integral baryon number. It represents a theory for an interacting pion
field, in which the interactions are introduced through a chirally symmetric constraint involving
an auxiliary scalar meson field, σ. Although a bosonic representation of QCD should involve
infinitely many meson fields, one expects only the lightest mesons to be of quantitative signi-
ficance for the low energy properties of the baryons (and nuclei in general). Hence a natural
starting point for the description of the low energy behaviour of the baryons is to use the Skyrme
model and its immediate generalizations, which incorporate vector meson fields [18–20]. The
small number of parameters of the Lagrangian model are in principle obtainable from QCD, but
in practice they have to be chosen to fit some of the observables.

The technology of the quantum field theory in the sixties was not sufficiently advanced to treat
solitons, so it took almost twenty years before the ideas of Skyrme were revived by Witten [3]
and Balachandran et al. [4]. The first demonstration that the Skyrme model, in spite of its
simplicity with only two parameters in the Lagrangian density, can provide a description of
the static properties of the non-strange baryons was made by Adkins et al. [5]. The predicted
observables were found to differ from their empirical values by less than 30%. The model
was subsequently refined in many ways. The correct asymptotic behaviour of the soliton field
was achieved by an introduction of a chiral symmetry breaking mass term [21]. Alternative
and augmented forms for the basic Lagrangian density have been studied [22, 23]. In addition,
different generalizations of the Skyrme model that contain explicit vector meson fields have

15



16 I. Introduction to Skyrme model

been developed [18–20] and applied to the analysis of baryon structure [24]. In general the
refinements of the topological soliton model have led to improved predictions of the low energy
baryon observables, although certain systematic discrepancies remain, among them the constant
underprediction of the axial-vector coupling constant.

One way of looking at these systematic quantitative shortcomings of the topological soliton
model is to view the model as the zero-size limit of the chiral bag with an external meson
field [25]. By replacing the central region by an explicit quark bag, which is stabilised by the
external soliton field, the quark colour number Nc appears in the formulae as a parameter. Then
it becomes obvious that the pure soliton model can be viewed as a large-Nc limit of the chiral bag
model. In particular, it becomes clear that a factor 5/3 in the axial coupling constant is lost in the
pure soliton limit, which is probably the main reason for the underprediction of this observable
in the soliton model [26].

The study of the static baryon observables in the two-phase chiral bag model has also proven
to be very useful because it has led to the conclusion that these observables are insensitive to the
bag size [27]. This is sometimes referred to as the “Cheshire cat” principle, the essential content
of which is that the low energy properties of the baryons can be described in equivalent ways in
terms of quarks and gluons or meson fields, making the choice of language one of convenience
rather than one of essence. In practice, the consistent treatment of the complete chiral bag model
is rather subtle. Once the baryon number is divided, with a fraction carried by the soliton field,
the sea quark contributions must be included as the valence quarks alone always give an integer
baryon number [28]. A further complication is due to the need to rotate the soliton field and the
quark bag in a consistent way for the projection onto states of good spin and isospin [27].

These and other difficulties associated with the use of the complete chiral bag model makes
it natural to lean heavily on the Cheshire cat principle and to exploit all reasonable possibilities
of refining the pure topological soliton model before resorting to the two-phase model. This ap-
proach has in fact been fairly successful. Using versions of the model that contain explicit vector
meson fields one obtains a fairly good description not only of the static baryon observables, but
of the baryon form factors as well [24].

The application of the topological soliton model to the interacting two-nucleon system was
also proven to be extremely fruitful. While the need for mathematical approximations has ham-
pered the study of the interaction operators at short distances, sufficiently accurate approxima-
tion methods have permitted the study of their long-range behaviours. Thus, many important
features of the nucleon-nucleon interaction are predicted by the simplest original version of the
model. Among these are the one-pion-exchange interaction [2], the short-range repulsion [26]
and the isospin-dependent spin-orbit interaction [29].

The Skyrme model can also be used to study elementary particle dynamics, e.g. pion-nucleon
scattering. To describe pion-nucleon scattering in the Skyrme model, an external pion field has to
be coupled to the soliton field. This can be done in several formally different ways [30–32]. The
simplest method is that of Schnitzer [30,33], which leads to the usual Weinberg Lagrangian [34]
for the pion-nucleon system in the quadratic approximation. Studies of pion-nucleon scattering
amplitudes using the Skyrme model have led to interesting relations between different partial
wave amplitudes, which appear to be satisfied empirically [31, 32].

The generalization of the Skyrme model from the SU(2) to the SU(3) flavor symmetry for a de-
scription of the strange hyperons was proven to be very interesting. The straightforward method
of incorporation of strange hyperons to the model corresponds in the quark-model language to
treating the strange (s) quark on the same footing as the non-strange (u, d) quarks. This leads to a
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description of the hyperons in terms of the SU(3) collective coordinates, in which both the kaons
and the pions are massless in the first approximation. Although first attempts along these lines
seemed to be successful [35, 36] but it latter appeared that the direct extension of the model,
in which the isospin group is enlarged and the strangeness is treated in the same way as the
isospin, does not give a quantitatively acceptable description of the hyperon spectrum [37, 38].
An alternative approach is the bound-state model due to Callan and Klebanov [39], in which
the strange hyperons are described as bound states of the SU(2) solitons (skyrmions) and the
strangeness-carrying kaons. This approach leads to an acceptable description of the spectrum
of the stable hyperons [40, 41], and to the values of their magnetic moments that differ from the
empirical ones by less than 20% [42, 43]. This model for the hyperons has intrinsic interest as
well, as it corresponds to an exotic atom where bosonic kaons with a half-integer charge and
spin are in the bound-state orbits.

A new feature in all SU(3) extensions of the Skyrme model is the fact that the Wess–Zumino
interaction [3,44,45] contributes to the energy. As this interaction is linear in its time derivative,
it can distinguish positive and negative frequencies in such a way that for a positive baryon
number only the states of the negative strangeness are bound. In the SU(2) Skyrme model, the
Wess–Zumino interaction is (for the same reason) essential in that it, causes the state vector of
the system to change its sign under a spatial rotation by 360◦ if the number of colours is odd [3].
However there is no contribution to the energy in this case.

The extension of the model to the SU(N) group [46] represents the common structure of the
Skyrme Lagrangian. Most of the studies involving the Skyrme model have concentrated on the
SU(2) version of the model and its embeddings into the SU(N). However, considering SU(N)
for N ≥ 3, one has to bear in mind that the Skyrme model is not unique. In fact, there are two
possible versions of the fourth-order Skyrme term. Another way is to be studied model based on
the alternative form of the fourth-order Skyrme term [47].

Very little attention has been paid to field configurations describing many skyrmions in the
SU(N) models which were not embeddings of the SU(2) skyrmions. Although some work has
been done earlier [4, 48] the real progress has only been made since Houghton, Manton and
Sutcliffe had produced their harmonic map antsatz [49]. This ansatz, when generalized to the
SU(N) models [50], has lead to the construction of whole families of solutions of the SU(N)
Skyrme models having spherically symmetric energy densities [51]. Moreover, it also presents
field configurations, which although are not solutions of the equations, are close to them – thus
providing us with good approximates to other solutions [50].

2. Nonlinear sigma model

The low energy properties of QCD mostly relevant to nuclear physics are dominated by the light
quarks u, d and s. The masses of the u- and d-quarks (∼ 10 MeV) are small compared to the QCD
cutoff (∼ 200 MeV). If these masses are neglected, the QCD Lagrangian becomes invariant un-
der SU(2)L ⊗ SU(2)R chiral transformations. The absence of the parity doublets in the physical
spectrum suggests that this symmetry is spontaneously broken to the SU(2)V vector symmetry
via the Nambu-Goldstone mechanism, with the appearance of 3 massless pseudoscalar excita-
tions: π0, π±. In other words the QCD ground state carries an axial charge. As a result pions
can decay into the vacuum.

In the absence of the quantitative understanding of non-perturbative QCD an alternative is
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provided at low energy by effective chiral descriptions of which the nonlinear σ-model consti-
tutes the starting point. While QCD is undoubtedly a fundamental theory of hadrons, the chiral
field models are specifically designed approximations to hadron dynamics, suited for low energy
treatment.

The essence of chiral symmetry and the relative success of current algebra lies in the fact that
the vacuum state in QCD spontaneously breaks the chiral symmetry. If we denote a pion state
of momentum p by |πi(p)〉 and the axial-vector current by Ai

µ(x) then

〈0|Ai
µ(x)

∣∣πj(p)
〉

= ifπpµeipxδij, (I.2.1)

where fπ = 130.7 MeV is the observed pion decay constant and i =
√−1.

Due to the non-perturbative character of QCD in the long wavelength approximation very
little is known about the pion decay constant fπ and the nucleon axial form factor gA from first
principles. There is no doubt that ultimately, lattice gauge calculations will provide a quantitative
understanding of these low energy parameters. Meanwhile, the large Nc limit as advocated by
’t Hooft [52] and Witten [53] is suggestive of an effective mesonic description involving the
dominant chiral degrees of freedom π0, π±, as a substitute to QCD at low energy. Although
Nc = 3 and not infinity, one hopes that this approach will provide the relevant starting lines for
discussing low energy phenomenology. In this spirit the nonlinear σ-model provides a pertinent
script for chiral symmetry breaking, consistent with soft-pion threshold theorems. If we denote
the scalar meson field by σ(x) and the pseudoscalar pion field by π, then the resulting dynamics,
described by

Lσ =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 , σ2 + π2 = f 2

π , (I.2.2)

is manifestly chiral invariant since
(

σ
π

)
corresponds to the (1, 0) representation of

SU(2)L ⊗ SU(2)R ∼ SO(4).
In the trivial vacuum the nonlinear condition (I.2.2) translates into 〈0|σ |0〉 = fπ, which is the

expected limit if one uses the linear σ-model with an infinitely heavy scalar particle (mσ →∞).
To account for the small but non vanishing mass of the pion field in nature, one adds an explicit
chiral breaking term in the form LCb = −cσ. In the trivial vacuum, the pion can be understood
as fluctuations of the σ-field along the valley of the tilted Mexican hat,

LCb = −cσ = −c
√

f 2
π − π2 = −cfπ +

c

2

π2

fπ

+O
(

1

f 3
π

)
. (I.2.3)

Already at this stage we can see that the nonlinear σ model satisfies the basic low energy
requirements solely on the basis of chiral symmetry. It embodies an underlying topological
structure that yields non-perturbative field configurations reminiscent of classical baryons.

To grasp the geometrical intricacies of the nonlinear σ-model, it is instructive to recast it in
the Sugawara form [1, 2]. For that, lets define the unitary 2× 2 quaternion field U(x)

U(x) =
1

fπ

(σ + iτ · π) , (I.2.4)

that transforms as the
(

1
2
, 1

2

)
representation of SU(2)L × SU(2)R,

U(x) → exp(iQL)U exp(−iQR); QL ∈ SU(2)L; QR ∈ SU(2)R. (I.2.5)
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In the quark picture the analogue of U ij is the complex 2 × 2 matrix q−i[(1 − γ5)/2]qj corres-
ponding to pseudoscalar mesons [54]. U(x) ∈ SU(2) whose group manifold is isomorphic to
S3. The left and right currents on S3 are defined to be

Rµ = ∂µUU † → exp(iQL)Rµ exp(iQL), (I.2.6a)

Lµ = U †∂µU → exp(iQR)Lµ exp(−iQR), (I.2.6b)

which show that Rµ (Lµ) is invariant under right (left) chiral transformations. Since det U = 1,
it follows that

∂µ det U = ∂µ exp Tr
(
ln U

)
= Tr

(
Lµ

)
= Tr

(
Rµ

)
= 0. (I.2.7)

It is instructive to note that for a weak pion field Lµ and Rµ reduce to

Lµ ∼ −Rµ ∼ i

fπ

τ · ∂µπ. (I.2.8)

At any fixed time, the 2 × 2 field U(x) defines a map from the three dimensional space R3

onto the group manifold S3, with the natural boundary condition that U(x) goes to the trivial
vacuum 〈0|σ |0〉 = fπ at asymptotically large distances. This ensures that the energy of the
corresponding field configuration is finite and

U(|x| → ∞) = 1 (I.2.9)

implies that R3 is compactified to S3 as all points at infinity in R3 are mapped into one fixed
point in S3. The set of static maps subject to (I.2.9),

U(x) : S3 → S3, (I.2.10)

is known to be non trivial. In other words, at a given time, it is possible to split the set of all
maps into homotopically distinct classes not continuously deformable into each other. These
classes are called the homotopy or Chern-Pontryagin classes. In this case, they constitute the
third homotopy group π3(S3) ∼ Z, where Z is the additive group of integers. It is these integers
that are referred to as winding numbers of the mapping U(x). Since a continuous evolution in
time can be understood as a homotopy transformation, the corresponding winding numbers are
conserved by definition independently of the details of the underlying dynamics.

In order to construct an explicit form of the topological charge B0 in the nonlinear σ-model:

B0 : π3(S3) → Z, (I.2.11)

it is convenient to use the vector representation (1, 0) of SU(2)L ⊗ SU(2)R,

φ0 =
σ

fπ

, φi =
πi

fπ

. (I.2.12)

An elementary surface element in the group manifold is characterized by

d3Σ = εijklφi∂1φ
j∂2φ

k∂3φ
ldx1dx2dx3, (I.2.13)

where (x1, x2, x3) are the corresponding coordinates onR3 obtained by stereographic projection
from S3. Equation (I.2.13) is just the Jacobian associated to the affine transformation S3 → S3.
Hence, the normalized topological density reads

B0 =
1

3!A3

εijklεναβφi∂νφ
j∂αφk∂βφl, (I.2.14)
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where A3 = 2π2 is the surface of S3 in R4 . To rewrite the equation (I.2.14) in terms of (I.2.6),
notice that for a weak pion field, i.e. φ0 ∼ 1/fπ and φi ∼ πi/fπ. We have

B0 =
(−i)3

24π2
εναβ Tr

(
∂ν

(
iτ · π

fπ

)
∂α

(
iτ · π

fπ

)
∂β

(
iτ · π

fπ

))
+O

(
1

f 4
π

)

=− i

24π2
ε0ναβ Tr

(
RνRαRβ

)
. (I.2.15)

This equation follows from the chiral invariance. Notice that B does not vanish if and only if the
3 pion degrees of freedom, π0, π±, are excited. It is rather obvious from the above construction
that

B =

∫

R3

B0dx = winding number. (I.2.16)

The covariant current associated to the topological charge (I.2.15) is given by

Bµ = − i

24π2
εµνβγ Tr

(
RνRβRγ

)
, (I.2.17)

and is conserved almost everywhere in R3 independently of the equations of motion,
i.e. ∂µBµ = 0.

The topological charge (I.2.15) bears some similarities with the monopole and instanton
charges. It follows from the underlying Riemannian structure of the group manifold and is
conserved regardless of the equations of motion. Its form is obtained by an explicit construc-
tion of the isomorphism: π3(S3) ∼ Z . The topological charge has no dual charge, and can be
localized arbitrarily in space since (I.2.15) is not a total divergence.

3. The Skyrme model

So far the nonlinear σ-model has provided a rather economical framework for discussing low
energy phenomenology. Its finite energy configuration space exhibits a nontrivial topological
structure due to the underlying Riemannian geometry of the coset space. As a consequence, there
exist static and finite field configurations other than the trivial vacuum, that are characterized by
conserved topological charges. Unfortunately, these configurations are not energetically stable
in 3 dimensional space according to Derrick’s theorem [55, 56]. Indeed, if U(x) is a static field
configuration solution to the Euler-Lagrange equations associated to

Lσ = −f 2
π

4
Tr

(
RµR

µ
)
, (I.3.18)

which is the Sugawara’s form of (I.2.2), then

E =

∫
dDx

f 2
π

4
Tr

(
∂iU †∂iU

)
. (I.3.19)

A simple rescaling of U(x) in space, i.e. U(x) → U(λx), yields

Eλ = λ2−DE. (I.3.20)
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Equation (I.3.20) clearly shows that for D = 3, the energetically favorable configurations have
zero energy. In other words the finite energy solutions of the nonlinear σ-model are unstable
against scale transformations.

To avoid this collapse, Skyrme added to (I.3.18) a quartic term in the currents Rµ (the Skyrme
term),

LSk = −f 2
π

4
Tr

(
RµR

µ
)

+
1

32e2
Tr

(
[Rµ, Rν ][R

µ, Rν ]
)
. (I.3.21)

Here e is a dimensionless parameter that characterizes the size of the finite energy configurations.
The values of parameters fπ and e are fixed by comparison with the experimental data.

The Euler-Lagrange equation which follows from (I.3.21) is the Skyrme field equation

∂µ

(
Rµ +

1

8f 2
πe2

[
Rν , [Rν , R

µ]
])

= 0, (I.3.22)

which is a nonlinear wave equation for U(x). The Bogomolny construction to simplify (I.3.22)
via saturation mechanism to obtain analytical solutions (a well known procedure for instantons)
cannot be used in this case. A numerical treatment of (I.3.22) is required.

Since the Skyrme term scales like r−4 in the three dimensional space it will prevent the Skyrme
solitons from collapsing to zero size. Indeed, a rescaling in space of any finite energy solution
of (I.3.21) translates to a rescaling in the ground state energy in the form

Eλ = λ2−DE(2) + λ4−DE(4). (I.3.23)

It is straightforward to show that Eλ exhibits a true minimum for D ≥ 3, i.e.,

dEλ

dλ
= 0 → E(2)

E(4)

= −D − 4

D − 2
, (I.3.24a)

d2Eλ

dλ2
> 0 → 2(D − 2)E(2) > 0 . (I.3.24b)

In particular for D = 3 the equation (I.3.24a) shows that E(2) = E(4), as expected from the virial
theorem. Due to the underlying geometry, the energy is bounded from below by the topological
charge. Indeed, for a static configuration

E =

∫
d3x

(
−f 2

π

4
Tr

(
R2

i

)
− 1

32e2
Tr

(
[Ri, Rj]

2
))

. (I.3.25)

A lower bound to (I.3.25) can be obtained using the following inequality,
∫

d3x Tr

(
f 2

π

2
R2

i +
1

8e2
εijk[Rj, Rk]

)2

≤ 0. (I.3.26)

where this facts are used that the Ri’s are anti-Hermitian matrices and that for any anti-Hermitian
matrix G, Tr

(
G2

) ≤ 0. In terms of the topological charge B, this becomes

E ≥ 6π2fπ

e
|B| . (I.3.27)

Equation (I.3.27) is sometimes referred to as the Bogomolny bound [57]. Since there are no
self dual chiral fields, the energy is strictly larger than the estimate (I.3.27). For skyrmions
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the Bogomolny bound cannot be saturated. Equation (I.3.27) illustrates in a striking way the
mechanism by which geometry induces local stability at the classical level.

The Skyrme term can be understood as a higher-order correction to the nonlinear σ-model
when cast in the general framework of an effective chiral description as advocated by Weinberg
[58]. While the quadratic term (I.3.18) in the nonlinear σ-model is only one chirally invariant
term of the second order, the fourth order term is not unique to order chirally invariance. Indeed,
under the general assumptions of locality, the Lorentz invariance, the chiral symmetry, the parity
and the G-parity there are 3 independent terms to order chirally invariance, i.e.

L(4) = a Tr
(
RµR

µRνR
ν
)

+ b Tr
(
RµRνR

µRν
)

+ c Tr
(
∂µRν∂

µRν
)
, (I.3.28)

where a, b, c are some constants. Other combinations can be eliminated by the Maurer-Cartan
equation for the right current on S3

∂µRν − ∂νRµ + [Rµ, Rν ] = 0, (I.3.29)

which follows trivially from the definitions (I.2.6). To this order, the combination:

L(4) = Tr
(
RµR

µRνR
ν
)
− Tr

(
RµRνR

µRν
)

= −1

2
Tr

(
[Rµ, Rν ][R

µ, Rν ]
)
, (I.3.30)

is the unique term with four derivatives that leads to a Hamiltonian having the second order
in time derivatives. (I.3.30) is exactly the term suggested by T. H. R. Skyrme [59]. This is
important because there are problems with the stability of the classical solution, once higher
order terms in the time derivatives are included.

After the baryon number and energy, the most significant characteristic of the static solution
of the Skyrme equation is its asymptotic field, which satisfies the linearized form of the equation.
To the leading order, each of the three components of the pion field π obey Laplace’s equation,
and σ can be taken to be unity. More precisely, π has a multipole expansion, in which each term
is an inverse power of r = |x|, say r−(l+1), times a triplet of angular functions. The leading
term, with the smallest l, obeys Laplace’s equation, whereas subleading terms may not, because
of the nonlinear aspect of the Skyrme equation. For the leading term, therefore, the angular
functions are a triplet of the linear combinations of the spherical harmonics Yl,m(θ, ϕ), with m
taking integer values in the range−l ≤ m ≤ l. These spherical harmonics can also be expressed
in the Cartesian coordinates, which often gives more convenient and elegant formulae for the
asymptotic fields.

One of the few precise results concerning the Skyrme equation (I.3.22) is that this multipole
expansion can not lead with a monopole term, having l = 0. The leading term is a dipole or
higher multipole [60].

Recently, it has been rigorously proven [61] that for any non-vacuum soliton of the Skyrme
equation, the multipole expansion is non-trivial. In other words, the pion field does not vanish
to all orders in l, and the leading term is a multipole satisfying the Laplace equation.

The skyrmion
In his pioneering work Skyrme [1] believed that the field configurations of the winding number
one (B = 1) were fermions. He conjectured that the topological current (I.2.17) should be
identified with the baryon current, suggesting that skyrmions were classical baryons.
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The classical Skyrme model is formulated in the arbitrary irreducible SU(2) representation
j [11]. The Euler angles α(x, t) become the functions of the space-time point (x, t) and form
the dynamical variables of the theory. Model is formulated in terms of a unitary field

U(x, t) = Dj
(
α(x, t)

)
, (I.3.31)

where symbol Dj denotes the SU(2) Wigner matrices.
By using definitions from Appendix A allow us to express the Lagrangian density (I.3.21) in

terms of the Euler angles

LSk =
1

3
j(j + 1)(2j + 1)

(
f 2

π

4

(
∂µα

i∂µαi + 2 cos α2 ∂µα
1 ∂µα3

)

− 1

16e2

(
∂µα

2∂µα2(∂να
1∂να1 + ∂να

3∂να3)− (∂µα
1∂µα2)2

− (∂µα
2∂µα3)2 + sin2α2(∂µα

1∂µα1 ∂να
3∂να3 − (∂µα

1∂µα3)2)

+ 2 cos α2(∂µα
2∂µα2 ∂να

1∂να3 − ∂µα
1∂µα2∂να

2∂να3)
))

. (I.3.32)

The only dependence on the dimension of the representation is in the overall factor
j(j + 1)(2j + 1) as it could be expected from the inner product of two SU(2) generators. This
implies that the equation of motion for the dynamical variable α is independent of the dimension
of the representation.

In terms of the Euler angles α the baryon current density takes the form

Bµ =
1

24Nπ2
εµνβγ Tr

(
RνRβRγ

)

=− 1

24 · 6Nπ2
j(j + 1)(2j + 1) sin α2 εµνβγ εikl ∂να

i∂βαk∂γα
l. (I.3.33)

The normalization factor N depends on the dimension of the representation and has the value 1
in the fundamental (j = 1/2) representation. As the dimensionality of the representation appears
in this expression in the same overall factor as in the Lagrangian density (I.3.32) it follows that
all calculated dynamical observables will be independent of the dimension of the representation
at the classical level.

The equation of motion (I.3.22), which follows from the variation of the Lagrangian (I.3.21),
are highly nonlinear and so far can only be handled under the assumption of maximal symmetry
as suggested by Skyrme’s static hedgehog ansatz [2]

U(x) = exp (iτ · r̂F (r))

= cos F (r) + iτ · r̂ sin F (r). (I.3.34)

The name hedgehog derives from the fact that the pion fields of this configuration point radially
outward from the origin at all points in space, so π̂ = r̂ where r̂ denotes the unit spatial vector.
F (r) is the real radial profile function with the boundary conditions F (0) = π and F (∞) = 0.
The latter condition ensures that U(∞) = 1, while the former guarantees that U(0) is well
defined and that B = 1. The object described by (I.3.34) has a peculiar geometric structure
which is shown in Fig. 1.
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Figure 1: The hedgehog configuration [62].

The Equation (I.3.34) follows from the fact that in a given topological sector, the maximal
compact symmetry group of the configuration space is

diag (SU(2)L ⊗ SU(2)R) ∼ diag (SO(2)I ⊗ SO(3)J) , (I.3.35)

where SO(3)J and SO(3)I refer to the orthogonal group of rotations in space and isospace re-
spectively. In the ansatz (I.3.34 ), the isospin (I) and the angular momentum (J) are correlated
in a way that neither of them is good quantum number, but their sum is

K = J + I ≡ (L + S) + I. (I.3.36)

U(x) is left invariant under rotations in K-space, i.e.

[
K, U(x)

]
= i sin F

([(
r× ∇

i

)
, τ · r̂

]
+

[
τ/2, τ · r̂]

)

= i sin F (−i (τ × r̂)− i (r̂× τ )) ≡ 0, (I.3.37)

suggesting that hedgehog skyrmions are scalar in K-space (K = 0). Since parity is defined
through

π̂opU(x, t)π̂−1
op = U †(−x, t), (I.3.38)

one concludes that the ansatz (I.3.34) is parity invariant. Here π̂op is the parity operator. Con-
sequently, hedgehog skyrmions carry Kπ = 0+ and can be viewed as a mixture of states with
I = J and the positive parity.

The substitution of the hedgehog ansatz (I.3.34) into the Lagrangian density (I.3.21) leads to
the following form:

LSk = −4

3
j(j + 1)(2j + 1)

(
f 2

π

4

(
F ′2 +

2

r2
sin2F

)

+
1

4e2

sin2F

r2

(
2F ′2 +

sin2F

r2

))
. (I.3.39)
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Figure 2: A classical solution of the profile function F (r̃) for
the B = 1 skyrmion.

For the case of j = 1/2 this reduces to the result of [5]. The corresponding mass density is
obtained by reverting the sign of LSk, as the hedgehog ansatz is a static solution.

The requirement that the soliton mass is stationary yields the following nonlinear ordinary
differential equation:

f 2
π

(
F ′′ +

2

r
F ′ − sin 2F

r2

)
− 1

e2

(
1

r4
sin2F sin 2F

− 1

r2

(
F ′2 sin 2F + 2F ′′ sin2F

))
= 0. (I.3.40)

It is independent of the dimension of the representation. Note that the differential equation is
nonsingular only if F (0) = nπ, n ∈ Z.

Indeed, the baryon density for the hedgehog configuration becomes

B0 = − 1

3Nπ2
j(j + 1)(2j + 1)

sin2 F

r2
F ′, (I.3.41)

leading to the baryon number of the form

B =

∫
d3rB0 =

2

3Nπ2
j(j + 1)(2j + 1)

(
F (0)− 1

2
sin 2F (0)

)
. (I.3.42)

A combination of the requirement that F (0) is an integer multiple of π and the requirement that
the lowest nonvanishing baryon number is 1, gives a general expression for the normalization
factor N as

N =
2

3
j(j + 1)(2j + 1). (I.3.43)

The equation of motion for the profile function in the form of (I.3.40) depends on the param-
eter fπ and e values. It is convenient to introduce a dimensionless variable r̃ = efπr in which
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(I.3.40) takes the form

F ′′(r̃)
(

1 +
2 sin2F (r̃)

r̃2

)
+ F ′2(r̃)

sin 2F (r̃)

r̃2
+

2

r̃
F ′(r̃)

− sin 2F (r̃)

r̃2
− sin 2F (r̃) sin2F (r̃)

r̃4
= 0. (I.3.44)

The solution of this equation, satisfying the boundary conditions, can not be obtained in closed
form but it is a simple task to compute it numerically. A numerical investigation of this equation
leads to the classical profile function solution F (r̃) shown in Fig. 2, when boundary conditions
are F (0) = π and F (∞) = 0, and the baryon number B = 1.

Skyrme model involving higher order derivatives
The Skyrme model can be generalized by adding terms involving higher order derivatives in
the Lagrangian (I.3.21) [23, 63, 64]. By doing this, one introduces extra parameters that can be
tuned to increase the quality of the Skyrme model as an effective low energy limit of QCD (via
1

Nc
expansion [53], chiral bozonization [65], etc.) and that all parameters could be determined

from it. On the other hand, it serves no practical purpose if we need to fit a large numbers
of parameters fixed by experiment measurements since the model would loose much of all its
predictive power.

A large-Nc analysis suggests that the bosonization of QCD would most likely involve an
infinite number of mesons. And if this is the case, then taking the appropriate decoupling limits
(or large-mass limits) for higher spin mesons leads to an all-orders Lagrangian for pions. From
the point of view of the QCD perturbation theory, one can also expect such terms in hadron
interactions since they are connected to higher twist effects. One example of higher order terms
is the piece proposed by Jackson et al. [23]:

L6 = c6 εµν1ν2ν3 εµλ1λ2λ3 Tr
(
Rν1Rν2Rν3R

λ1Rλ2Rλ3

)
. (I.3.45)

As in the case of the quartic term one can construct an alternative sixth order term, which is
equivalent to (I.3.45) in the case of the fundamental representation

L6 = c′6 Tr
(
[Rµ, R

ν ][Rν , R
λ][Rλ, R

µ]
)
. (I.3.46)

The unknown coefficients c6 and c′6 denote the strength of those terms and are free parameters
of the model. This sixth-order term preserves the Lorentz invariance and the SU(N) symmetry
of the model and leads to an equation of motion that does not involve derivatives of the order
higher than two.

In terms of the Euler angles α this Lagrangian density takes the form [11]

L6 = −c′6
j(j + 1)(2j + 1)

6
εi1i2i5 εi3i4i6 sin2α2

× ∂µα
i1 ∂ναi2 ∂να

i3∂λαi4 ∂λα
i5 ∂µαi6 . (I.3.47)

This result reveals that the dependence on the dimension of the representation of this term is
contained in the same overall factor j(j+1)(2j+1) as in the Skyrme model Lagrangian (I.3.21).



4. The rational map approximation 27

Hence the addition of the term L6 maintains the simple overall dimension dependent factor of
the original Skyrme model.

Studies of the Skyrme model by adding a sixth-order term (I.3.46) to the Lagrangian have
shown that the multi-skyrmion solutions of the extended model have the same symmetry as the
pure Skyrme model [66]. Also that the addition of the sixth-order term makes the multi-skyrmion
solution more bound than in the pure Skyrme model and that it also reduces the solution radius.
If used in the extended model, the harmonic map ansatz for the multi-skyrmions works as well
or even better, than for the pure Skyrme model.

On the other hand, several attempts were made to incorporate vector mesons in the Skyrme
picture. These procedures are characterized by the addition of a piece to the Lagrangian des-
cribing free vector mesons, typically of the form of an SU(2) gauge Lagrangian Tr (FµνF

µν)
and the substitution of the derivative by a covariant derivative to account for scalar-vector in-
teractions. In the large-mass limit of the vector mesons, they decouple and an effective self-
interaction for scalar mesons is induced as Fµν → fµν ≡ [Rµ, Rν ].

Following this approach Marleau studied the model where a large number of higher order
terms were included in the Lagrangian [63, 64]. He has shown that an infinite class of alternate
stabilizing terms for the Lagrangian density exists. They involve all orders in the derivatives of
the pion field, but their energy densities are only second order in the derivative of the profile
function F (r). Summing to all orders, the mass of the static solution takes a general form

Mcl = 8π

∫
r2dr

∞∑
m=1

cm

(
sin2 F

r2

)(
3
sin2 F

r2
+ m

(
F ′2 − sin2 F

r2

))
, (I.3.48)

where cm are free parameters of the model and cm = 0 for any odd m ≥ 5. The differential
equation for the profile function then reads

∞∑
m=1

m cm

(
sin2 F

r2

)m−1(
F ′′ + 2(2−m)

F ′

r
+ (m− 1)F ′2 cos F

sin F

− (3−m)
sin F cos F

r2

)
= 0. (I.3.49)

4. The rational map approximation
It has been found that many solutions of the Skyrme equation, and particularly those of low
energy, look like monopoles, with the baryon number B being identified with the monopole
number N. Of course, it is not expected that an exact correspondence exists, since the Yang-
Mills-Higgs and Skyrme models have a number of very different properties and the fields are
not really the same, but the energy density has equivalent symmetries and approximately the
same spatial distribution. As yet, there is no known direct transformation between the fields of
a monopole and those of a skyrmion, but there is an indirect transformation via rational maps
between the Riemann spheres.

A rational map is a holomorphic function from S2 7→ S2. If we treat each S2 as a Riemann
sphere, the first having a coordinate z, a rational map of degree N is a function R : S2 7→ S2

where

R(z) =
p(z)

q(z)
(I.4.1)
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and p and q are polynomials of degree at most N . Either p or q must have its degree precisely
N , and p and q must have no common roots, otherwise factors can be cancelled between them.
q can be a non-zero constant, in this case R is just a polynomial. For finite z, R(z) may have
any complex value, including infinity. The value is infinity where q vanishes. R(∞) is the limit
of p(z)/q(z) as z 7→ ∞ and can be either finite or infinite.

Rational maps are maps from S2 7→ S2, whereas skyrmions are maps from R3 7→ S3. The
main idea behind the rational map ansatz, introduced in [49], is to identify the domain S2 of the
rational map with the concentric spheres in R3, and the target S2 with the spheres of latitude on
S3.

It is convenient to use the Cartesian notation to present the ansatz. Recall that via a stereogra-
phic projection, the complex coordinate z on a sphere can be identified with conventional polar
coordinates by z = tan(θ/2)eiϕ. Equivalently, the point z corresponds to the unit vector

n̂z =
1

1 + |z|2
{

2<(z), 2=(z), 1− |z|2
}

. (I.4.2)

Similarly the value of the rational map R(z) is associated with the unit vector

n̂R =
1

1 + |R|2
{

2<(R), 2=(R), 1− |R|2
}

. (I.4.3)

Let us denote a point in R3 by its coordinates (r, z) where r is the radial distance from the
origin and z specifies the direction from the origin. The ansatz for the Skyrme field depends on
a rational map R(z) and a profile function F (r). The ansatz is

U(r, z) = exp(iF (r) n̂R · τ ) (I.4.4)

where τ = (τ1, τ2, τ3) denotes the Pauli matrices. U(r, z) is well-defined at the origin, if F (0) =
kπ, for some integer k. The boundary value U = 1 at r = ∞ requires that F (∞) = 0. It is
straightforward to verify that the baryon number of this field is B = Nk, where N is the degree
of R. In the remainder of this section we shall consider only the case k = 1, and consequently
B = N .

An SU(2) Möbius transformation on the domain S2 of the rational map corresponds to a spatial
rotation

R(z) 7→ αR(z) + β

−β̄R(z) + ᾱ
, where |α|2 + |β|2 = 1, (I.4.5)

whereas an SU(2) Möbius transformation on the target S2 corresponds to a rotation of n̂R, and
hence to an isospin rotation of the Skyrme field. Thus if a rational map R : S2 7→ S2 is symmetric
(i.e. a rotation of the domain can be compensated by a rotation of the target), then the resulting
Skyrme field is symmetric (i.e. a spatial rotation can be compensated by an isospin rotation).

In the case of N = 1, the basic map is R(z) = z, which is spherically symmetric, and (I.4.4)
reduces to Skyrme’s hedgehog field

U(r, θ, ϕ) = cos F + i sin F (sin θ cos ϕ τ1 + sin θ sin ϕ τ2 + cos θ τ3). (I.4.6)

As in nonlinear elasticity theory, the energy density of a Skyrme field depends on the local
stretching associated with the map U : R3 7→ S3. The Riemannian geometry of R3 (flat) and of
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S3 (a unit radius 3-sphere) are necessary to define this stretching. Consider the strain tensor at a
point in R3

Dij = −1

2
Tr

(
RiRj

)
= −1

2
Tr

(
(∂iUU−1)(∂jUU−1)

)
. (I.4.7)

It is symmetric and positive semi-definite as Ri is antihermitian. Let its eigenvalues be λ2
1, λ2

2

and λ2
3. The Skyrme energy can be reexpressed as

E =

∫
(λ2

1 + λ2
2 + λ2

3 + λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3) d3x, (I.4.8)

and the baryon density as λ1λ2λ3/2π
2. For the ansatz (I.4.4), the strain in the radial direction

is orthogonal to the strain in the angular directions. Moreover, because R(z) is conformal, the
angular strains are isotropic. If we identify λ2

1 with the radial strain and λ2
2 and λ2

3 with the
angular strains, we can compute that

λ1 = −F ′(r), λ2 = λ3 =
sin F

r

1 + |z|2
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣. (I.4.9)

Therefore the energy is

E =

∫ (
F ′2 + 2(F ′2 + 1)

sin2 F

r2

(
1 + |z|2
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣
)2

+
sin4 F

r4

(
1 + |z|2
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣
)4)

2idzdz̄r2dr

(1 + |z|2)2
, (I.4.10)

where 2idzdz̄/(1 + |z|2)2 is equivalent to the usual area element on a 2-sphere sinθdθdϕ. Now
the part of the integrand (

1 + |z|2
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣
)2

2idzdz̄

(1 + |z|2)2
(I.4.11)

is precisely the pull-back of the area form 2idRdR̄/(1+|R|2)2 on the target sphere of the rational
map R; therefore its integral is 4π times the degree N of R. So the energy simplifies to

E = 4π

∫ (
r2F ′2 + 2N(F ′2 + 1) sin2 F + I sin4 F

r2

)
dr (I.4.12)

where I denotes the integral

I =
1

4π

∫ (
1 + |z|2
1 + |R|2

∣∣∣∣
dR

dz

∣∣∣∣
)4

2idzdz̄

(1 + |z|2)2
. (I.4.13)

I depends only on the rational map R. It appears that I is a “proper” Morse function, that is,
the set of rational maps, and hence monopoles, for which I has any particular finite value is
compact.

To minimize E for maps of a given degree N , one should first minimize I over all maps
of degree N . Then, the profile function F (r) minimizing the energy (I.4.12) may be found by
solving a second order differential equation with N and I as parameters.

An important quantity associated with a rational map R(z) is the Wronskian

W (z) = p′(z)q(z)− q′(z)p(z) (I.4.14)
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or more precisely, the zeros of W , which are the branch points of the map. If R is of degree N ,
then generically, W is a polynomial of degree 2N − 2. The zeros of W are invariant under any
Möbius transformation of R, which replaces p by αp + βq and q by γq + δp and hence simply
multiplies W by (αγ−βδ). Occasionally, W is a polynomial of degree less than 2N−2, but one
then interprets the missing zeros as being at z = ∞. The symmetries of the map R are captured
by the symmetries of the Wronskian W . Sometimes W has more symmetries than the rational
map R.

The zeros of the Wronskian W (z) of a rational map R(z) give interesting information about
the shape of the Skyrme field which is constructed from R using the ansatz (I.4.4). Where W
is zero, the derivative dR/dz is also zero, so the strain eigenvalues in the angular directions,
λ2 and λ3, vanish. The baryon density, being proportional to λ1λ2λ3, vanishes along the entire
radial line in the direction specified by any zero of W . The energy density will also be low along
such a radial line, since there will only be the contribution λ2

1 from the radial strain eigenvalue.
The Skyrme field baryon density contours will therefore look like a polyhedron with holes in
the directions given by the zeros of W , and there will be 2N − 2 of such holes. This structure
is seen in all the plots shown in Fig. 3. For example, the B = 7 skyrmion having twelve holes
arranged at the face centres of a dodecahedron.

A rational map, R : S2 7→ S2, is invariant (or symmetric) under a subgroup G ⊂ SO(3) if
there is a set of Möbius transformation pairs {g, Dg} with g ∈ G acting on the domain S2 and
Dg acting on the target S2, such that

R(g(z)) = DgR(z). (I.4.15)

The transformations Dg should represent G in the sense that Dg1Dg2 = Dg1g2 . Both g and Dg

will in practice be SU(2) matrices. For example, g(z) can be expressed as g(z) = (αz +
β)/(−β̄z + ᾱ) with |α|2 + |β|2 = 1. Replacing (α, β) by (−α,−β) has no effect, so g is
effectively in SO(3). The same is true for Dg.

Some rational maps possess an additional symmetry of reflection or inversion. The transfor-
mation z 7→ z̄ is a reflection, whereas z 7→ −1/z̄ is the antipodal map on S2, or inversion.

For N = 1 the hedgehog map is R(z) = z. It is fully O(3) invariant, since R(g(z)) = g(z)
for any g ∈ SU(2) and R(−1/z̄) = −1/R̄(z). This map gives the standard exact hedgehog
skyrmion solution (I.3.34) with the usual profile function F (r) .

A general map of degree two is of the form

R(z) =
αz2 + βz + γ

λz2 + µz + ν
. (I.4.16)

Lets impose the twoZ2 symmetries z 7→ −z and z 7→ 1/z which generate the viergruppe of 180◦

rotations about all three Cartesian axes. The conditions R(−z) = R(z) and R(1/z) = 1/R(z)
restrict R to the form

R(z) =
z2 − a

−az2 + 1
. (I.4.17)

By a target space Möbius transformation, we can bring a to lie in the interval −1 ≤ a ≤ 1,
with the map degenerating at the endpoints. Further, a 90◦ rotation, z 7→ iz, reverses the sign of
a. The maps (I.4.17) have three reflection symmetries in the Cartesian axes, which are manifest
when a is real. For example, R(z̄) = R̄(z) when a is real. A baryon density plot for this
configuration is shown in Fig. 3a.
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A subset of the degree three rational maps N = 3 has symmetry Z2 × Z2, realized by the
requirements R(−z) = −R(z) and R(1/z) = 1/R(z). The first condition implies that the
numerator of R is even in z and the denominator is odd, or vice versa. Imposing the second
condition as well gives maps of the form

R(z) =

√
3az2 − 1

z(z2 −√3a)
(I.4.18)

with a complex. The inclusion of the factor
√

3 is for a convenience. The parameter space of
these maps should be thought of as a Riemann sphere with a complex coordinate a. The rational
map degenerates for three values of a, namely a = ∞ and a = ±1/

√
3. A slightly subtler

symmetry occurs if a is imaginary.
The Wronskian of maps having form (I.4.18) is

W (z) = −
√

3a(z4 +
√

3(a− a−1)z2 + 1). (I.4.19)

Note that for a = ±i, W is proportional to a tetrahedral Klein polynomial [67]. If a = 1, W has
a square symmetry, but the rational map does not have as much symmetry as this (see Fig. 3b).

The minimal energy skyrmion with B = 4 has octahedral symmetry, and there is a unique
octahedrally symmetric N = 4 monopole. The octahedrally symmetric rational map of degree
four can be embedded in a one parameter family of tetrahedrally symmetric maps

R(z) = c
z4 + 2

√
3iz2 + 1

z4 − 2
√

3iz2 + 1
, (I.4.20)

where c is real. The numerator and the denominator are tetrahedrally symmetric Klein poly-
nomials, so R is invariant up to a constant factor under any transformation in the tetrahedral
group.

The Wronskian of the map (I.4.20) is proportional to z(z4 − 1) for all values of c. This is the
face polynomial of a cube, with faces in the directions 0, 1, i,−1,−i,∞ (i.e. the directions of
the Cartesian axes). It allows to understand why the baryon density vanishes in these directions,
and hence why the skyrmion has a cubic shape, with its energy concentrated on the vertices and
the edges of a cube (see Fig. 3c).

For N = 5 there is a family of rational maps with two real parameters, with the generic map
having the D2d symmetry, but having higher symmetry at special parameter values [68].

The family of these maps is

R(z) =
z(z4 + bz2 + a)

az4 − bz2 + 1
(I.4.21)

with a and b real. The two generators of the D2d symmetry are realized as R(i/z̄) = i/R̄(z) and
R(−z) = −R(z).

The map R(z) = z(z4 − 5)/(−5z4 + 1) has the Wronskian

W (z) = −5(z8 + 14z4 + 1), (I.4.22)

which is proportional to the face polynomial of an octahedron. N = 5 baryon density plot is
shown in Fig. 3d.
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Figure 3: Surfaces of constant baryon density for the following Skyrme fields [49]:
a) B = 2 torus, b) B = 3 tetrahedron, c) B = 4 cube, d) B = 5 with D2d

symmetry, e) B = 6 with D4d symmetry, f) B = 7 dodecahedron, g) B = 8 with
D6d symmetry, h) B = 9 with tetrahedral symmetry, i) B = 17 buckyball, j) B = 5
octahedron, k) B = 11 icosahedron.
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The skyrmions with B = 6 and B = 8 both have extended cyclic symmetry. For B = 6, the
desired symmetry is D4d. D4 is generated by z 7→ iz and z 7→ 1/z. The rational maps

R(z) =
z4 + ia

z2(iaz4 + 1)
(I.4.23)

have this symmetry, since R(iz) = −R(z) and R(1/z) = 1/R(z). If a is real R(eiπ/4z̄) = iR̄(z)
and the rational maps have D4d symmetry. The Skyrme field has a polyhedral shape consisting
of a ring of eight pentagons capped by squares above and below (see Fig. 3e).

For B = 8, the symmetry is D6d. D6 is generated by z 7→ eiπ/3z and z 7→ i/z. The rational
maps

R(z) =
z6 − a

z2(az6 + 1)
(I.4.24)

have this symmetry. If a is real they have D6d symmetry. The polyhedral shape is now a ring of
twelve pentagons capped by hexagons above and below (see Fig. 3g).

The N = 7 case is similar to the cases N = 6 and N = 8, but the skyrmion has a dodecahedral
shape (see Fig. 3f). A dodecahedron is a ring of ten pentagons capped by pentagons above and
below.

Imposing the tetrahedral symmetry on degree nine maps they obtains the one real parameter
family. The Skyrme field has a polyhedral shape consisting of four hexagons centered on the
vertices of a tetrahedron, linked by four triples of pentagons (see Fig. 3h).

The skyrmion with B = 11 have the icosahedral symmetry. This icosahedral configuration is
shown in Fig. 3k.

A highly symmetric configuration case is at B = 17, where it has been conjectured that the
skyrmion has the icosahedrally symmetric, buckyball structure of carbon 60. The polyhedron
does indeed have the buckyball form (see Fig. 3i), consisting of twelve pentagons, each sur-
rounded by five hexagons, making a total of 32 polygons.

5. Generalization of the Skyrme model

By looking at the Skyrme model as a low energy effective theory from QCD in the limit in which
the number of colours Nc is large, one finds that the Skyrme field takes values in SU(Nf), where
Nf is the number of flavours of light quarks. In previous sections we have only considered the
case of Nf = 2, which is physically the most relevant since the up and down quarks are almost
massless, and the SU(2) flavour symmetry between up and down quarks is only weakly broken
in nature. A model with the SU(3) flavour symmetry, allowing for the strange quark, should
have appropriate additional symmetry breaking terms to take into account the higher mass of
the strange quark. This model is also a reasonable approximation. It allows to study the strange
baryons and nuclei within the Skyrme model. The basic fields now describe pions, kaons, and
the eta meson. There is still just one topological charge, identified as the baryon number. In the
absence of any symmetry breaking mass terms, the three flavour Skyrme Lagrangian is given by
the usual expression (I.3.21), however U ∈ SU(3). There is also a Wess-Zumino term, which
will be discussed in next section. It is important only in the quantization of skyrmions.

Solutions of the SU(3) model can be obtained by embedding the SU(2) skyrmions, and current
evidence suggests that these are the minimal energy solutions at each charge. However, there are
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also solutions which do not correspond to the SU(2) embeddings. Although they have energies
slightly higher than the embedded skyrmions, they are still low energy configurations. This
symmetries are very different from the SU(2) solutions.

An example of a non-embedded solution is the dibaryon of Balachandran et al. [4], which is
a spherically symmetric solution with B = 2. Explicitly, the Skyrme field is given by

U(x) = exp

{
iF1(r)Λ · x̂ + iF2(r)

(
(Λ · x̂)2 − 2

3
· 13

)}
, (I.5.25)

where Λ is a triplet of SU(3) matrices generating SO(3) and F1(r), F2(r) are real profile func-
tions satisfying the boundary conditions F1(0) = F2(0) = π and F1(∞) = F2(∞) = 0.
Substituting this ansatz into the Skyrme Lagrangian density (I.3.21) leads to two coupled ordi-
nary differential equations for F1(r) and F2(r). Solving these numerically yields an energy little
higher than the energy of the embedded SU(2) rational map ansatz (I.4.17) of charge 2.

A different generalization of model is the Skyrme model constructed on a 3-sphere, in which
the domain R3 is replaced by S3

L, the 3-sphere of radius L, but the Skyrme field is still a map
to the target space SU(2). The baryon number is the degree of U . This generalization has been
studied in Ref. [69], and in a more geometrical context in Ref. [70]. By taking the limit L →∞
the Euclidean model is recovered, but it is possible to gain some additional understanding of
skyrmions by first considering finite values of L.

Let µ, z be coordinates on S3
L, with µ being the polar angle (the co-latitude) and z denoting the

Riemann sphere coordinate on the 2-sphere at polar angle µ. Take F , R to be similar coordinates
on the unit 3-sphere S3

1, which we identify with the target manifold SU(2).
In general, a static field is given by functions F (µ, z, z̄) and R(µ, z, z̄). To find the B = 1

skyrmion we consider an analogue of the hedgehog field, an SO(3)-symmetric map of the form

F = F (µ), R = z, (I.5.26)

whose energy is

E =
1

3π

∫ π

0

(
L sin2 µ

(
F ′2 +

2 sin2 F

sin2 µ

)
+

sin2 F

L

(
sin2 F

sin2 µ
+ 2F ′2

))
dµ. (I.5.27)

Among these maps there is the 1-parameter family of degree 1 conformal maps defined by

tan
F

2
= ea tan

µ

2
, (I.5.28)

where a is a real constant. These may be pictured as a stereographic projection from S3
L to R3,

followed by a rescaling by ea, and then by an inverse stereographic projection from R3 to S3
1.

Substituting the expression (I.5.28) into the energy (I.5.27), and performing the integral gives

E =
L

1 + cosh a
+

cosh a

2L
. (I.5.29)

If a = 0 then (I.5.28) is the identity map with energy

E =
1

2

(
L +

1

L

)
. (I.5.30)
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Note that if L = 1 then E = 1, so the Bogomolny bound is attained.
In the Euclidean limit L →∞ the radial variable should be identified as the combination r̃ =

Lµ, in which case the expression for the energy (I.5.27) takes the form of the standard energy
expression of the classical Skyrme model (I.3.39). On a small 3-sphere the energy density of a
B = 1 skyrmion is uniformly distributed over S3

L and the unbroken symmetry group is SO(4).
However as the radius of the 3-sphere is increased beyond the critical value of L =

√
2 there is

a bifurcation to a skyrmion localized around a point and the chiral symmetry is broken. Thus a
phase transition occurs, when one moves from high to low baryon density, with a corresponding
breaking of the chiral symmetry. This may have relevance to the physical issue of whether the
quark confinement occurs at the same time as the chiral symmetry breaks when very dense quark
matter becomes less dense.

If the charge B > 1 the rational map ansatz can be applied again to produce low energy
Skyrme fields which approximate the minimal energy skyrmions on S3

L [71,72], by taking R(z)
to be a degree B rational map and F (µ) is the associated energy minimizing profile function.
This produces fields which tend to those of the Euclidean model as L → ∞ and for all cases,
this ansatz produces the good energy configurations.

The substitution of the field expressed in terms of pion fields (I.2.4) into the Lagrangian
(I.3.21) reveals that the pions are massless. They are Goldstone bosons of the spontaneously
broken chiraly symmetry. An additional term

Lmass = m2
π

∫
Tr

(
U − 1

)
d3x, (I.5.31)

can be included in the Lagrangian of the Skyrme model to make the pions have a mass mπ.
After the inclusion of (I.5.31) the skyrmion becomes exponentially localized, in contrast to the
algebraic asymptotic behaviour of the Skyrme field in the massless pion model. This is because
the modified equation of the hedgehog F (r̃) function,

F ′′(r̃)
(

1 +
2 sin2F (r̃)

r̃2

)
+ F ′2(r̃)

sin 2F (r̃)

r̃2
+

2

r̃
F ′(r̃)

− sin 2F (r̃)

r̃2
− sin 2F (r̃) sin2F (r̃)

r̃4
−m2

πr̃ sin F = 0. (I.5.32)

has the asymptotic Yukawa-type solution

F (r̃) ∼ A

r̃
e−mπ r̃. (I.5.33)

Clearly the energy of a single skyrmion with mπ > 0 will be slightly higher than that with
mπ = 0, because the pion mass term is positive for all fields.

For higher charge skyrmions, the rational map approach works as before, but the profile func-
tion will again be slightly modified, leading to slightly higher energies.

6. The Wess-Zumino term

The three flavor QCD Lagrangian in the chiral limit ( mu = md = ms = 0) is globally invariant
under U(3)L × U(3)R. By Noether’s theorem there are nine conserved vector and axial vector
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currents at the classical level [54]. Because of the Adler-Bell-Jackiw anomaly [73,74] the U(l)A
symmetry is explicitly broken at the quantum level. So aside from the anomaly it is believed that
the chiral symmetry is spontaneously broken through

U(3)L ⊗ U(3)R/U(1)A ≡ SU(3)L ⊗ SU(3)R ⊗ U(1)V → SU(3)V ⊗ U(1)V, (I.6.1)

with the appearance of eight massless Goldstone bosons, that corresponds to the pseudoscalar
octet mesons: π0, π±, η,K0, K̄0, K±. In the spirit of the large Nc limit, the dynamics of the
massless pseudoscalar mesons is dictated by a nonlinear σ-model Lagrangian such as (I.3.18) to
leading order where U(x) is an SU(3)-valued field of the form

U(x, t) = exp i

(
λa πa(x, t)

fπ

)
. (I.6.2)

There the λ’s are the ordinary Gell-Mann matrices with the normalization condition Tr
(
λaλb

)
=

2δa,b. Under U(3)L × U(3)R, U(x, t) transforms as follows:

exp(iQL)U(x, t) exp(−iQR), (I.6.3)

where QL,R are the fundamental generators of U(3). Under parity, U(x, t) transforms according
to (I.3.38), respectively the pseudoscalar character of the octet mesons transforms:

π̂op πa(x, t)π̂−1
op = πa(−x, t). (I.6.4)

Witten observed [75] that while the nonlinear σ-model (I.3.18) is invariant under global
U(3)L×U(3)R and even under the QCD parity (I.3.38), it exhibits two discrete symmetries which
are redundant with QCD namely

U(x, t) → U(−x, t), (I.6.5a)
U(x, t) → U †(x, t). (I.6.5b)

The latters forbid anomalous processes in which an even number of pseudoscalar mesons decay
into an odd number and vice versa. As a remedy Witten proposed to modify the classical equa-
tions of motion in the nonlinear σ-model by adding explicitly a U(3)L ⊗ U(3)R invariant term
that breaks the redundant symmetries (I.6.5a) and (I.6.5b) separately while preserving their com-
bination i.e. the QCD parity operation (I.3.38). To break explicitly (I.6.5a) while maintaining
Lorentz invariance requires the totally anti-symmetric Levi-Cevita tensor

1

2
f 2

π∂µRµ + λεµναβRµRνRαRβ = 0. (I.6.6)

Under x → −x, we have εµναβ → −εµναβ , ∂µ → ∂µ and Rµ → Rµ, hence

1

2
f 2

π∂µR
µ − λεµναβRµRνRαRβ = 0. (I.6.7)

Under πa → −πa, we have U(x) → U †(x) and Rµ → Lµ = −URµU
†. Since ∂µLµ +

U∂µRµU
† = 0, we obtain

1

2
f 2

π∂µRµ + λεµναβRµRνRαRβ = 0. (I.6.8)
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In other words the redundant symmetries are lifted while their combination (QCD parity) is
preserved.

To proceed to a quantum description starting from the classical field equations (I.6.6) we need
the corresponding action functional. To do that is non trivial since the obvious candidate for the
added term εµναβ Tr (RµRνRαRβ) vanishes identically in (3 + 1) dimensions due to the cyclic
property of the trace. In fact, the pertinent action functional involves the Wess-Zumino (WZ)
term [44] of current algebra, and turns out to be non local in (3 + 1) dimensions.

The solution of the problem raised by Witten [75] is suggested by the solution of a much
simpler problem of an electron moving on the surface of a unit sphere surrounding a Dirac
magnetic monopole [76] . The analogy of the preceding example with the SU(3)L ⊗ SU(3)R
nonlinear σ-model is striking if we notice that for the vanishing magnetic field, the constrained
equation on S2 is invariant under r → −r and t → −t separately. The additional Lorentz force
created by the magnetic monopole preserves only the combination r → −r and t → −t. The
Lorentz force is the analogue of the anomaly term in (I.6.6), while the geometrical analogue of
the one-dimensional closed path S1 on S2 is a four-dimensional quasi-sphere S3×S1on S3×S2.

To elucidate these statements it is best to work in the Euclidean space with a compactified time
direction, i.e. R4 = R3×R1 → R3× S1. Finite field configurations yield a compactification of
R3 into S3 and endow the space-time with the topology of a quasi sphere S3×S1. The latter can
be thought of as the boundary of a five-dimensional manifold D5

D+
5 = S3 × S1 × [0, 1], (I.6.9a)

D−
5 = S3 × S1 × [−1, 0], (I.6.9b)

where we have used a decomposition of S3. The SU(3) field U(x) acts as a mapping from S3×S1

onto SU(3) whose group manifold is isomorphic to S5 × S3 by Bott’s theorem [77]. In analogy
with the U(1) monopole where the action associated to the Lorentz force is a U(1) invariant on
the boundaries D±

2 , the action functional corresponding to the anomaly term in (I.6.6) should
be sought as an SU(3)L × SU(3)R invariant on D±

5 . To achieve this the SU(3) map U(x) from
S3 × S1 onto SU(3) should be extended to a map U(x) from D±

5 onto SU(3). Since

(
S3 × S2, S5 × S3

) ∼ (S5, S5) ∼ π5(S5) ∼ Z, (I.6.10)

by De-Rham’s theorem [78] there must exist a topologically invariant and closed 5-form ω0
5 on

S5, such that ∫

S5

ω0
5 =

∫

S5

d5xQ0
5 = 2π. (I.6.11)

There Q0
5 is the Chern-Pontryagin density associated to π5(S5) ∼ Z. To construct an explicit

form of the pertinent isomorphism: π5(S5) → Z, we can use a straightforward generalization of
the proper construction that led to (I.3.21). In particular, we have

Q0
5 =

i

240π2
ε0µαβγδ Tr

(
RµRαRβRγRδ

)
. (I.6.12)

Its corresponding closed 5-form ω0
5 is exact. The normalization in (I.6.12) is obtained by first

using a polar parametrization of S5 which yields 2π/5!A5, with A5 = π3 being the surface of
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S5 and then making the substitution φ0 = 1 and ∂µφ
k ∼ iRk

µ, k = 1, 2, 3, 4, 5 for any subset of
SU(3). Indeed, if we define the 1-form α = Rµdxµ, then

ω0
5 =

i

240π2
Tr

(
α5

)
, (I.6.13)

where the wedge product has been omitted for convenience.
The Wess-Zumino Lagrangian associated to the anomaly term in (I.6.6) can be cast in the

form
LWZ = +λ

∫

D+
5

ω0
5 = −λ

∫

D−5

ω0
5, λ ∈ R, (I.6.14)

where D±
5 are the complementary discs defined in (I.6.9). To summarize:

• LWZ is SU(3)L ⊗ SU(3)R invariant.

• LWZ is topologically invariant, since ω0
5 is closed.

• LWZ depends only on the space-time boundary ∂µD5 = S3 × S1, since ω0
5 is locally exact.

In terms of (I.6.14), the modified nonlinear σ-model action is

S± = −f 2
π

4
d4x Tr

(
RµRµ

)
± iλ

240π2

∫

D±5

d5xεµαβγδ Tr
(
RµRαRβRγRδ

)
. (I.6.15)

The contour ambiguity in (I.6.15) can be resolved if one requires the generating functional (and
hence the exponential factors exp(iS±)) to be contour independent. This is fulfilled if and only
if exp(iS+) = exp(iS−), i.e.

λ

(∫

D+
5

ω0
5 +

∫

D−5

ω0
5

)
= λ

∫

D+
5 ∪D−5

ω0
5 = λ

∫

S3×S2

ω0
5 ≡ 2πλ ≡ 2πn, λ = n = integer. (I.6.16)

This shows that λ is topologically quantized. When analyzed in the context of QCD, this quan-
tization is of fundamental relevance to the skyrmion.

The action (I.6.15) can be expresed in a non local form in the ordinary space-time. Indeed, to
the leading order in the pseudoscalar fields φ(x) = λaπa/fπ, the Wess-Zumino term in (I.6.15)
becomes

LWZ =± n

240π2

∫

D±5

d5xεµναβγ Tr
(
∂µφ∂νφ∂αφ∂βφ∂γφ

)
+ ...

=
n

240π2

∫

∂D5=S3×S1

dΣµε
µναβγ Tr

(
∂µφ∂νφ∂αφ∂βφ∂γφ

)
+ ..., (I.6.17)

where Stoke’s theorem was used. The expression (I.6.17) was originally investigated by Wess
and Zumino [44] in the context of the effective Lagrangians.

The phenomenological implications of the topological quantization of the WZ term LWZ are
relevant to low energy observables. At low energy, it provides the canonical link between QCD
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and chiral effective descriptions based on the nonlinear σ-model (see I.2. section). In the context
of the QCD, the number n is identified with the number of colors, i.e. n ≡ Nc. Finally, the
Wess-Zumino action can be written as

SWZ(U(x)) = − Nc

240π2

∫

D5

d5xεµναβγ Tr
(
RµRνRαRβRγ

)
. (I.6.18)

In this equation it is understood that the pion field U(x) is continued without singularities from
the physical 4-dim space-time to a fifth dimension, so that the physical space-time serves as bor-
der of the 5-dim disk. Actually, it can be shown that the integrand in (I.6.18) is a full derivative,
consequently the Wess-Zumino action (I.6.18) does not depend on a concrete way one continues
the pion field inside the disk [79].

The Wess-Zumino term does not contribute to the classical energy, but it plays an important
role in the quantum theory. Its introduction breaks the time reversal and parity symmetries of
the model down to the combined symmetry operation: t → −t, x → −x, U → U †, which
appears to be realized in nature, unlike these individual symmetry operations.

7. Quantization of model
Quantization is a vital issue for skyrmions. It is more important than for the other solitons, be-
cause skyrmions are supposed to model physical baryons and nuclei, and a single baryon is a
spin half fermion. Quantization of skyrmions may raise some questions, because the Skyrme
model it is not a fundamental field theory, but rather a classical model that results from taking
the limit of such a theory, including only some degrees of freedom of the original theory. Ne-
vertheless, there is a rich experience from the nonrelativistic many-body problems, for example,
from nuclear physics [80], suggesting the validity of such an approach for the study of collective
properties at low energies.

To determine whether a skyrmion should be quantized as a fermion we can compare the
amplitudes for the processes in which a skyrmion remains at rest for some long time t, and in
which the skyrmion is slowly rotated through an angle 2π during this time. The sigma model and
the Skyrme terms in the action do not distinguish between these two processes, since they involve
two or more time derivatives. Since the Wess-Zumino term is only linear in time derivatives, it
can distinguish them. In fact it results in the amplitudes for these two processes differing by a
factor (−1)Nc , which shows that the skyrmion should be quantized as a fermion when Nc is odd,
and in particular, in the physical case Nc = 3 [3, 75].

For Nc = 2 the above analysis does not apply, since the Wess-Zumino term vanishes for
an SU(2)-valued field. To determine the appropriate quantization of an SU(2) skyrmion one
may follow the approach of Finkelstein and Rubinstein [81], who showed that it is possible to
quantize a soliton as a fermion by lifting the classical configuration space to its simply connected
covering space. In the SU(2) Skyrme model, this is a double cover for any value of B.

A practical, approximate quantum theory of skyrmions is achieved by a rigid body quanti-
zation of the spin and isospin rotations. Vibrational modes whose excited states usually have
considerably higher energy are ignored. For the B = 1 skyrmion, this quantization was carried
out by Adkins, Nappi and Witten [5], who showed that the lowest energy states (compatible
with the Finkelstein-Rubinstein constraints) have spin half and isospin half, and may be identi-
fied with the states of a proton or neutron.
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The quantization of the B = 2 skyrmion was first discussed by Braaten and Carson [82], using
a rigid body quantization. Their analysis was extended by Leese, Manton and Schroers [83], who
also allowed the toroidal skyrmion to break up in the direction of the lowest vibrational mode,
which corresponds to the attractive channel. Both calculations found that the lowest energy
quantum state has isospin zero and spin 1, as expected for the deuteron. The second calculation
gets closer to the usual physical picture of the deuteron as a rather loose proton-neutron bound
state.

The quantization for higher charge skyrmions has been performed [82, 84–88] for charges
B ≤ 8, and gives the correct quantum numbers (spin, isospin and parity) for the experimentally
observed ground states of nuclei in all cases except B = 5 and B = 7. A further study, making
use of the topological properties of the space of rational maps, has allowed an extension of this
analysis up to B = 22 [89]. The fact that some results do not agree with the experimental data
is probably due to the restricted zero mode quantization, which does not allow any vibrational
or deformation modes.

In our work we use the quantization in the “zero modes” or “collective coordinate” ap-
proach [5, 9]. As general, the construction of quantum theory passes three steps: the classical
Lagrangian leads to the classical Hamiltonian which is modified to the quantum Hamiltonian.
The quantization in the collective coordinate approach slightly modifies this sequence. It starts
from the quantum Lagrangian from the outset. By the quantum Lagrangian we mean that the
dynamical coordinates qi and their time derivatives (velocities) q̇i do not commute. The explicit
commutation relations are not defined in the begining. These relations are extracted from the
standard commutation relations [qi, pj] after we pass to the quantum Hamiltonian (and define
the canonical momenta pj). It can be shown that this modified formalism [90–92] leads to a
consistent quantum description.

The results of the modified and usual quantization sequences are usually different. Non-
commuting quantum variables will generate additional terms while passing from the quantum
Lagrangian to the quantum Hamiltonian. These terms are lost when we impose the canonical
commutation relations after the Hamiltonian is obtained. This problem is similar to the operator
ordering problem.

Following [93] we utilize the following detailed quantization sequence:
1. Introduce the quantum collective coordinates matrix A

(
q(t)

)
(I.7.1). They are quantum in

the sense that the dynamical variables q(t) and the time derivatives q̇(t) do not commute.
2. Make the Lagrangian quantum.
3. Following the method described in [90–96] pass to the quantum Hamiltonian.
4. Solve the integro-differential equation for the quantum profile function F (r).
Another important point is symmetry properties of the classical Lagrangian and the quantum

Hamiltonian derived from it. There are quantization methods (for example, the general covariant
Hamiltonian method [97]) preserving original classical Lagrangian symmetries. The symmetric
Weyl ordering of the operators q and p (used in the work), however, cannot avoid a risk that the
quantum Hamiltonian has a chiral symmetry breaking term [98] .

According to G.S. Adkins et al. [5] we employ the collective rotational coordinates to separate
the variables which depend on the time and spatial coordinates

U
(
x, q(t)

)
= A

(
q(t)

)
Ucl(x)A†(q(t)), A

(
q(t)

) ∈ SU(Nc). (I.7.1)

The real independent parameters q(t) =
(
q1(t), q2(t), ..., qk(t)

)
, where k = dim(SU(Nc)), are

the dynamical quantum variables – the skyrmion rotation (Euler) angles in the internal space
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SU(Nc) = diag
(
SU(Nc)L ⊗ SU(Nc)R

)
but not in the geometric space. The skyrmion remains

static in the geometric space.
Quantum fluctuations near the classical solution can be put into two different classes. Namely,

the fluctuation modes which are generated by the action or the Hamiltonian symmetries and the
modes orthogonal to the symmetric one. Symmetric fluctuation modes are of primary impor-
tance in the quantum description because the infinitely small energy perturbation can lead to
reasonable deviations from the classical solution. As a consequence, the collective rotation ma-
trices A(t) and A†(t) in (I.7.1) are not required to be small (i.e. close to the identity matrix) [62].

We shall consider the Skyrme Lagrangian quantum mechanically ab initio [9, 93]. The gene-
ralized coordinates q(t) and velocities q̇(t) then satisfy the commutation relations

[
q̇k, ql

]
= −igkl(q). (I.7.2)

Here the tensor gkl(q) is a function of the generalized coordinates q only. Its explicit form is
determined after the quantization condition has been imposed. The tensor gkl is symmetric with
respect to an interchange of the indices k and l as a consequence of the commutation relation
[qk, ql] = 0. Indeed, differentiation of the relation gives [q̇k, ql] = [q̇l, qk], from what it follows
that gkl is symmetric. The commutation relation between a generalized velocity component q̇k

and an arbitrary function G(q) is given by

[
q̇k, G(q)

]
= −i

∑
r

gkl(q)
∂

∂ql
G(q). (I.7.3)

We shall employ the Weyl ordering for the noncommuting operators q̇ and G(q) through

(∂tG(q))W =
1

2

{
q̇l,

∂G(q)

∂ql

}
, (I.7.4)

which is a consequence of application of the Newton-Leibnitz rule to the Taylor series expansion
of the arbitrary function G(q):

G(q) = G(q0) + G′(q)
∣∣∣
q=q0

q +
1

2
G′′(q)

∣∣∣
q=q0

q2 + · · · . (I.7.5)

Indeed,

(∂tq
2)W = ∂t(q q) = q̇q + qq̇ =

1

2

{
q̇,

d(q2)

dq

}
, (I.7.6a)

(∂tq
3)W = ∂t(q q q) = q̇q2 + qq̇q + q2q̇ =

3

2
(q̇q2 + q2q̇) =

1

2

{
q̇,

d(q3)

dq

}
, (I.7.6b)

. . . . . . . . . . . . . . . .

(∂tq
n)W = ∂t (q . . . q)︸ ︷︷ ︸

n

= q̇qn−1 + · · ·+ qn−1q̇ =
1

2

{
q̇,

dqn

dq

}
. (I.7.6c)

The operator ordering is fixed by the form of the classical Lagrangian and no further ambiguity
associated with it appears at the level of the Hamiltonian. In order to find the explicit form of
gkl(q) one can substitute (I.7.1) into the expression of the Lagrangian density (I.3.21) and keep
only the terms quadratic in velocities
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L̂(q̇, q, F ) =
1

N

∫
L̂(

x, q̇(t), q(t), F (r)
)
r2d3r

=
1

2
q̇kgkl(q)q̇

l +
[
(q̇)0– order term

]
, (I.7.7)

where a normalization factor N is introduced in the Lagrangian in order to ensure the baryon
number 1 for the spherically symmetric skyrmion case. After the determination of the metric
tensor gkl(q), we find the soliton moments of inertia and the explicit expression of the collective
coordinates A†Ȧ. By using these expressions and a set of auxiliary expressions which shown
in appendices A, B and C, the complete expression of the Skyrme model Lagrangian density is
obtained. Later special techniques are applied to construct the effective Hamiltonian.



II. Canonical quantization of the SU(3)
Skyrme model in a general
representation

Both the SU(2) and SU(3) Skyrme versions of the model have been quantized canonically in
Refs. [9, 93, 99] in the collective coordinate formalism. The canonical quantization procedure
leads to quantum corrections to the skyrmion mass, which restore the stability of the soliton so-
lutions that is lost in the semiclassical quantization. This method has subsequently been genera-
lized to the unitary fields U(x,t) that belong to the general representations of the SU(2) [11–13],
along with a demonstration that the quantum corrections, which stabilize the soliton solutions,
are representation dependent.

The aim of this chapter is to extend the canonically quantized Skyrme model to the general
irreducible representations (irrep) of SU(3). The motivation is the absence of any a priori reason
to restrict the collective chiral models to the fundamental representation of the group. The focus
here is on the mathematical aspects of the model, and on the derivation of both the Hamiltonian
density and the Hamiltonian, in order to elucidate their representation dependence. The possible
phenomenological applications both in hyperon and hypernuclear phenomenology as well as in
the Skyrme model description of the quantum Hall effect [6] and Bose-Einstein condensates [7],
are not elaborated.

Similarly to the SU(2) case, the solutions to the SU(3) Skyrme model depend in an essential
way on the dimension. Remarkably the Wess-Zumino term vanishes in all self-adjoint irreps
of SU(3), as it is proportional to the cubic Casimir operator ĈSU(3)

3 in the collective coordinate
method of separation of the dependence on space and time variables. In the self adjoint irreps
the symmetry breaking mass term in the model reduces to the SU(2) form.

1. Definitions for the unitary SU(3) soliton field

The unitary field U(x, t) is defined for general irreps (λ, µ) of SU(3) in addition to the fundamen-
tal representation (1, 0). The related Young tableaux are denoted [λ1, λ2, λ3], where λ = λ1−λ2,
µ = λ2− λ3. A group element is specified by eight real parameters αi(x, t). The unitary field is
expressed in the form of the Wigner D matrices for SU(3) in (λ, µ) irrep as

U(x, t) = D(λ,µ)(αi(x, t)). (II.1.1)

The one-form of the unitary field belongs to the Lie algebra of SU(3). The one-forms may be
determined by the functions C

(Z,I,M)
i (α) and C

′(Z,I,M)
i (α). Their explicit expressions depend on

43
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the specific group parametrization

∂iUU † =

(
∂

∂αi
U

)
U † = C

(Z,I,M)
i (α)

〈 ∣∣∣ J
(1,1)
(Z,I,M)

∣∣∣
〉

,

U †∂iU = U † ∂

∂αi
U = C

′(Z,I,M)
i (α)

〈 ∣∣∣ J
(1,1)
(Z,I,M)

∣∣∣
〉

, (II.1.2)

The basis states of irrep (1,1) are specified by the parameters isospin I , and its projections M
and Z, which is related to the hypercharge as Y = −2Z.

The parametrization for the SU(3) model, and the expressions of the differential Casimir
operator in terms of the Euler angles, have been proposed by Yabu and Ando [100]. In contrast
to their approach, for simplicity, we do not determine the specific parametrization and use the
general properties of the functions C

(Z,I,M)
i (α) (see B.1). The SU(3) generators are defined as

components of the irreducible tensors (1, 1) and may be expanded in terms of the Gell-Man
generators Λk:

Λ1 =
√

2
(
J

(1,1)
0,1,−1 − J

(1,1)
0,1,1

)
; J

(1,1)
0,1,1 =− 1

2
√

2
(Λ1 + iΛ2) ;

Λ2 = i
√

2
(
J

(1,1)
0,1,−1 + J

(1,1)
0,1,1

)
; J

(1,1)
0,1,−1 =

1

2
√

2
(Λ1 − iΛ2) ;

Λ3 = 2J
(1,1)
0,1,0 ; J

(1,1)
0,1,0 =

1

2
Λ3;

Λ4 =
√

2
(
J

(1,1)

− 1
2
, 1
2
, 1
2

+ J
(1,1)
1
2
, 1
2
,− 1

2

)
; J

(1,1)

− 1
2
, 1
2
, 1
2

=
1

2
√

2
(Λ4 + iΛ5) ;

Λ5 =− i
√

2
(
J

(1,1)

− 1
2
, 1
2
, 1
2

− J
(1,1)
1
2
, 1
2
,− 1

2

)
; J

(1,1)
1
2
, 1
2
,− 1

2

=
1

2
√

2
(Λ4 − iΛ5) ;

Λ6 =
√

2
(
J

(1,1)

− 1
2
, 1
2
,− 1

2

− J
(1,1)
1
2
, 1
2
, 1
2

)
; J

(1,1)

− 1
2
, 1
2
,− 1

2

=
1

2
√

2
(Λ6 + iΛ7) ;

Λ7 =− i
√

2
(
J

(1,1)

− 1
2
, 1
2
,− 1

2

+ J
(1,1)
1
2
, 1
2
, 1
2

)
; J

(1,1)
1
2
, 1
2
, 1
2

=− 1

2
√

2
(Λ6 − iΛ7) ;

Λ8 =− 2J
(1,1)
0,0,0 ; J

(1,1)
0,0,0 =− 1

2
Λ8. (II.1.3)

The Λi matrices are hermitian Λ†i = Λi. Although the generators (II.1.3) are non-hermitian(
J

(1,1)
(Z,I,M)

)†
= (−1)Z+MJ

(1,1)
(−Z,I,−M), their commutation relations nevertheless have a simple form

[
J

(1,1)
(Z′,I′,M ′), J

(1,1)
(Z′′,I′′,M ′′)

]
= −

∑

(Z,I,M)

√
3
[

(1,1) (1,1) (1,1)a

(Z′,I′,M ′) (Z′′,I′′,M ′′) (Z,I,M)

]
J

(1,1)
(Z,I,M) . (II.1.4)

For the specification of the basis states in a general irrep (λ, µ) the parameters (z, j, m) are
employed. The hypercharge is y = 2

3
(µ − λ) − 2z. The basis state parameters satisfy these

inequalities:

j −m ≥0 , j − z ≥ 0 ,

j + m ≥0 , j + z ≥ 0 ,

λ + z − j ≥0 , µ− z − j ≥ 0 , (II.1.5)
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where the values on the left hand sides are integers. The generators (II.1.3) act on the basis states
as follows:

J
(1,1)
(0,0,0)

∣∣∣∣
(λ, µ)

z, j,m

〉
= −

√
3

2
y

∣∣∣∣
(λ, µ)

z, j, m

〉
, J

(1,1)
(0,1,−1)

∣∣∣∣
(λ, µ)

z, j,m

〉
=

√
1
2
(j+m)(j−m+1)

∣∣∣∣
(λ, µ)

z, j, m− 1

〉
,

J
(1,1)
(0,1,0)

∣∣∣∣
(λ, µ)

z, j,m

〉
= m

∣∣∣∣
(λ, µ)

z, j,m

〉
, J

(1,1)
(0,1,1)

∣∣∣∣
(λ, µ)

z, j,m

〉
= −√

1
2
(j−m)(j+m+1)

∣∣∣∣
(λ, µ)

z, j, m + 1

〉
,

J
(1,1)

(− 1
2
, 1
2
, 1
2
)

∣∣∣∣
(λ, µ)

z, j, m

〉
=

√
(λ+z−j)(µ−z+j+2)(j−z+1)(j+m+1)

2(2j+1)(2j+2)

∣∣∣∣
(λ, µ)

z − 1
2
, j + 1

2
,m + 1

2

〉

−
√

(λ+z+j+1)(µ−z−j+1)(j+z)(j−m)
4j(2j+1)

∣∣∣∣
(λ, µ)

z − 1
2
, j − 1

2
,m + 1

2

〉
,

J
(1,1)

( 1
2
, 1
2
,− 1

2
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∣∣∣∣
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z, j, m

〉
= −

√
(λ+z+j+2)(µ−z−j)(z+j+1)(j−m+1)
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2
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2
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2

〉

+
√
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〉
,
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2
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〉
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2(2j+1)(2j+2)

∣∣∣∣
(λ, µ)

z − 1
2
, j + 1

2
,m− 1

2

〉

+
√

(λ+z+j+1)(µ−z−j+1)(j+z)(j+m)
4j(2j+1)

∣∣∣∣
(λ, µ)

z − 1
2
, j − 1

2
,m− 1

2

〉
,
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2
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2
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〉
= −

√
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−
√
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z + 1
2
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2
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2

〉
.

(II.1.6)

The basis states are chosen such that the generators J
(1,1)
(0,1,0) and J

(1,1)
(0,0,0), as well as the Casimir

operator of the SU(2) subgroup ĈSU(2) =
∑

(−1)MJ
(1,1)
(0,1,M)J

(1,1)
(0,1,−M), are diagonal and thus pro-

vide a labelling of the basis states

ĈSU(2)

∣∣∣∣
(λ, µ)

z, j, m

〉
= j(j + 1)

∣∣∣∣
(λ, µ)

z, j, m

〉
. (II.1.7)

The calculation method of the Clebsch-Gordan (CG) coefficients of SU(3), which were used
for derivation of the SU(3) Skyrme model in a general representation, was used from the work
of J.G. Kuriyan et al. [101]. An algebraic tabulation of the CG coefficients which occur in the
reduction of the direct product (λ, µ)⊗(1, 1) into irreducible representations is made. The phase
convention is an explicitly stated generalization of the well-known Condon and Shortley phase
convention for SU(3).

The CG coefficients factorize [102, 103] according to
[

(1,1) (1,1) (1,1)γ

Z′,I′,M ′ Z′′,I′′,M ′′ Z,I,M

]
=

[
(1,1) (1,1) (1,1)γ

(Y ′)Z′,I′ (Y ′′)Z′′,I′′ (Y )Z,I

] [
I′ I′′ I

M ′ M ′′ M

]
, (II.1.8)

where the second factor on right hand side of the equation refers to the isospin SU(2) subgroup
of SU(3), and the first factor (isoscalar factor) is independent of M ′, M ′′ and M . The label γ in
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the CG coefficient takes two values γ = 1 and 2. The first value denotes the antisymmetrical CG
coefficient (sometimes it is labelled by index a) while the second value denotes the symmetrical
CG coefficient (sometimes it is labelled by the index s). Hence, the CG coefficient of SU(2)
being well-known, we need to tabulate only the isoscalar factors. Some isoscalar factors both for
the symmetrical and antisymmetrical representation, and their properties are shown in Appendix
B.

2. The Classical SU(3) Skyrme model

The action of the Skyrme model in SU(3) is taken to have the form

S =

∫
d4x(LSk + LSB) + SWZ , (II.2.1)

where LSk is the chirally symmetric Lagrangian density (I.3.21) in which the right chiral current
is defined as

Rµ = (∂µU) U † = ∂µα
iC

(Z,I,M)
i (α)

〈 ∣∣∣ J
(1,1)
(Z,I,M)

∣∣∣
〉

. (II.2.2)

The Greek characters indicate differentiation with respect to the spacetime variables ∂µ ≡ ∂/∂xµ

in the metric diag(ηαβ) = (1,−1,−1,−1). The symmetry breaking term LSB and the Wess-
Zumino action SWZ are specified below.

Upon substitution of (II.2.2) into the Skyrme Lagrangian (I.3.21) the classical Lagrangian
density may be expressed in terms of the group parameters αi as

LSk =
3

32N
dim(λ, µ)CSU(3)

2 (λ, µ)

{
−f 2

π(−1)A∂µα
iC

(A)
i (α)∂µαi′C

(−A)
i′ (α)

+
3

8e2
(−1)A∂µα

iC
(A1)
i (α)∂να

i′C
(A2)
i′ (α)

× ∂µαi′′C
(A3)
i′′ (α)∂ναi′′′C

(A4)
i′′′ (α)

[
(1,1) (1,1) (1,1)a

(A1) (A2) (A)

] [
(1,1) (1,1) (1,1)a

(A3) (A4) (−A)

]}
. (II.2.3)

At the end of equation (II.2.3), only the SU(3) Clebsch-Gordan coefficients with the antisymmet-
ric irrep coupling are included and there is no summation over the irrep multiplicity. The capital
Latin character indices (A) denote the state label (Z, I, M). (−A) denotes (−Z, I,−M) and
(−1)A = (−1)Z+M . The dependence on the group irrep appears as an overall factor because
of the calculation of trace (B.17) where the dimension of the irrep and the quadratic Casimir
operator of SU(3) are included.

The time component of the conserved topological current in the Skyrme model represents the
baryon number density which in terms of the variables αi(x, t) takes the form

B0(x) =
1

24π2N
ε0ikl Tr

(
(∂iU) U † (∂kU) U † (∂lU) U †

)

=
(−1)A

27
√

3π2N
dim(λ, µ)CSU(3)

2 (λ, µ)εabc∂aα
iC

(A)
i (α)

× ∂bα
i′C

(A′)
i′ (α)∂cα

i′′C
(A′′)
i′′ (α)

[
(1,1) (1,1) (1,1)a

(A′) (A′′) (−A)

]
. (II.2.4)
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For the classical chiral symmetric Skyrme model the dependence on the irrep is contained in
the overall factor N . The normalization factor

N =
1

4
dim(λ, µ)CSU(3)

2 (λ, µ) , (II.2.5)

is chosen requiring that the smallest non trivial baryon number equals unity: B =
∫

d3xB0(x) =
1. The dynamics of the system is independent of the overall factor in the Lagrangian. Therefore
in the classical case the Skyrme model defined in an arbitrary irrep is equivalent to the Skyrme
model in the fundamental representation (1, 0), for which N = 1 .

The classical soliton solution of the hedgehog type for the (λ, µ) irrep of the SU(3) group
may be expressed as a direct sum of the hedgehog ansatz in the SU(2) irreps [12]. The SU(2)
representations embedded in the (λ, µ) irrep are defined by the canonical SU(3) ⊃ SU(2) chain.
The hedgehog generalization takes the form

exp i
(
τ · x̂)

F (r) → U0

(
x̂, F (r)

)
= exp i2

(
J

(1,1)
(0,1,·) · x̂

)
F (r) =

(λ,µ)∑
z,j

⊕Dj(α) , (II.2.6)

where τ are the Pauli matrices and x̂ is the unit vector. The expressions of the Euler angles α
of the SU(2) subgroup are shown in (A.12). The normalization factor (II.2.5) ensures that the
baryon number density for the hedgehog skyrmion in a general irrep has the usual form

B0(x) =
1

24π2N
ε0ikl Tr

(
(∂iU0) U †

0 (∂kU0) U †
0 (∂lU0) U †

0

)

=− 1

2π2

sin2 F (r)

r2
F ′(r) . (II.2.7)

With the hedgehog ansatz (II.2.6), and after the renormalization with the factor (II.2.5), the
Lagrangian density (I.3.21) reduces to the following simple form

Lcl
(
F (r)

)
=−Mcl(F (r)) = −

{
f 2

π

2

(
F ′2 +

2

r2
sin2F

)

+
1

2e2

sin2F

r2

(
2F ′2 +

sin2F

r2

)}
. (II.2.8)

Variation of the classical hedgehog soliton mass leads to standard differential equation for the
profile function F (r).

The SU(3) chiral symmetry breaking term of the Lagrangian density is defined here as

LSB = −MSB = − 1

N

f 2
π

4

(
m2

0 Tr
(
U + U † − 2 · 1

)
− 2m2

8 Tr
((

U + U †) J
(1,1)
(0,0,0)

))
. (II.2.9)

This form is chosen so that it reduces to the mass term of the π, K, η mesons when the unitary
field U(x, t) = exp{ i

fπ
ϕkΛk} is expanded around the classical vacuum U = 1 :

LSB = −1

2
m2

π

(
ϕ2

1 + ϕ2
2 + ϕ2

3

)− 1

2
m2

K

(
ϕ2

4 + ϕ2
5 + ϕ2

6 + ϕ2
7

)− 1

2
m2

ηϕ
2
8 + ... . (II.2.10)

For arbitrary irrep the coefficients in the symmetry breaking term can be readily obtained as

m2
0 =

1

3

(
m2

π + 2m2
K

)
, m2

8 =
10

3
√

3

CSU(3)
2 (λ, µ)

CSU(3)
3 (λ, µ)

(
m2

π −m2
K

)
, (II.2.11)
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where
CSU(3)

3 (λ, µ) =
1

9
(λ− µ)(2λ + µ + 3)(2µ + λ + 3) , (II.2.12)

is the eigenvalue of the cubic Casimir operator of SU(3).
For the self adjoint irreps λ = µ the symmetry breaking part of the Lagrangian (II.2.9) is

proportional to m2
0 = 1

4
m2

π only. The Gell-Mann-Okubo mass formula

m2
π + 3m2

η − 4m2
K = 0 , (II.2.13)

is satisfied in all but the self adjoint irreps.

3. Quantization of the skyrmion

The direct quantization of the Skyrme model leads to rather complicated equations [11] even
in the case of SU(2). Here the collective coordinates for the unitary field U in the (λ, µ) irrep
are employed for the separation of the variables, which depend on the temporal and spatial
coordinates

U
(
x̂, F (r), q(t)

)
= A

(
q(t)

)
U0

(
x̂, F (r)

)
A†(q(t)), A

(
q(t)

) ∈ SU(3). (II.3.1)

Because of the form of the ansatz U0 (II.2.6), the unitary field U is invariant under the right U(1)
transformation of the A

(
q(t)

)
= D(λ,µ)(q(t)) matrix, defined as

A
(
q(t)

) → A
(
q(t)

)
exp βJ

(1,1)
(0,0,0) . (II.3.2)

Thus the seven-dimensional homogeneous space SU(3)/U(1), which is specified by seven real,
independent parameters qk(t), has to be considered. The mathematical structure of the Skyrme
model and its quantization problems on the coset space SU(3)/U(1) have been examined by seve-
ral authors [35,75,104,105]. The canonical quantization procedure for the SU(3) Skyrme model
in the fundamental representation has been considered by Fujii et al. [99]. Here the attention is
on the representation dependence of the model. The Lagrangian (I.3.21) is considered quantum
mechanically ab initio. The generalized coordinates qk(t) and velocities (d/dt)qk(t) = q̇k(t)
satisfy the commutation relations

[
q̇k, ql

]
= −igkl(q) , (II.3.3)

where gkl(q) are functions of qk only. Their form will be determined below. The commutation
relation between a velocity component q̇k and an arbitrary function of q is given by (I.7.3). For
the time derivative the usual Weyl ordering (I.7.4) is adopted and the operator ordering is fixed
by the form of the Lagrangian (I.3.21).

For the purpose of defining the metric tensor in the Lagrangian we use approximate expres-
sions

ȦA† ≈
1

2

{
q̇i, C

(Z,I,M)
i (q)

}〈 ∣∣∣ J
(1,1)
(Z,I,M)

∣∣∣
〉

, (II.3.4a)

A†Ȧ ≈
1

2

{
q̇i, C

′(Z,I,M)
i (q)

}〈 ∣∣∣ J
(1,1)
(Z,I,M)

∣∣∣
〉

. (II.3.4b)
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The ansatz (II.3.1) is then substituted in the Skyrme Lagrangian (I.3.21) following by an inte-
gration over the spatial coordinates. The Lagrangian is then obtained in terms of the collective
coordinates and velocities. For the derivation of the canonical momenta it is sufficient to re-
strict the consideration to terms of the second order in the velocities (the terms of the first order
vanish). This leads to

LSk ≈ −
∫

drr2

{∑
M

(−1)M
{

q̇i, C
′(0,1,M)
i (q)

}{
q̇i′ , C

′(0,1,−M)
i′ (q)

}

× π

3
sin2 F

(
f 2

π +
1

e2

(
F ′2 +

1

r2
sin2 F

))

+
∑
Z,M

(−1)Z+M
{

q̇i, C
′(Z, 1

2
,M)

i (q)
}{

q̇i′ , C
′(−Z, 1

2
,−M)

i′ (q)
}

× π

4
(1− cos F )

(
f 2

π +
1

4e2

(
F ′2 +

2

r2
sin2 F

))}

≈ 1

2
q̇αgαβ(q, F )q̇β +

[
(q̇)0– order terms

]

≈ 1

8

{
q̇α, C ′(A)

α (q)
}

E(A)(B)(F )
{

q̇β, C
′(B)
β (q)

}
+

[
(q̇)0– order terms

]
, (II.3.5)

the derivation of which is shown in (B.21–B.23).
The Lagrangian (II.3.5) is normalized by the factor (II.2.5). The metric tensor takes the form

gαβ(q, F ) = C ′(A)
α (q)E(A)(B)(F )C

′(B)
β (q), (II.3.6)

where
E(Z,I,M)(Z′,I′,M ′)(F ) = −(−1)Z+MaI(F )δZ,−Z′δI,I′δM,−M ′ . (II.3.7)

Here the soliton moments of inertia are given as integrals over the dimensionless variable r̃ =
efπr:

a0(F ) = 0, (II.3.8a)

a 1
2
(F ) =

1

e3fπ

ã 1
2
(F ) =

1

e3fπ

2π

∫
dr̃r̃2 (1− cos F )

(
1 +

1

4
F ′2 +

1

2r̃2
sin2 F

)
, (II.3.8b)

a1(F ) =
1

e3fπ

ã1(F ) =
1

e3fπ

8π

3

∫
dr̃r̃2 sin2 F

(
1 + F ′2 +

1

r2
sin2 F

)
. (II.3.8c)

The canonical momentum, which is conjugate to qβ , is defined as

p
(0)
β =

∂LSk

∂q̇β
=

1

2
{q̇α, gαβ} . (II.3.9)

The canonical commutation relations
[
qα, qβ

]
=

[
p(0)

α , p
(0)
β

]
= 0, (II.3.10a)

[
p

(0)
β , qα

]
=− iδαβ , (II.3.10b)
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then yield the following explicit form for the functions gαβ(q):

gαβ(q) = (gαβ)−1 = C ′α
(Ā)(q)E

(Ā)(B̄)(F )C ′β
(B̄)

(q) , (II.3.11)

where
E(Z,I,M)(Z′,I′,M ′)(F ) = −(−1)Z+M 1

aI(F )
δZ,−Z′δI,I′δM,−M ′ . (II.3.12)

Note that here E(0)(0)(F ) is left undefined. The summation over the indices (Ā) denotes sum-
mation over the basis states (Z, I, M) of the irrep (1, 1), excluding the state (0, 0, 0). It proves
convenient to introduce the reciprocal function matrix C ′α

(Ā)
(q), the properties of which are de-

scribed in Appendix B. The commutation relations of the momenta (II.3.10b) ensure the choice
of the parameters qα on the manifold SU(3)/U(1) (see [9, 93] ). There is no need for an explicit
parameterization of qα at this moment.

Having determined the function gαβ(q) the following explicit expression of A†Ȧ is obtained:

A†Ȧ =
1

2
D(λ,µ)(−q)

{
q̇α, ∂αD(λ,µ)(q)

}

=
1

2

{
q̇α, C ′(A)

α (q)
}〈 ∣∣∣ J

(1,1)
(A)

∣∣∣
〉

− 1

2
iC ′α

(Ā)(q)E
(Ā)(B̄)(F )C ′β

(B̄)
(q)C

′(K)
β (q)C ′(K′)

α (q)
〈 ∣∣∣ J

(1,1)
(K) J

(1,1)
(K′)

∣∣∣
〉

=
1

2

{
q̇α, C ′(A)

α (q)
}〈 ∣∣∣ J

(1,1)
(A)

∣∣∣
〉

− 1

2
iE(Ā)(B̄)(F )C ′β

(B̄)
(q)C

′(0)
β (q)

(〈 ∣∣∣ J
(1,1)
(0) J

(1,1)

(Ā)

∣∣∣
〉

+
〈 ∣∣∣ J

(1,1)

(Ā)
J

(1,1)
(0)

∣∣∣
〉)

− 3

8
iE(Ā)(B̄)(F )C ′α

(Ā)(q)C
′(0)
α (q)C ′β

(B̄)
(q)C

′(0)
β (q)

(λ,µ)∑
z,j

⊕ y2 · 1z,j

+
i

2a 1
2
(F )

CSU(3)
2 (λ, µ) · 1λ,µ + i

(λ,µ)∑
z,j

⊕
(

CSU(2)(j)

2a1(F )
− CSU(2)(j) + 3

4
y2

2a 1
2
(F )

)
· 1z,j.

(II.3.13)

Here 1λ,µ is the unit matrix in the (λ, µ) irrep of SU(3) and 1z,j are unit matrices in the SU(2)
irreps. Note that the inverse of the rotation represented by D(λ,µ)(q) is denoted as D(λ,µ)(−q).

The field expression (II.3.1) is substituted in the Lagrangian density (I.3.21) in order to obtain
the explicit expression in terms of the collective coordinates and space coordinates. The explicit
expression of A†Ȧ (II.3.13) and expressions with the SU(3) group generators (B.24–B.30) are
employed as well. After a lengthy manipulation the complete expression of the Skyrme model
Lagrangian density is obtained:

LSk =
1

4
dim(λ, µ)CSU(3)

2 (λ, µ)

×
{
−(1− cos F )

16

[
f 2

π +
1

4e2

(
F ′2 +

2

r2
sin2 F

)]

×
∑
Z,M

(−1)Z+M
{

q̇α, C
′(Z, 1

2
,M)

α (q)
}{

q̇β, C
′(Z, 1

2
,M)

β (q)
}
−
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− sin2 F

8

[
f 2

π +
1

e2

(
F ′2 +

1

r2
sin2 F

)]

×
∑
Z,M

[
(−1)M

{
q̇α, C ′(0,1,M)

α (q)
}{

q̇α′ , C
′(0,1,M)
α′ (q)

}

−
({

q̇α, C ′(0,1,·)
α (q)

}
· x̂

)({
q̇α′ , C

′(0,1,·)
α′ (q)

}
· x̂

) ]

−Mcl −∆M1 −∆M2 −∆M3 −∆M′(q)

}
. (II.3.14)

Here the following notation has been introduced:

∆M1(F ) = − sin2 F

30a2
1(F )

{
f 2

π

(
12 sin2 F · CSU(3)

2 (λ, µ)− 16 sin2 F + 15
)

+
1

2e2

(
2F ′2 (

12 cos2 F · CSU(3)
2 (λ, µ) + 16 sin2 F − 1

)

+
sin2 F

r2

(
6CSU(3)

2 (λ, µ) + 7
))}

;

(II.3.15a)

∆M2(F ) = −(1− cos F )

20a2
1
2

(F )

{
f 2

π

(
6 (1− cos F ) · CSU(3)

2 (λ, µ) + 3 cos F + 2
)

+
1

4e2

(
F ′2 (

6 (1 + cos F ) · CSU(3)
2 (λ, µ)− 3 cos F + 2

)
+ 10

sin2 F

r2

)}
;

(II.3.15b)

∆M3(F ) = − sin2 F

30a1(F ) a 1
2
(F )

{
f 2

π

(
12 (1− cos F ) · CSU(3)

2 (λ, µ) + 16 cos F − 1
)

+
1

2e2

(
F ′2 (

4 cos F · (3CSU(3)
2 (λ, µ)− 4

)
+ 15

)
+ 15

sin2 F

r2

)}
;

(II.3.15c)

∆M′(F, q) = −3(1− cos F )

16a2
1
2

(F )

{
f 2

π +
1

4e2

(
F ′2 +

2

r2
sin2 F

)}

×
(
(−1)

¯̄AC ′α
( ¯̄A)

(q)C ′(0)
α (q)C ′β

(− ¯̄A)
(q)C

′(0)
β (q) + 4

)
.

(II.3.15d)

[The “4” in the last bracket on the last row is missing in the corresponding expression in ref. [99],
the consequence of which is the appearance of a spurious term −3/8a1/2(F ) in eq. (69b) of that
paper (there are some minor misprints in that equation as well)]. The notation ( ¯̄A) indicates
that only the states for which I = 1

2
and Z = ±1

2
are included. The ∆Mk(F ) terms may

be interpreted as quantum mass corrections to the Lagrangian density. The ∆M′(F, q) term
depends on the quantum variables qi and is an operator on the configuration space.

The integration of (II.3.14) over the space variables and normalization by the factor of (II.2.5)
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gives the Lagrangian

LSk =

∫
LSkd

3x =
1

8

{
q̇i, C

′(Ā)
i (q)

}
E(Ā)(B̄)

{
q̇i′ , C

′(B̄)
i′ (q)

}

−Mcl −∆M1 −∆M2 −∆M3 −∆M ′(q)

= − 1

8a 1
2
(F )

(−1)Ā
{

q̇i, C
′(Ā)
i (q)

} {
q̇i′ , C

′(−Ā)
i′ (q)

}

− 1

8

(
1

a1(F )
− 1

a 1
2
(F )

)
(−1)M

{
q̇i, C

′(0,1,M)
i (q)

}{
q̇i′ , C

′(0,1,−M)
i′ (q)

}

−Mcl −∆M1 −∆M2 −∆M3 −∆M ′(q). (II.3.16)

Here Mcl = fπ

e
M̃cl =

∫
d3xMcl(F ), ∆Mk = e3fπ∆M̃k =

∫
d3x∆Mk(F ), ∆M ′(q) =∫

d3x∆M′(q). The tilde placed over a letters mark integration over the dimensionless variable.

4. Structure of the Lagrangian and the Hamiltonian
The standard form of the Wess-Zumino action (I.6.18) is updated by a normalization factor N ′:

SWZ
(
U(x)

)
= − iNc

240π2N ′

∫

D5

d5x εµνλρσ Tr
(
RµRνRλRρRσ

)
. (II.4.1)

The derivation of the contribution of the Wess-Zumino term to the effective Lagrangian in the
framework of the collective coordinate formalism is given in Ref. [106]. Application of Stoke’s
theorem leads to the following form

LWZ(q, q̇) =− iNc

24π2N ′

∫

D3

d3x εmjk Tr
(
(∂mU0) U †

0 (∂jU0) U †
0 (∂kU0) U †

0J
(1,1)
(0,0,0)

)

× 1

2

{
q̇α, C ′(0)

α (q)
}

=− iNc

4
√

3π2N ′

∫

D3

d3x
sin2 F (r)

r2
F ′(r)

(λ,µ)∑
z,j

yj(j + 1)(2j + 1)
{

q̇α, C ′(0)
α (q)

}

=− λ′
i

2

{
q̇α, C ′(0)

α (q)
}

. (II.4.2)

Here

λ′ =

√
3NcB

40N ′ dim(λ, µ)CSU(3)
3 (λ, µ) . (II.4.3)

The coefficient λ′ depends on the representation (λ, µ) . Following Witten [3] the normalization
factor is chosen to be N ′ = dim(λ, µ)CSU(3)

3 (λ, µ)/20 so that λ′ = NcB/2
√

3 . In the case
of the fundamental representation N ′ = 1. Here the coefficient λ′ only constrains the states
of the system. Since the cubic Casimir operator ĈSU(3)

3 (II.2.12) vanishes in the self-adjoint
representations λ = µ, the WZ term (II.4.2) also vanishes in those representations.

The Lagrangian of the system with the inclusion of the WZ term is

L′ = LSk + LWZ . (II.4.4)
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There are seven collective coordinates. The momenta pα, that are canonically conjugate to qα,
are defined as

pα =
∂L′

∂q̇α
=

1

2

{
q̇β, gβα

}− iλ′C ′(0)
α (q) . (II.4.5)

These satisfy the canonical commutation relations (II.3.10b). The WZ term may be considered
as an external potential in the system [35, 104, 105]. Seven right transformation generators may
be defined as

R̂(Ā) =
i

2

{
pα + iλ′C ′(0)

α (q), C ′α
(Ā)(q)

}
=

i

2

{
q̇β, C

′(B̄)
β (q)

}
E(B̄)(Ā). (II.4.6)

They satisfy the following commutation relations
[
R̂(Ā′), R̂(Ā′′)

]
= −

√
3
[

(1,1) (1,1) (1,1)a

(Ā′) (Ā′′) (Ā)

]
R̂(Ā)

+
√

3z′′
{

C ′α
(Ā′)(q)C

′(0)
α (q), R̂(Ā′′)

}

−
√

3z′
{

C ′α
(Ā′′)(q)C

′(0)
α (q), R̂(Ā′)

}
, (II.4.7)

and the right transformation rules for the irrep matrices are

[
R̂(K̄), D

(λ,µ)
(A)(A′)(q)

]
= D

(λ,µ)
(A)(A′′)(q)

〈
(λ, µ)

A′′

∣∣∣∣ J
(1,1)

(K̄)

∣∣∣∣
(λ, µ)

A′

〉

−
√

3

2
y′C ′α

(K̄)(q)C
′(0)
α (q)D

(λ,µ)
(A)(A′)(q) . (II.4.8)

It is convenient to define the eighth transformation generator formally as [99]

R̂(0) = −λ′ . (II.4.9)

The SU(2) subalgebra of the generators R̂(0,1,M) satisfies the standard SU(2) commutation rela-
tions. These may be interpreted as spin operators because their acting on the unitary field (II.3.1)
can be realized as a spatial rotation of the skyrmion only

[
R̂(0,1,M), A(q)U0(x)A†(q)

]
= A(q)

[
J

(1,1)
(0,1,M), U0(x)

]
A†(q). (II.4.10)

Eight left transformation generators are defined as

L̂(B) =
1

2

{
R̂(A), D

(1,1)
(A)(B)(−q)

}

=
i

2

{
pβ + iλ′C ′(0)

β (q), Kβ
(B)(q)

}
+ λ′D(1,1)

(0)(B)(−q), (II.4.11)

where
Kβ

(B)(q) = C ′β
(Ā)

(q)D
(1,1)

(Ā)(B)
(−q) , (II.4.12)

the properties of which follow from (B.3)

Kβ′′
(B′′)(q)∂β′′K

β′
(B′)(q)−Kβ′′

(B′)(q)∂β′′K
β′
(B′′)(q) =

√
3
[

(1,1) (1,1) (1,1)a

(B′′) (B′) (B)

]
Kβ′

(B)(q). (II.4.13)
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By making use of (II.4.7) it may be proven that

[
L̂(B′), L̂(B′′)

]
=
√

3
[
(1,1) (1,1) (1,1)a

(B′) (B′′) (B)

]
L̂(B) . (II.4.14)

Three right transformation generators or spin operators R̂(0,1,M) commute with the left transfor-
mation generators [

R̂(0,1,M), L̂(B)

]
= 0 . (II.4.15)

The left transformation rules for the irrep matrices are

[
L̂(B), D

(λ,µ)
(A′)(A)(q)

]
=

〈
A′

∣∣∣ J
(1,1)
(B)

∣∣∣ A′′
〉

D
(λ,µ)
(A′′)(A)(q)−

√
3

2
yA D

(1,1)
(0)(B)(−q)D

(λ,µ)
(A′)(A)(q)

−
√

3

2
yA C ′(0)

α (q)C ′α
(B̄′)(q)D

(1,1)

(B̄′)(B)
(−q)D

(λ,µ)
(A′)(A)(q). (II.4.16)

It is straightforward to derive the following result

(−1)BL̂(B)L̂(−B) = (−1)ĀR̂(Ā)R̂(−Ā) + λ′2 − 3

4

− 3

16
(−1)

¯̄AC ′(0)
α (q)C ′α

( ¯̄A)
(q)C

′(0)
β (q)C ′β

(− ¯̄A)
(q) . (II.4.17)

The effective Lagrangian, which includes the WZ term takes the form:

Leff =
1

2a 1
2
(F )

(−1)ĀR̂(Ā)R̂(−Ā) +

(
1

2a1(F )
− 1

2a 1
2
(F )

)(
R̂(0,1,·) · R̂(0,1,·)

)

− λ′
i

2

{
q̇α, C ′(0)

α (q)
}
−Mcl −∆M1 −∆M2 −∆M3 −∆M ′(q)

=
1

2a 1
2
(F )

(
(−1)AL̂(A)L̂(−A) − λ′2

)
+

(
1

2a1(F )
− 1

2a 1
2
(F )

)(
R̂(0,1,·) · R̂(0,1,·)

)

− λ′
i

2

{
q̇α, C ′(0)

α (q)
}
−Mcl −∆M1 −∆M2 −∆M3. (II.4.18)

Note that the ∆M ′(q) term which depends on the quantum variables vanishes due to the intro-
duction of the left translation generators in the Lagrangian expression (II.4.18).

For the purpose of obtaining the Euler-Lagrange equations that are consistent with the canoni-
cal equation of motion of the Hamiltonian, the general method of quantization on a curved space
is employed. Sugano et al. [10, 90–92] suggested to introduce the following auxiliary function

Z(q) = − 1

16
fabf cdf ek (∂agcd) (∂bgek)− 1

4
∂a

(
fabf cd∂bgcd

)− 1

4
∂a∂bf

ab

= −1

4
∂bC

′a
(Ā)(q)E

(Ā)(B̄)∂aC
′b
(B̄)(q)

+
3

16a 1
2
(F )

(
(−1)

¯̄AC ′(0)
a (q)C ′a

( ¯̄A)
(q)C ′b

(− ¯̄A)
(q)C

′(0)
b (q) + 4

)
. (II.4.19)
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Using it, the covariant kinetic term may be defined as

2K =
1

2

{
pα + iλ′C ′(0)

α (q), q̇α
}
− Z(q)

=
1

a 1
2
(F )

(
(−1)AL̂(A)L̂(−A) − λ′2

)
+

(
1

a1(F )
− 1

a 1
2
(F )

)(
R̂(0,1,·) · R̂(0,1,·)

)
. (II.4.20)

According to the prescription [10,90–92] the effective Hamiltonian (with the constraint (II.4.9))
is constructed in the standard form as

H =
1

2
{pα, q̇α} − Leff − Z(q) = K + ∆M1 + ∆M2 + ∆M3 + Mcl . (II.4.21)

Upon renormalization the Lagrangian density (II.3.14) may be reexpressed in terms of the
left and right transformation generators. In turn the effective Hamiltonian density without the
symmetry breaking term takes the form

HSk =
1− cos F

4a2
1
2

(F )

(
f 2

π +
1

4e2

(
F ′2 +

2

r2
sin2 F

))

×
(
(−1)AL̂(A)L̂(−A) −

(
R̂(0,1,·) · R̂(0,1,·)

)
− λ′2

)

+
sin2 F

2a2
1(F )

(
f 2

π +
1

e2

(
F ′2 +

1

r2
sin2 F

))

×
((

R̂(0,1,·) · R̂(0,1,·)
)
−

(
R̂(0,1,·) · x̂

) (
R̂(0,1,·) · x̂

))

+ ∆M1 + ∆M2 + ∆M3 +Mcl . (II.4.22)

The products of the spin operators R̂(0,1,M) may be separated into the scalar and tensorial
terms as

(
R̂(0,1,·) · R̂(0,1,·)

)
−

(
R̂(0,1,·) · x̂

)(
R̂(0,1,·) · x̂

)
=

=
2

3

(
R̂(0,1,·) · R̂(0,1,·)

)
− 4π

3
Y ∗

2,M+M ′(ϑ, ϕ)
[

1 1 2

M M ′ M+M ′

]
R̂(0,1,M)R̂(0,1,M ′). (II.4.23)

The covariant kinetic term (II.4.20) is a differential operator constructed from the SU(3) left
and the SU(2) right transformation generators. The eigenstates of the Hamiltonian (II.4.21) are

∣∣∣∣
(Λ,M)

Y, T, MT ; Y ′, S, MS

〉
=

√
dim(Λ,M)D

∗(Λ,M)
(Y,T,MT )(Y ′,S,MS)(q) |0〉 . (II.4.24)

Here the quantities D on the right-hand side are the complex conjugate Wigner matrix elements
of the (Λ,M) irrep of SU(3) in terms of the quantum variables qk. The topology of the eigen-
states can be nontrivial and the quantum states contain the eighth “unphysical” quantum variable
q0.

Due to tensorial part (II.4.23) the matrix elements of the Hamiltonian density (II.4.22) for
states with the spin S > 1

2
have quadrupole moments. In the case of S = 1

2
the matrix element

of the second rank operator on the right hand side of (II.4.23) vanishes.
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5. The symmetry breaking mass term
The chiral symmetry breaking mass term for the SU(3) soliton was defined in (II.2.9). With the
ansatz (II.3.1) in (II.2.9), the symmetry breaking density operator for the general irrep (λ, µ)
becomes

LSB = −MSB =− 1

N

f 2
π

4

(
m2

0 Tr
(
U0+U †

0 − 2 · 1
)

− 2m2
8 Tr

((
U0+U †

0

)
J

(1,1)
(0,0,0)

)
D

(1,1)
(0)(0)(−q)

)
. (II.5.1)

The operator (II.5.1) contains the matrix elements D(1,1), which depend on the quantum vari-
ables qα. In this form the LSB operator mixes the representations (Λ,M) of the eigenstates of
the Hamiltonian [107]. Therefore the physical states of the system have to be calculated by a
diagonalisation of the Hamiltonian. Since the mass term is a minor part of the Lagrangian it may
considered as a perturbation in the SU(3) representation (Λ, M).

For a given irrep (λ, µ), using symbolical summation (see Appendix D), the symmetry break-
ing term depends on the profile function F (r) as

Tr
(
U0+U †

0 − 2 · 1
)

= 2

(λ,µ)∑
z,j

(
j∑

m=−j

cos 2mF (r)

)
− 2 dim(λ, µ)

= 2
sin(1 + λ)F (r) + sin(1 + µ)F (r)− sin(λ + µ + 2)F (r)

2 sin F (r)− sin 2F (r)

− 2 dim(λ, µ) . (II.5.2)

Further development of the expression (II.5.1) leads to:

Tr
((

U0+U †
0

)
J

(1,1)
(0,0,0)

)
= 2

(λ,µ)∑
z,j

2
√

3

(
1

3
(λ− µ) + z

)( j∑
m=−j

cos 2mF (r)

)

=
2
√

3

2 sin F (r)− sin 2F (r)

×
{

1

2
(1 + µ) (sin(1 + µ)F (r)− sin(λ + µ + 2)F (r))

+
1

3
(λ− µ) (sin(1 + λ)F (r) + sin(1 + µ)F (r)− sin(λ + µ + 2)F (r))

+
1

2
(1 + λ)

(
(sin F (r)− sin(2 + µ)F (r)) cos λF (r)

− (cos F (r)− cos(2 + µ)F (r)) sin λF (r)
)}

. (II.5.3)

For high irrep (λ, µ) the dependence of the symmetry breaking term on the profile function
F (r) differs from that in the fundamental representation (1, 0) significantly. In the latter repre-
sentation the symmetry breaking term takes the standard form

MSB = f 2
π (1− cos F )

(
m2

0 +
m2

8√
3

D
(1,1)
(0)(0)(−q)

)
. (II.5.4)
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In the case of the representation (2, 0) the expression is:

MSB =
f 2

π

5

(
m2

0(1− cos F + 2 sin2 F )− m2
8√
3

(1− cos F − 4 sin2 F )D
(1,1)
(0)(0)(−q)

)
. (II.5.5)

Note that in both cases the asymptotical behavior of the symmetry breaking terms at large dis-
tance are different.

6. Summary
The SU(3) Skyrme model was quantized canonically in the framework of the collective coordi-
nate formalism in the representations of an arbitrary dimension. This lead to the complete quan-
tum mechanical structure of the model on the homogeneous space of SU(3)/U(1). The derivation
extended previuos studies made in the fundamental representation for SU(2) and SU(3) [9,93,99]
and those of general representations of SU(2) [11–13]. The explicit representation dependence
of the quantum corrections to the Skyrme model Lagrangian was derived. This dependence is
nontrivial, especially for the Wess-Zumino and the symmetry breaking terms. The operators that
form the Hamiltonian were shown to have well defined group-theoretical properties.

In general the choice of the irrep that is used for the unitary field depends on the phenomeno-
logical aspects of the physical system to which the model is applied. Formally the variation of
the irrep can be interpreted as a modification of the Skyrme model. The representation depen-
dence of the Wess-Zumino term was shown to be absorbable into the normalization factor, with
an exception of the self adjoint irreps in which this case term vanishes. The symmetry breaking
term has different functional dependence on the profile function F (r) in different irreps. In the
case of the self adjoint representations the symmetry breaking term, which is proportional to the
coefficient m2

8 also vanishes.
The effective Hamiltonian (II.4.21) commutes with the left transformation generators L̂(A)

and the right transformation (spin) generators R̂(0,1,M)

[
L̂(A), H

]
=

[
R̂(0,1,M), H

]
= 0 , (II.6.1)

which ensures that the states (II.4.24) are the eigenstates of the effective Hamiltonian.
The symmetry breaking term does, however, not commute with the left generators

[
L̂(Z, 1

2
,M), MSB

]
6= 0 , (II.6.2)

and therefore this term mixes the states in different representations (Λ,M).
A new result of this investigation is the tensor term (II.4.23) in the Hamiltonian density ope-

rator (II.4.22). Because of the tensor operator the states with the spin S > 1
2

have quadrupole
moments.

Lets Consider the energy functional of the quantum skyrmion in the states of the (Λ,M) irrep.
The problem is simplified if the symmetry breaking term that leads to the representation mixing
is dropped

E(F ) =
CSU(3)

2 (Λ, M)− λ′2

a 1
2
(F )

+

(
1

a1(F )
− 1

a 1
2
(F )

)
S(S + 1)

+ ∆M1 + ∆M2 + ∆M3 + Mcl. (II.6.3)
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The variational condition for the energy is

δE(F )

δF
= 0 , (II.6.4)

with the usual boundary conditions F (0) = π, F (∞) = 0. At large distances this equation
reduces to the asymptotic form

r̃2F ′′ + 2r̃F ′ − (2 + m̃2r̃2)F = 0, (II.6.5)

where the quantity m̃2 is defined as

m̃2 = −e4

(
1

4ã2
1
2

(F )

(
CSU(3)

2 (Λ, M)− S(S + 1)− λ′2 + 1
)

+
2 S(S + 1) + 3

3 ã2
1(F )

+
8∆M̃1 + 4∆M̃3

3 ã1(F )
+

∆M̃3 + 2∆M̃2

2 ã 1
2
(F )

+
1

ã1(F )ã 1
2
(F )

)
. (II.6.6)

The corresponding asymptotic solution takes the form

F (r̃) = k

(
m̃

r̃
+

1

r̃2

)
exp(−m̃r̃), k = const. (II.6.7)

The quantum corrections depends on the irrep (λ, µ) to which the unitary field U(x, t) belongs
as well as on the state irrep (Λ,M ) and the spin S. This bears on the stability of the quantum
skyrmion, which is stable if the integrals (II.3.8b, II.3.8c) and ∆Mk converge. This requirement
is satisfied only if m̃2 > 0, which is true only in the presence of the negative quantum mass
corrections ∆Mk. It is the absence of this term that leads to the instability of the skyrmion in the
semiclassical approach [13] in the SU(2) case. Note that in the quantum treatment the profile
function F (r̃) has the asymptotic exponential behavior (II.6.7) even in the chiral limit.



III. Quantum SU(3) Skyrme model with
the noncanonically embedded
SO(3) soliton

The aim of this chapter is to discuss the group-theoretical aspects of the canonical quantization
of the SU(3) Skyrme model with a new SO(3) ansatz which differs from the one proposed by
A.P. Balachandran et al. [106]. The ansatz is defined in the noncanonical SU(3) ⊃ SO(3) bases.
These bases were developed by J.P. Elliott to consider the collective motion of nuclei [108]. The
canonical quantization of the soliton leads to new expressions of the moments of inertia and the
negative quantum corrections.

1. Definitions for a soliton in the noncanonical SU(3)
bases

The unitary field U(x,t) is defined for the SU(3) group in the arbitrary irrep (λ, µ). The modified
Skyrme model is based on the standard Lagrangian density (I.3.21) where the “right” and “left”
chiral currents are defined as

Rµ = (∂µU) U † = ∂µα
iC

(L,M)
i (α)

〈 ∣∣∣ J
(1,1)
(L,M)

∣∣∣
〉

, (III.1.1a)

Lµ = U † (∂µU) = ∂µα
iC

′(L,M)
i (α)

〈 ∣∣∣ J
(1,1)
(L,M)

∣∣∣
〉

. (III.1.1b)

They have values on the SU(3) algebra [14]. The explicit expressions of functions C
(L,M)
i (α)

and C
′(L,M)
i (α) depend on fixing of eight parameters αi of the group. J

(1,1)
(L,M) are the generators

of the group in the irrep (λ, µ). We will consider here the unitary field U(x, t) in the fundamental
representation (1, 0) based on the modified ansatz.

We suggest the generalization of the usual hedgehog ansatz for any irrep j of the SU(2) group
[11]

exp i(τ · x̂)F (r) → exp i2(Ĵ · x̂)F (r) = U0

(
x̂, F (r)

)
= Dj

(
x̂, F (r)

)
, (III.1.2)

here Ĵ is a generator of the SU(2) group in the irrep j. The particular Wigner Dj matrix elements,
which represent the hedgehog ansatz for the irrep j, are

Dj
a,a′

(
x̂, F (r)

)
=

2
√

π

2j + 1
wj

l (F )
[

j l j

a m a′

]
Yl,m(θ, ϕ). (III.1.3)

The boundary conditions F (0) = π and F (∞) = 0 ensure the winding (baryon) number B = 1
for all irreps j due to the reason that the classical Lagrangian and the winding number have

59
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the same factor N = 2
3
j(j + 1)(2j + 1) which can be reduced [13]. In this work we chose

the ansatz in the three dimensional SU(2) group representation which is also the fundamental
representation of the SO(3) group. The radial functions in (III.1.3) for this ansatz are as follows:

w1
0(F ) =

√
2
(
3− 4 sin2 F

)
, w2

0(F ) =
(
5− 20 sin2 F + 16 sin4 F

)
,

w1
1(F ) = i2

√
3 sin 2F, w2

1(F ) = i
√

2 (sin 2F + 2 sin 4F ) ,

w1
2(F ) =− 4 sin2 F, w2

2(F ) =− 2
√

2 · 5√
7

(
7− 8 sin2 F

)
sin2 F,

w2
3(F ) =− i 4

√
2 sin2 F sin 2F,

w2
4(F ) =

8
√

2√
7

sin4 F. (III.1.4)

It is convenient to define the noncanonical bases of the SU(3) irrep state vectors by a reduction
chain on the subgroup SU(3) ⊃ SO(3). As we shall see later the structure of the quantum
skyrmion depends on a choice of the bases for the ansatz. For general SU(3) irreps (λ, µ) the
SO(3) subgroup parameters (L,M) and their multiplicity can be sorted out by different methods,
see [109, 110]. Here considered the fundamental (1, 0) and the adjoint (1, 1) representations
of the SU(3) group are multiplicity free. The relations between the canonical basis vectors∣∣ (1,0)
z,j,m

〉
where hypercharge y = 2

3
(µ − λ) − 2z (the reduction chain SU(3) ⊃ SU(2)), and the

noncanonical basis state vectors
∣∣(1,0)
L,M

〉
are straightforward in the fundamental representation:

∣∣∣∣
(1, 0)
1
2
, 1

2
, 1

2

〉
=

∣∣∣∣
(1, 0)

1, 1

〉
;

∣∣∣∣
(1, 0)

0, 0, 0

〉
=

∣∣∣∣
(1, 0)

1, 0

〉
;

∣∣∣∣
(1, 0)

1
2
, 1

2
,−1

2

〉
=

∣∣∣∣
(1, 0)

1,−1

〉
. (III.1.5)

The relations between the canonical basis vectors and the noncanonical basis state vectors of the
adjoint (1, 1) representation are following:

∣∣∣∣
(1, 1)

0, 1, 1

〉
= −

∣∣∣∣
(1, 1)

2, 2

〉
;

∣∣∣∣
(1, 1)

0, 0, 0

〉
= −

∣∣∣∣
(1, 1)

2, 0

〉
;

∣∣∣∣
(1, 1)

0, 1, 0

〉
=

∣∣∣∣
(1, 1)

1, 0

〉
;

∣∣∣∣
(1, 1)

0, 1,−1

〉
=

∣∣∣∣
(1, 1)

2,−2

〉
;

∣∣∣∣
(1, 1)
1
2
, 1

2
, 1

2

〉
= − 1√

2

∣∣∣∣
(1, 1)

2, 1

〉
+

∣∣∣∣
(1, 1)

1, 1

〉
;

∣∣∣∣
(1, 1)

1
2
, 1

2
,−1

2

〉
=

1√
2

∣∣∣∣
(1, 1)

2,−1

〉
+

∣∣∣∣
(1, 1)

1,−1

〉
;

∣∣∣∣
(1, 1)

−1
2
, 1

2
,−1

2

〉
= − 1√

2

∣∣∣∣
(1, 1)

2,−1

〉
+

∣∣∣∣
(1, 1)

1,−1

〉
;

∣∣∣∣
(1, 1)

−1
2
, 1

2
, 1

2

〉
= − 1√

2

∣∣∣∣
(1, 1)

2, 1

〉
− 1√

2

∣∣∣∣
(1, 1)

1, 1

〉
. (III.1.6)

The system of the noncanonical SU(3) generator in terms of the canonical generators J
(1,1)
(Z,I,M),
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which are defined in (II.1.3), can be expressed as follows:

J(1,1) =
√

2
(
J

(1,1)

( 1
2
, 1
2
, 1
2
)
− J

(1,1)

(− 1
2
, 1
2
, 1
2
)

)
, J(1,0) = 2J

(1,1)
(0,1,0) ,

J(1,−1) =
√

2
(
J

(1,1)

(− 1
2
, 1
2
,− 1

2
)
+ J

(1,1)

( 1
2
, 1
2
,− 1

2
)

)
, J(2,2) = −2J

(1,1)
(0,1,1) ,

J(2,1) = −
√

2
(
J

(1,1)

( 1
2
, 1
2
, 1
2
)
+ J

(1,1)

(− 1
2
, 1
2
, 1
2
)

)
, J(2,0) = −2J

(1,1)
(0,0,0) ,

J(2,−1) = −
√

2
(
J

(1,1)

(− 1
2
, 1
2
,− 1

2
)
− J

(1,1)

( 1
2
, 1
2
,− 1

2
)

)
, J(2,−2) = 2J

(1,1)
(0,1,−1) . (III.1.7)

They satisfy the commutation relations

[
J(L′,M ′), J(L′′,M ′′)

]
= −2

√
3
[

(1,1) (1,1) (1,1)a

L′,M ′ L′′,M ′′ L,M

]
J(L,M). (III.1.8)

The coefficient on the right hand side of (III.1.8) are the SU(3) noncanonical Clebsch-Gordan
coefficient. The relations between the noncanonical basis state vectors and the canonical state
vectors for the adjoint representation (1, 1) are similar to the relations of the generators (III.1.7),
with the only difference in the normalization factor of 1/2 to keep the state vectors normalized.

The noncanonical Clebsch-Gordan coefficients of SU(3) which are used for the calculation of
the SU(3) Skyrme model with the SO(3) soliton are factorized according to

[
(1,1) (1,1) (1,1)γ

L′,M ′ L′′,M ′′ L,M

]
=

[
(1,1) (1,1) (1,1)γ

L′ L′′ L

] [
L′ L′′ L

M ′ M ′′ M

]
, (III.1.9)

where the second factor on the right hand side of equation (III.1.9) refers to the well-known CG
coefficient of SO(3), and the first factor (the noncanonical isoscalar factor) is independent of M ′,
M ′′ and M , and differs from the SU(3) isoscalar factors defined in (II.1.8). The label γ in the
CG coefficient takes two values γ = 1 and 2 for antisymmetrical and symmetrical cases. Some
isoscalar factors for the symmetrical and antisymmetrical representation are given in Appendix
C respectively.

2. Soliton quantization on the SU(3) manifold

We take the SO(3) skyrmion (III.1.3) with j = 1 as the classical ground state U0 for the ansatz.
The quantization of the Skyrme model can be achieved by means of the collective coordinates
qα(t)

U
(
x̂, F (r), q(t)

)
= A

(
q(t)

)
U0

(
x̂, F (r)

)
A†(q(t)), A

(
q(t)

) ∈ SU(3). (III.2.10)

Like before we shall consider the Skyrme Lagrangian quantum mechanically ab initio and eight
unconstraint angles qα(t) to be the quantum variables. Because the ansatz U0 does not commute
with all SU(3) generators the quantization is realized on the eight parameter group manifold.
That is to the contrary of the usual seven-dimensional homogeneous space SU(3)/U(1) in the
canonical embedded soliton case [75]. The generalized coordinates qβ(t) and the velocities
q̇α (t) satisfy the commutation relations

[
q̇α, qβ

]
= −igαβ(q), (III.2.11)
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where the explicit form of the symmetric tensor gαβ(q) is determined after the quantization
condition has been imposed.

For the purpose of defining the metric tensor in the Lagrangian we use an approximate ex-
pression

A†Ȧ ≈
1

2

{
q̇α, C ′(L,M)

α (q)
} 〈 ∣∣ J(L,M)

∣∣ 〉
+ ... (III.2.12)

which will be specified later.
After substitution of the ansatz (III.1.3) into the model Lagrangian density (I.3.21), it takes a

form (I.7.7) which is quadratic in the velocities q̇α. The metric tensor is

gαβ(q, F ) = C ′(L,M)
α (q)E(L,M)(L′,M ′)(F )C

′(L′,M ′)
β (q), (III.2.13)

with
E(L,M)(L′,M ′)(F ) = −(−1)MaL(F )δL,L′δM,−M ′ . (III.2.14)

The soliton moments of inertia are given as integrals over the dimensionless variable r̃ = efπr

a1(F ) =
1

e3fπ

8π

3

∫
dr̃r̃2 sin2 F

(
1 + F ′2 +

1

r̃2
sin2 F

)
, (III.2.15a)

a2(F ) =
1

e3fπ

8π

5

∫
dr̃r̃2

(
sin2 F

(
3 + 2 cos 2F + (9 + 8 cos 2F ) F ′2

)

+ (9 + 4 cos 2F )
sin2 F

r̃2

)
. (III.2.15b)

The first moment of inertia a1(F ) coincides with the SU(2) soliton moment of inertia, however
the second moment of inertia a2(F ) differs from the second soliton momenta of inertia (II.3.8c)
in the usual SU(3) ⊃ SU(2) ansatz case. The employment of the noncanonical SU(3) basis leads
to the moments (III.2.15) which do not agree with the SO(3) soliton moments of inertia defined
in [106].

The canonical momenta are defined as

pβ =
∂L

∂q̇β
=

1

2
{q̇α, gαβ} . (III.2.16)

They are conjugate to the coordinates and satisfy the commutation relations [pβ, qα] = −iδαβ .
These relations and the equation (III.2.16) fix the explicit expressions of the functions introduced
in (III.2.11)

gαβ(q) = (gαβ)−1 = C ′α
(L,M)(q)E

(L,M)(L′,M ′)(F )C ′β
(L′,M ′)(q), (III.2.17)

where
E(L,M)(L′,M ′)(F ) = −(−1)M 1

a(L)(F )
δL,L′δM,−M ′ . (III.2.18)

Having determined the function gαβ(q) we can obtain an explicit expression of A†Ȧ:

A†Ȧ = A† {q̇α, A}
=

1

2

{
q̇α, C ′(LM)

α (q)
} 〈 ∣∣ J(LM)

∣∣ 〉

− i

2
E(L1M1)(L2M2)

〈 ∣∣ J(L1M1)J(L2M2)

∣∣ 〉
. (III.2.19)
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Eight right transformation generators are defined as

R̂(L,M) =
i

2

{
pα, C ′α

(L,M)(q)
}

=
i

2

{
q̇β, C

′(L′,M ′)
β (q)

}
E(L′,M ′)(L,M). (III.2.20)

They satisfy the commutation relations (III.1.8). Here the functions C ′α
(L,M)(q) are dual to the

functions defined in (III.1.1)
∑

α

C ′α
(L,M)(q)C

′(L′,M ′)
α (q) = δ(L,M)(L′,M ′) , (III.2.21a)

∑
L,M

C ′α
(L,M)(q)C

′(L,M)
α′ (q) = δα,α′ . (III.2.21b)

The action of the right transformation generators on the Wigner matrix of the SU(3) irrep is
well defined:

[
R̂(L,M), D

(λ,µ)
(α,L′,M ′)(β,L′′,M ′′)(q)

]
=

〈
(λ, µ)

α,L′, M ′

∣∣∣∣Ĵ(L,M)

∣∣∣∣
(λ, µ)

α0, L0,M0

〉

×D
(λ,µ)
(α0,L0,M0)(β,L′′,M ′′)(q). (III.2.22)

The indices α and β label the multiplets of (L,M). The substitution of the ansatz (III.2.10) into
the model Lagrangian density (I.3.21) and integration over the spatial coordinates leads to the
effective Lagrangian of the form

Leff =
1

2a2(F )
(−1)M R̂(L,M)R̂(L,−M) +

(
1

2a1(F )
− 1

2a2(F )

)

× (−1)m
(
R̂(1,m) · R̂(1,−m)

)
−Mcl −∆M1 −∆M2 −∆M3, (III.2.23)

where Mcl is the classical skyrmion mass, and ∆Mk =
∫

d3x∆Mk(F ) are the quantum correc-
tions to the Lagrangian:

∆M1 =− 2 sin2 F

a2
1(F )

(
f 2

π (2− cos 2F ) +
3

e2

(
F ′2 (2 + cos 2F ) +

sin2 F

r2

))
; (III.2.24a)

∆M2 =− 2 sin2 F

a2
2(F )

(
f 2

π (14 + 11 cos 2F ) +
3

e2

(
F ′2 (42 + 41 cos 2F )

+ (25 + 12 cos 2F )
sin2 F

r2

))
;

(III.2.24b)

∆M3 =− 4 sin2 F

a1(F ) a2(F )

(
f 2

π (4 + cos 2F ) +
3

e2

(
F ′2 (6 + 5 cos 2F )

+ (1− cos 2F )
sin2 F

r2

))
.

(III.2.24c)

Two operators in (III.2.23) are the quadratic Casimir operators of the SU(3) and SO(3) groups:

ĈSU(3)
2 = (−1)AJ

(1,1)
(A) J

(1,1)
(−A) =

1

4
(−1)mR(1,m)R(1,−m) +

1

4
(−1)MR(2,M)R(2,−M),

ĈSO(3)
2 = (−1)mR(1,m)R(1,−m) 6= ĈSU(2)

2 . (III.2.25)

A simple structure of the operators permits to write down the eigenfunctions in the next section.
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3. The structure of the Hamiltonian density and the
symmetry breaking term

To find the explicit expression of the Lagrangian and the Hamiltonian density of the quantum
skyrmion we take into account the explicit commutation relations (III.2.11) and (III.2.17). A
lengthy manipulation with the ansatz yields the expression of the Lagrangian density

LSk = K −Mcl −∆M1 −∆M2 −∆M3, (III.3.26)

where the kinetic (operator) part of the Lagrangian density is as follows

K =
4

a2
L(F )

(−1)M R̂(L,M)R̂(L,M ′)

{
f 2

π

4

(
δ−M,M ′ −DL

−M,M ′(x̂, F (r))
)

+
3

e2

(
δ−M,M ′ −DL

−M,M ′(x̂, F (r))
) {(

F ′2 − 1

r2
sin2 F

)

×
2
√

π(2L + 1)
√

1
2
l + 1

√
3(5− 2L)

√
2l + 1

(−1)L+M+ 1
2
l+1

{
1 1 l

L L L

}

×
[

L L l

M M ′ m

]
Yl,m(θ, ϕ) +

1

r2
sin2 F

1

(5− 2L)
δ−M,M ′

}}
. (III.3.27)

Here the Wigner DL
M,M ′(x̂, F (r)) matrices are used which in fact are the hedgehog anzatz for

the irrep L = 1 and 2 in (III.1.3). The maximal l of the spherical functions Yl,m(θ, ϕ) which
appear in (III.3.27) are l = 4.

We define the momentum density as Pβ = ∂L
∂q̇β . The kinetic energy density is defined as

2K = 1
2

{Pβ, q̇β
}

. Thus the Skyrme model Hamiltonian density takes the form

H =
1

2

{Pβ, q̇β
}− LSk = K +Mcl + ∆M1 + ∆M2 + ∆M3. (III.3.28)

The operator (kinetic) part of the Lagrangian (III.2.23) and the kinetic part of the correspon-
ding Hamiltonian depend on the quadratic Casimir operators of the SU(3) and SO(3) groups
which are constructed using the right transformation generators (III.2.20). The eigenstates of
the Hamiltonian H =

∫
d3xH are

∣∣∣∣
(Λ, Θ)

α, S,N ; β, S ′, N ′

〉
=

√
dim(Λ, Θ)D

∗(Λ,Θ)
(α,S,N)(β,S′,N ′)(q) |0〉 , (III.3.29)

where the complex conjugate Wigner matrix elements of the (Λ, Θ) representation depend on
eight quantum variables qβ . The indices α and β label the multiplets of the SO(3) group. |0〉
denotes the vacuum state. Due to the structure of the density operator (III.3.27), the noncanonical
soliton mass distribution has a complex but well defined tensorial structure which depends on
radial functions F (r) and the spherical harmonics Yl,m(θ, ϕ) of order l = 1, 2, 3, 4.

The mass or energy functional of the equation state is following

M =
2

3a2(F )

(
Λ2 + Θ2 + ΛΘ + 3Λ + 3Θ

)

+

(
1

2a1(F )
− 1

2a2(F )

)
S(S + 1) + Mcl + ∆M1 + ∆M2 + ∆M3 . (III.3.30)
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In contrast to the positive impact of the Casimir operators (quantum rotation) to the classical
mass Mcl, the quantum corrections ∆M which appear from the commutation relations are nega-
tive.

We take into account the chiral symmetry breaking effects by introducing a term

MSB =
1

4N
fπm2

0 Tr
(
U + U † − 2

)
, (III.3.31)

which takes an explicit form

MSB =
1

2
fπm2

0 sin2 F. (III.3.32)

In (III.3.31) we used the same normalization factor N = 4 which is defined for the SO(3)
classical soliton j = 1.

A direct calculation shows that the Wess-Zumino term LWZ is equal to zero for the noncano-
nically embedded SO(3) soliton.

4. Summary
In this chapter we have considered a new ansatz for the Skyrme model which is the nonca-
nonically embedded SU(3) ⊃ SO(3) soliton. The strict canonical quantization of the soliton
leads to new expressions of the moments of inertia and the negative quantum corrections ∆M .
The quantum corrections which appear from the commutation relations compensate the effect
of the positive SU(3) and SO(3) “rotation” kinetic energy. The variation of the quantum energy
functional (III.3.30) allow to find the stable solutions of quantum skyrmions even without the
symmetry breaking term. The shape of the quantum skyrmion is not fixed like in the semiclas-
sical “rigid body” case and the infinite tower of solutions for the higher representations (Λ, Θ)
is absent. It means that the “fast rotation” destroys the quantum skyrmion. The unitary field
U(x, t) for the SU(3) Skyrme model can be defined in an arbitrary irrep (λ, µ). The SU(2) and
SO(3) ansatzes can be constructed as the reducible representations of the SU(2) embedded into
the SU(3) irrep (λ, µ) in different ways. It can generate different types of quantum skyrmions.
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IV. Noncanonically embedded rational
map soliton in the quantum SU(3)
Skyrme model

The aim of this chapter is to discuss the group-theoretical aspects of the canonical quantization
of the SU(3) Skyrme model in the rational map antsatz approximation with the baryon number
B ≥ 2. The ansatz is defined in the noncanonical SU(3) ⊃ SO(3) bases as an SO(3) solitonic
solution. The canonical quantization generates five different moments of inertia. The proposed
ansatz can be used to describe light nuclei as special skyrmions.

1. Noncanonical embedding of the rational map soliton
The Skyrme model is a Lagrangian density for a unitary field U(x,t) that belongs to the general
representation of the SU(3) group [14]. We consider the unitary field in the fundamental repre-
sentation (1,0) of the SU(3) group. The chirally symmetric Lagrangian density has the standard
form (I.3.21), where the “right” and “left” chiral currents are defined as in (III.1.1) and have the
values on the SU(3) algebra. Explicit expressions of functions C

(L,M)
i (α) and C

′(L,M)
i (α) de-

pend on the group parametrization αi. The noncanonical SU(3) generators may be expressed in
terms of the canonical generators J

(1,1)
(Z,I,M) defined in (III.1.7). The canonical generators satisfy

(III.1.8) commutation relations. The state vectors for the canonical bases SU(3) ⊃ SU(2) and
the non canonical bases SU(3) ⊃ SO(3) are equivalent in fundamental representation.

We suggest to use the rational map antsatz in the SO(3) case as a matrix

(UR)M,M ′ = D1
M,M ′(κ) =

(
exp

(
2in̂aJ(1,a)F (r)

))
M,M ′

= 2 sin2 F (−1)M n̂−M n̂M ′ + i
√

2 sin 2F
[

1 1 1

M u M ′

]
n̂u

+ cos 2F δM,M ′ , (IV.1.1)

where the unit vector n̂ is defined [49] in terms of a rational complex function R(z) (I.4.3).
The triplet κ of the Euler angles is defined by n̂ and F (r). By differentiation of n̂ we get an
expression which gives the advantage of the following calculations

(−1)s(∇−srn̂m)(∇srn̂m′) = n̂mn̂m′ + I(
(−1)mδ−m,m′ − n̂mn̂m′

)
(IV.1.2)

where the symbol I is previously mentioned function (I.4.13) that solely depends on the angles
θ and ϕ.

The baryon charge density for the rational map skyrmion is expressed as

B(r, θ, ϕ) =
1

24Nπ2
ε0k`m Tr

(
RkR`Rm

)
= −2I (θ, ϕ)

Nπ2

F ′(r) sin2 F

r2
. (IV.1.3)

67
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Since this expression contains the I function, there is no need to modify the usual boundary
conditions F (0) = π and F (∞) = 0 to account for the profile function. The integral by the
spatial angles of I is proportional to the baryon number [88]

∫ 2π

0

dϕ

∫ π

0

dθ I sin θ = 4πB . (IV.1.4)

With the ansatz (IV.1.1) the Lagrangian density (I.3.21) reduces to the classical Skyrme La-
grangian for any baryon number B

Lcl(r, θ, ϕ) =−Mcl = −N

(
f 2

π

(
F ′2(r)

2
+
I sin2 F

r2

)

− 1

e2

I sin2 F

r2

(
F ′2(r) +

I sin2 F

2r2

))
, (IV.1.5)

which describes the skyrmion mass density. The normalization factor N = 4 is chosen requiring
that in the fundamental representation of SO(3) group for the spherically symmetric skyrmion
case the baryon number equals unity.

After introduction of the dimensionless coordinate r̃ = efπr, the variation of the Lagrangian
yields the following differential equation for the profile function

F ′′(r̃)
(
1 +

2B sin2 F (r̃)

r̃2

)
+

2F ′(r̃)
r̃

+
F ′2(r̃)B sin 2F (r̃)

r̃2

− B sin 2F (r̃)

r̃2
− I2 sin2 F (r̃) sin 2F (r̃)

r̃4
= 0 . (IV.1.6)

Here an abbreviation is used:

I2 =
1

4π

∫ 2π

0

dϕ

∫ π

0

dθI2 sin θ . (IV.1.7)

In the limit of r̃ →∞, the equation (IV.1.6) reduces to a simple asymptotic form

F ′′(r̃) +
2F ′(r̃)

r̃
− 2BF (r̃)

r̃2
= 0 . (IV.1.8)

From this the asymptotic large distance solution, which satisfies physical boundary conditions,
can be easily obtained as

F (r̃) = C1r̃
− 1+

√
1+8B
2 . (IV.1.9)

Here C1 is a constant that is determined by a continuous joining of the numerical small distance
solution onto the analytic asymptotic solution. Equations (IV.1.5–IV.1.9) are valid for all B,
provided that the corresponding function I is used.

2. Canonical quantization of the Soliton
In this work the quantization of the model is performed by the analogous quantization methodic
described in chapter III. The collective coordinates are employed for the separation of the vari-
ables in the unitary field UR (IV.1.1), which depend on the temporal and spatial coordinates

U
(
n̂, F (r), q(t)

)
= A

(
q(t)

)
UR

(
n̂, F (r)

)
A†(q(t)), A

(
q(t)

) ∈ SU(3). (IV.2.1)
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The same as previously, the Skyrme Lagrangian is considered quantum mechanically ab initio
in contrast to the conventional semiclassical quantization of the soliton as a rigid body. The ge-
neralized coordinates qi(t) and the corresponding velocities q̇i (t) satisfy commutation relations
(III.2.11). Due to the Weyl operator ordering (I.7.4) no further ordering ambiguity appears in the
Lagrangian or the Hamiltonian. The differentiation of the arbitrary q-dependent unitary matrix
G(q) is expressed in terms of functions C

′(L,M)
α and the matrix elements of the group generator

J(L,M)

∂

∂qα
G

(λ,µ)
(A)(B)(q) = C ′(L,M)

α (q)G
(λ,µ)
(A)(A′)(q)

〈
(λ, µ)

A′

∣∣∣∣J(L,M)

∣∣∣∣
(λ, µ)

(B)

〉
. (IV.2.2)

After substitution of the ansatz (IV.2.1) into the model Lagrangian density (I.3.21) and inte-
gration over spatial coordinates, the Lagrangian has this form:

L =
1

2
q̇αgαβ(q, F )q̇β + a0 1

2

{
q̇α, C ′(2,0)

α (q)
}

+
[
(q̇)0 – order terms

]
, (IV.2.3)

where the metric tensor gαβ(q, F ) and the intermediate function E(L,M)(L′,M ′) is defined as in eq.
(III.2.13) and eq. (III.2.14). Note that the exact expression of the coefficient a0 is not important
for the calculation of gαβ . There are five different quantum moments of inertia in (IV.2.3):

a(1,0)(F ) =
1

e3fπ

∫
d3r̃r̃2 sin2 F

(
n2

0 − 1
) (

1 + F ′2 +
I
r2

sin2 F

)
; (IV.2.4a)

a(1,1)(F ) = a(1,−1)(F ) =
1

2e3fπ

∫
d3r̃r̃2 sin2 F

(
n2

0 + 1
) (

1 + F ′2 +
I
r2

sin2 F

)
; (IV.2.4b)

a(2,0)(F ) =
1

e3fπ

∫
d3r̃r̃2 sin2 F

(
n2

0 − 1
) (

cos2 F + n2
0 sin2 F

− (
n2

0 − 4 cos2 F + 2n2
0 cos 2F

)
F ′2

+
I
r2

sin2 F
(
2 cos2 F + n2

0(4− cos 2F )
))

; (IV.2.4c)

a(2,1)(F ) = a(2,−1)(F ) =
1

2e3fπ

∫
d3r̃r̃2 sin2 F

(
3 + 2 cos 2F − 3n2

0 + 4n4
0 sin2 F

+
(
9 + 8 cos 2F − 3n2

0 − 4n4
0(1 + 2 cos 2F )

)
F ′2

+
I
r2

sin2 F
(
9 + 4 cos 2F − 15n2

0 + 4n4
0(4− cos 2F )

))
; (IV.2.4d)

a(2,2)(F ) = a(2,−2)(F ) =
1

4e3fπ

∫
d3r̃r̃2 sin2 F

(
−3− cos 2F − 12n2

0 cos2 F + 2n4
0 sin2 F

− 2
(
3 + 2 cos 2F − 24n2

0 cos2 F + n4
0(1 + 2 cos 2F )

)
F ′2

− 2I
r2

sin2 F
(
6 + cos 2F − 12n2

0 cos2 F − n4
0(4− cos 2F )

))
; (IV.2.4e)

where d3r̃ = sin θdθdϕdr̃. These quantum moments depend on the profile function F (r), one
component of the rational map vector n0 and the function I(θ, ϕ).

The canonical momenta are defined as

pβ =
∂L

∂q̇β
=

1

2
{q̇α, gαβ}+ a0C

′(2,0)
β (q). (IV.2.5)
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Note that the momenta do not commute and have terms which do not contain velocity. The
parametrization qα of the group manifold is significant for the definition of the canonical mo-
menta. For the time being we do not require [pα, pβ] = 0. The momenta and the conjugate
coordinates satisfy the commutation relations [pβ, qα] = −iδαβ . These commutation relations
determine the explicit expressions of the functions gαβ(q) = (gαβ)−1.

Determination of functions gαβ(q) allows us to obtain an explicit expression of (III.2.12):

A†Ȧ = A† {q̇α, A}
=

1

2

{
q̇α, C ′(L,M)

α (q)
} 〈 ∣∣ J(L,M)

∣∣ 〉− i

2
E(L1,M1)(L2,M2)

〈 ∣∣ J(L1,M1)J(L2,M2)

∣∣ 〉

=
1

2

{
q̇α, C ′(L,M)

α (q)
} 〈 ∣∣ J(L,M)

∣∣ 〉
+

i

2a0

· 1− i

2a2

〈 ∣∣ J(2,0)

∣∣ 〉
, (IV.2.6)

where a0 and a2 are constructed from the quantum moments of inertia:

1

a0

=
1

3

(
2

a(1,0)

+
4

a(1,1)

+
2

a(2,0)

+
4

a(2,1)

+
4

a(2,2)

)
; (IV.2.7a)

1

a2

=
1√
3

(
− 1

a(1,0)

+
1

a(1,1)

+
1

a(2,0)

+
1

a(2,1)

− 2

a(2,2)

)
. (IV.2.7b)

The field (IV.2.1) is substituted in the Lagrangian density (I.3.21) in order to obtain the ex-
plicit expression in terms of the collective coordinates and the space coordinates. After long
calculation by using (IV.2.6) and the commutation relation (III.2.11), we get a complete explicit
expression of the Skyrme model Lagrangian density

L(q, q̇,κ) =
{

q̇α, C ′(L,M1)
α (q)

}{
q̇β, C

′(L,M2)
β (q)

}
V1(κ)

+ i
{

q̇α, C ′(L,M1)
α (q)

}
V2(κ) + V3(κ)−Mcl. (IV.2.8)

The function V1 in first term results from the trace of two group generators (see (C.4) below)

V1(κ) =
f 2

π

4
(−1)M1

(
DL
−M1,M2

(κ) +
+

DL
−M,M ′(κ)− 2δ−M1,M2

)

+
1

16e2
(−1)M ′

Bm,m′(κ)
3

5− 2L

[
L 1 L

M ′
1 m M ′

] [
L 1 L

M ′
2 m′ −M ′

]

×
(

2δM1,M ′
1
DL

M2,M ′
2
(κ)− δM1,M ′

1
δM2,M ′

2
−DL

M1,M ′
1
(κ)DL

M2,M ′
2
(κ)

)
. (IV.2.9)

The function V2 results from the trace containing three group generators (see (C.5))

V2(κ) =
f 2

π

4

(
(−1)M2+M1

a(L,M2)

√
2√
3

√
L2 + L + 1

[
L L 2

M2 −M ′
2 M1

]

×
(

DL
M ′

2,M2
(κ)−

+

DL
M ′

2,M2
(κ)

)
− 1

a2

(
D2

0,M1
(κ)−

+

D2
0,M1

(κ)

))

+
1

4e2
(−1)M ′

1+M2

√
2 · 3

a(L,M2)

√
L2 + L + 1√

5− 2L
Bm,m′(κ)

[
2 1 2

M ′′
1 m M ′

1

]
×
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×
[

L 1 L

M ′′
2 m′ M ′

2

] [
L L 2

M ′
2 M ′′′

2 −M ′
1

](
δM1,M ′′

1
δM2,M ′′

2

+

DL
M ′′′

2 ,−M ′
2
(κ)

− δM1,M ′′
1
δM2,M ′′

2
δ−M2,M ′′′

2
− δM1,M ′′

1
δ−M2,M ′′′

2
DL

M ′′
2 ,M2

(κ)

+ δM2,M ′′
2
δ−M2,M ′′′

2

+

D2
M ′′

1 ,M1
(κ)

)
. (IV.2.10)

And the function V3 results from the trace containing four group generators (C.6)

V3(κ) =
f 2

π

4

4(2L1 + 1)(2L2 + 1)

a(L1,M1)a(L2,M2)

{
L1 L2 k

1 1 1

}2 [
L1 L2 k

M1 M2 u

]2

Dk
u,u(κ) +

3

a2
0

+
1

a2
2

(
1 +

+

D2
0,0(κ)

)
− 4

a(L,M)

(
1

a0

DL
M,M(κ)− (−1)M 1

a2

√
L2 + L + 1√

2 · 3

×
[

L L 2

M −M 0

]
DL

M,M(κ)

)

− 3

2e2

(2L1 + 1)(2L2 + 1)√
(5− 2L1) (5− 2L2)

(−1)M1+M2+uBm,m′(κ)
{

L1 L1 k

1 1 1

}

×
{

L2 L2 k

1 1 1

}[
L1 1 L1

M ′
1 m M ′′

1

] [
L2 1 L2

M ′
2 m′ M ′′

2

] [
L1 L1 k

M1 −M ′′
1 u

]

×
[

L2 L2 k

−M2 M ′′
2 u

] (
1

a(L1,M1)a(L2,M2)

(
δM2,M ′

2
DL1

M ′
1,M1

(κ)
(
1− (−1)k

)

− δM1,M ′
1
δM2,M ′

2
−DL1

M ′
1,M1

(κ)DL2

M ′
2,M2

(κ)

)

+
1

a(L1,M ′
1)a(L2,M2)

δM2,M ′
2
DL1

M ′
1,M1

(κ)
(
1 + (−1)k

)
)

. (IV.2.11)

Here Bm,m′(κ) are

Bm,m′(κ) = 8(−1)m+m′
n̂−mn̂−m′

(
1

r2
I sin2 F − F ′2

)

− (−1)mδm,−m′
8

r2
I sin2 F. (IV.2.12)

The terms with functions V2 and V3 are absent in the semiclassical quantization.
Integration of (IV.2.8) over the space variables gives the Lagrangian

L =
1

8

{
q̇α, C ′(L1,M1)

α (q)
}

E(L1,M1)(L2,M2)

{
q̇β, C

′(L2,M2)
β (q)

}

+ i
{

q̇α, C ′(2,0)
α (q)

}
V2 + V3 −Mcl, (IV.2.13)

where Vi =
∫

d3xVi(κ).
The canonical momenta pβ and velocities q̇α satisfy the following relations:

1

2

{
pβ, fαβ

}
= q̇α + 2iE(2,0)(L,M)C ′α

(L,M)(q)V2

= q̇α − i
2

a(2,0)

C ′α
(2,0)(q). (IV.2.14)
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1

2

{
q̇α, C ′(L,M)

α (q)
}

= E(L,M)(L′,M ′) 1

2

{
pβ, C ′β

(L′,M ′)(q)
}
− 2iE(2,0)(L,M)V2

= E(L,M)(L′,M ′) 1

2

{
pβ, C ′β

(L′,M ′)(q)
}

+ i
2

a(2,0)

V2. (IV.2.15)

It is possible to choose the parametrization on the SU(3) group manifold so that the eight
operators

R̂(L,M) =
i

2

{
pβ, C ′β

(L,M)(q)
}

=
i

2
E(L,M)(L′,M ′)

{
q̇α, C ′(L′,M ′)

α (q)
}
− 2δ(2,0)(L,M)V2, (IV.2.16)

are defined as the group generators satisfying the commutation relations
[
R̂(L1,M1), R̂(L2,M2)

]
= −2

√
3
[

(1,1) (1,1) (1,1)a

(L1,M1) (L2,M2) (L,M)

]
R̂(L,M). (IV.2.17)

It is easy to check that because of the choice (IV.2.16) the requirement [pα, pβ] = 0 is satisfied
for certain. The proof for the SU(2) group can be found in [93]. The generators (IV.2.16) act on
the Wigner matrix of the SU(3) irreducible representation as right transformation generators:

[
R̂(L,M), D

(λ,µ)
(α1L1M1)(α2L2M2)(q)

]
= D

(λ,µ)
(α1L1M1)(α2L2M2)(q)

〈
(λ,µ)

(α′2L′2M ′
2)

∣∣∣J(L,M)

∣∣∣ (λ,µ)

(α2L2M2)

〉
;

[
R̂(L,M),

+

D
(λ,µ)
(α1L1M1)(α2L2M2)(q)

]
=−

〈
(λ,µ)

(α1L1M1)

∣∣∣J(L,M)

∣∣∣ (λ,µ)

(α′1L′1M ′
1)

〉 +

D
(λ,µ)

(α′1L′1M ′
1)(α2L2M2)(q).

(IV.2.18)

The indices α1 and α2 label the multiplets of (L,M). The right transformation generators satisfy
the relation

E(L,M)(L′,M ′)R̂(L,M)R̂(L′,M ′) =
1

a(1,0)

R̂(1,0)R̂(1,0) +
1

a(2,0)

R̂(2,0)R̂(2,0)

− 1

a(1,1)

(
R̂(1,1)R̂(1,−1) + R̂(1,−1)R̂(1,1)

)
− 1

a(2,1)

(
R̂(2,1)R̂(2,−1) + R̂(2,−1)R̂(2,1)

)

+
1

a(2,2)

(
R̂(2,2)R̂(2,−2) + R̂(2,−2)R̂(2,2)

)
. (IV.2.19)

The left transformation generators are defined as

L̂(L,M) =
i

2

{
pβ, Cβ

(L,M)(q)
}

. (IV.2.20)

From (IV.2.13) we specify the coefficient a0 = 2iV2 that was undetermined in (IV.2.5) and
derive the Hamiltonian in a form

H =
1

8

{
q̇α, C ′(L1,M1)

α (q)
}

E(L1,M1)(L2,M2)

{
q̇β, C

′(L2,M2)
β (q)

}
− V3 + Mcl

=− 1

2
R̂(L1,M1)E

(L1,M1)(L2,M2)R̂(L2,M2) − 2V2

a(2,0)

R̂(2,0) − 2

(
V2

a(2,0)

)2

− V3 + Mcl. (IV.2.21)
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We define the state vectors as the complex conjugate Wigner matrix elements of the (Λ, Θ)
representation depending on eight quantum variables qα:

∣∣∣∣
(Λ, Θ)

α, S, N ; β, S ′, N ′

〉
=

√
dim(Λ, Θ)D

∗(Λ,Θ)
(α,S,N)(β,S′,N ′)(q) |0〉 . (IV.2.22)

The indices α and β label the multiplets of the SO(3) group. |0〉 denotes the vacuum state.
Because of five different moments of inertia the vectors (IV.2.22) are not the eigenstates of the
Hamiltonian (IV.2.21). The action of the Hamiltonian on vectors (IV.2.22) following (IV.2.18)
can be expressed in terms of the moments of inertia a(L,M) and the SU(3) group Clebsch-Gordan
coefficients.

The chiral symmetry breaking term (III.3.31) for the rational map soliton takes an explicit
form like in the B = 1 case (III.3.32).

3. Summary
We considered a new rational map approximation ansatz for the Skyrme model which is the
noncanonical embedded SU(3) ⊃ SO(3) soliton with the baryon number B ≥ 2. The SU(2)
rational map ansatz is not spherically symmetric. The canonical quantization leads to five diffe-
rent quantum moments of inertia in the Hamiltonian and the negative quantum mass corrections.
The state vectors are defined as the SU(3) group representation (Λ, Θ) matrix depending on eight
quantum variables qi because the ansatz does not commute with any generator of the group. The
vectors (IV.2.22) are not the eigenvectors of the Hamiltonian for higher representations. The
mixing is small. To find the eigenstate vectors, the Hamiltonian matrix must be diagonalized in
every (Λ, Θ) representation. If the baryon number B = 1 and n̂ = x̂, we get a soliton with two
different moments of inertia which was considered in previous chapter.
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Concluding statements

• The canonically quantized Skyrme model is extended to general irreducible representa-
tions (λ, µ) of SU(3), which can be treated as new discrete phenomenological parameters.
In the classical case the representation dependence is a common factor in the Lagrangian,
while the quantum corrections essentialy depend on the representation in the quantum
case.

• The representation dependence of the Wess-Zumino term arises into an factor, which is
proportional to the cubic Casimir operator value, with an exception of the self adjoint
irreducible representations in when this term vanishes.

• The symmetry breaking term has a diverse functional dependence on the profile function
F (r) in different irreducible representations (λ, µ). In the case of self adjoint representa-
tions the symmetry breaking term reduces to the SU(2) form.

• The new ansatz for the Skyrme model, which is defined in the noncanonical SU(3) ⊃
SO(3) bases, is introduced. The canonical quantization of the soliton leads to two moments
of inertia one of which coincides with the SU(2) soliton moments of inertia, and new
expressions of the quantum mass corrections. For the noncanonically embedded SO(3)
soliton the Wess-Zumino term is equal to zero.

• The rational map approximation ansatz for the Skyrme model, of the noncanonically em-
bedded SU(3) ⊃ SO(3) soliton with the baryon number B ≥ 2, is investigated. Five
different quantum moments of inertia and new quantum mass corrections follow from the
canonical quantization. Because of five different moments of inertia the state vectors are
not the eigenvectors of the Hamiltonian for higher representations. The explored ansatz
can be used to describe light nuclei as special skyrmions.
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Appendix A. Definitions for the SU(2)
soliton
The Wigner Dj function parametrization in the form [111]

Dj
m,m′(α, β, γ) = 〈j, m|e−iαĴ3e−iβĴ2e−iγĴ3|j, m′〉, (A.1)

allows to obtain the following relations:

∂

∂αi

Dj
m,n(α1, α2, α3) = ∂iD

j
m,n(α) =− 1√

2
C

(a)
i (α)

〈
j, m

∣∣Ja

∣∣j,m′
〉
Dj

m′,n(α), (A.2a)

∂iD
j
m,n(−α) =

1√
2

C
(a)
i (α) Dj

m,n′(−α)
〈
j, n′

∣∣Ja

∣∣j, n
〉
, (A.2b)

∂iD
j
m,n(α) =− 1√

2
C
′(a)
i (α) Dj

m,m′(α)
〈
j,m′∣∣Ja

∣∣j, n
〉
, (A.2c)

∂iD
j
m,n(−α) =

1√
2

C
′(a)
i (α)

〈
j, m

∣∣Ja

∣∣j, n′
〉
Dj

n′n(−α). (A.2d)

The coefficients Ca
i (α) and the Wigner matrix satisfy the relations

C
′(a)
i (α) = D1

a,a′(−α) C
(a′)
i (α), (A.3a)

C
(a)
i (α) = D1

a,a′(α) C
′(a′)
i (α), (A.3b)

Their the explicit forms [11] are listed below:

D1
mm′(α, β, γ) m′ = 1 m′ = 0 m′ = −1

m = 1 e−iα (1+cos β)
2

e−iγ e−iα − sin β√
2

e−iα (1−cos β)
2

eiγ

m = 0 sin β√
2

e−iγ cos β − sin β√
2

eiγ

m = −1 eiα (1−cos β)
2

e−iγ eiα sin β√
2

eiα (1+cos β)
2

eiγ

(A.4)

C
(a)
i (α) i = 1 i = 2 i = 3

a = + 0 −e−iα1 −i sin α2e
−iα1

a = 0 i
√

2 0 i
√

2 cos α2

a = − 0 −eiα1 i sin α2e
iα1

(A.5)
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Ci
(a)(α) a = + a = 0 a = −

i = 1 − i
2
cot α2e

iα1 − i√
2

i
2
cot α2e

−iα1

i = 2 −1
2
eiα1 0 −1

2
e−iα1

i = 3 i
2

1
sin α2

eiα1 0 − i
2

1
sin α2

e−iα1

(A.6)

The coefficients Ca
i (α) also satisfy the orthogonality relations

C
(a)
i (α) C i

(b)(α) = C
′(a)
i (α) C ′i

(b)(α) = δa,b, (A.7a)

C
(a)
l (α) Ck

(a)(α) = C
′(a)
l (α) C ′k

(a)(α) = δl,k. (A.7b)

The Wigner inverse function D−1 can be denoted in several ways:
(
D−1(α, β, γ)

)j

m,m′
= D†j

m,m′(α, β, γ) = D∗j
m′,m(α, β, γ) = Dj

m,m′(−γ,−β,−α). (A.8)

Some differential forms of the SU(2) Wigner matrices do not depend on parametrization (A.1)
but preserve orthogonality relations (A.3) and (A.7), and are useful in calculations:

( ∂

∂xk

Dj
m,n(α)

)
Dj

n,m′(−α) = − 1√
2

∂

∂xk

αi · C(a)
i (α)

〈
j, m

∣∣Ja

∣∣j, m′〉

= −√
1
2
j(j+1)

∂

∂xk

αi · C(a)
i (α)

[
j 1 j

m′ a m

]
; (A.9a)

Dj
m,n(−α)

( ∂

∂xk

Dj
n,m′(α)

)
= − 1√

2

∂

∂xk

αi · C ′(a)
i (α)

〈
j,m

∣∣Ja

∣∣j, m′〉

= −√
1
2
j(j+1)

∂

∂xk

αi · C ′(a)
i (α)

[
j 1 j

m′ a m

]
; (A.9b)

( ∂

∂xk

Dj
m,n(α)

)
Dj

n,m′(−α) =
√

1
2
j(j+1)

( ∂

∂xk

D1
n,n′′(α)

)
D1

n′′,n′(−α)
[

1 1 1

n′ a n

][
j 1 j

m′ a m

]

=
( ∂

∂xk

D1
n,n′′(α)

)
D1

n′′,n′(−α)
[

1 1 1

n′ a n

]〈
j,m

∣∣Ja

∣∣j, m′〉. (A.9c)

The unit vector x̂ = x
r

in the contravariant circular coordinates is defined in respect to the
Cartesian, spherical and circular covariant coordinate systems as

x+1=− 1√
2
(x1 − ix2) =− 1√

2
sin ϑe−iϕ =− x−1, (A.10a)

x0 =x3 = cos ϑ =x0, (A.10b)

x−1=
1√
2
(x1 + ix2) =

1√
2

sin ϑeiϕ =− x+1, (A.10c)

respectively. The unit vector can also be expressed by spherical harmonics

x̂a =
2
√

π√
3

Y1,a(ϑ, ϕ), (A.11)
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where the angles θ and ϕ are the polar angles that define the direction of the unit vector x̂ in the
spherical coordinates.

The Euler angles of the D(α) Wigner matrix are expresed in terms of the profile function F (r)

α1(x) = ϕ− arctan(cos ϑ tan F (r))− π

2
, (A.12a)

α2(x) = −2 arcsin(sin ϑ sin F (r)), (A.12b)

α3(x) = −ϕ− arctan(cos ϑ tan F (r)) +
π

2
. (A.12c)

The differential operators in the spherical coordinates is defined as [111]

∂

∂x
= sin ϑ cos ϕ

∂

∂r
+

1

r
cos ϑ cos ϕ

∂

∂ϑ
− sin ϕ

r sin ϑ

∂

∂ϕ
, (A.13a)

∂

∂y
= sin ϑ sin ϕ

∂

∂r
+

1

r
cos ϑ sin ϕ

∂

∂ϑ
+

cos ϕ

r sin ϑ

∂

∂ϕ
, (A.13b)

∂

∂z
= cos ϑ

∂

∂r
− 1

r
sin ϑ

∂

∂ϑ
. (A.13c)

The circular components of the differential operator are:

∇+1=− 1√
2

( ∂

∂x
+ i

∂

∂y

)
=− 1√

2
eiϕ

(
sin ϑ

∂

∂r
+

1

r
cos ϑ

∂

∂ϑ
+

i

r sin ϑ

∂

∂ϕ

)
, (A.14a)

∇0 =
∂

∂z
= cos ϑ

∂

∂r
− 1

r
sin ϑ

∂

∂ϑ
, (A.14b)

∇−1=
1√
2

( ∂

∂x
− i

∂

∂y

)
=

1√
2
e−iϕ

(
sin ϑ

∂

∂r
+

1

r
cos ϑ

∂

∂ϑ
− i

r sin ϑ

∂

∂ϕ

)
. (A.14c)

The actions of the differential operator are:

∇b r = x̂b, ∇b F (r) = x̂b F ′(r), ∇b x̂a =
1

r

(
(−1)b δ−b,a − x̂b x̂a

)
,

∇b xa = δb,a, ∇b xa = (−1)b δ−b,a. (A.15)

In the rational map case it is useful to use the modified differential operator ∇̄a, which is defined
in coordinate system with the unit vectors n̂a of the rational map representations:

∇a = ba,a′∇̄a′ , ∇̄a′(r n̂a) = δa,a′ , ba,a′ = ∇a

(
r n̂a′) = (−1)a′∇a

(
r n̂−a′

)
,

(−1)s b−s,m bs,m′ = (−1)s(∇−sr n̂m)(∇sr n̂m′) = n̂mn̂m′ + I(
(−1)mδ−m,m′ − n̂mn̂m′

)
.

(A.16)

The SU(2) Wigner matrix expressions in the circular coordinates:

D1
a,a′(α) = 2 sin2 F (−1)ax̂−ax̂a′

+ i
√

2 sin 2F
[

1 1 1

a u a′

]
x̂u

+ cos 2F δa,a′

;

D1
a,a′(−α) = 2 sin2 F (−1)ax̂−ax̂a′

− i
√

2 sin 2F
[

1 1 1

a u a′

]
x̂u

+ cos 2F δa,a′ .

(A.17)
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Here the inverses matrices D(−α) are obtained from D(α) by changing the sign of F .
The differential forms of the SU(2) Wigner matrices

∇bD
1
a,a′(α) = 2

(
sin 2F · F ′ − 2

r
sin2 F

)
(−1)ax̂bx̂−ax̂a′

+ i
√

2
(
2 cos 2F · F ′ − 1

r
sin 2F

)[1 1 1

a u a′

]
x̂ux̂b

+
2

r
sin2 F

(
δb,ax̂a′ + (−1)a+bδ−b,a′x̂−a

)− 2 sin 2F · F ′ δa,a′x̂b

+ i
√

2
1

r
sin 2F

[
1 1 1

a′ b a

]
, (A.18a)

and their combinations of two, three and four Wigner matrices:

(∇bD
1
a,a′′(α)

)
D1

a′′,a′(−α) = i
√

2
(
2F ′ − 1

r
sin 2F

)[1 1 1

a u a′

]
x̂ux̂b

+
2

r
sin2 F

(
δa,b x̂a′ − (−1)a+bδb,−a′ x̂−a

)

+ i

√
2

r
sin 2F

[
1 1 1

a′ b a

]
, (A.18b)

(−1)b
(
∇bD

1
a,a1

(α)
)
D1

a1,a2
(−α)

(
∇−bD

1
a2,a′(α)

)
=

= 4
(
F ′2 cos 2F − 1

r2
sin2 F (1 + 2 sin2 F )

)
(−1)ax̂−ax̂a′

− i 4
√

2 sin 2F
(
F ′2 +

1

r2
sin2 F

)[1 1 1

a u a′

]
x̂u

− 4 cos 2F
(
F ′2 +

1

r2
sin2 F

)
δa,a′ , (A.18c)

(−1)bD1
a,a1

(−α)
(
∇bD

1
a1,a2

(α)
)
D1

a2,a3
(−α)

(
∇−bD

1
a3,a′(α)

)
=

(−1)b
(
∇bD

1
a,a1

(α)
)
D1

a1,a2
(−α)

(
∇−bD

1
a2,a3

(α)
)
D1

a3,a′(−α) =

= 4
(
F ′2 − 1

r2
sin2 F

)
(−1)ax̂−ax̂a′

− 4
(
F ′2 +

1

r2
sin2 F

)
δa,a′ . (A.18d)

Integrals of the Wigner D matrices:
∫ 2π

0

∫ π

0

DI1
m1,m′

1
(α)DI2

m2,m′
2
(α) sin θ dθdϕ =

=

I1+I2∑

I=|I1−I2|

∑

m,m′

[
I1 I2 I

m1 m2 m

][
I1 I2 I

m′
1 m′

2 m′

] ∫ 2π

0

∫ π

0

DI
m,m′(α) sin θ dθdϕ

=

I1+I2∑

I=|I1−I2|

∑
m

[
I1 I2 I

m1 m2 m

][
I1 I2 I

m′
1 m′

2 m

]
dI , (A.19)
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where dI :

d0 = 4π;

d 1
2

= 4π cos F ;

d1 = 4π(1− 4

3
sin2 F );

d 3
2

= 4π cos F (1− 2 sin2 F );

d2 = 4π(1− 4

5
(sin2 F + sin2 2F )). (A.20)

The SU(2) C(α) matrices can be expressed in terms of the Wigner matrices:

∂kα
iC

(a)
i (α) = − 3

√
2√

j(j+1)(2j+1)2

[
j 1 j

m′ a m

]
∂kD

j
m,n(α)Dj

n,m′(−α); (A.21a)

∂kα
iC

′(a)
i (α) = − 3

√
2√

j(j+1)(2j+1)2

[
j 1 j

m′ a m

]
Dj

m,n(−α)∂kD
j
n,m′(α). (A.21b)

Expressions of the SU(2) C(α) matrices in terms of the functions F and the vectors x̂:

−
√

2∇bα
iC

′(0,1,a)
i (α) = ∇bα

iC
(a)
i (α) = −i2

√
2

(
F ′ − 1

2r
sin 2F

)
(−1)ax̂−ax̂b

+
4

r
sin2 F

[
1 1 1

u a b

]
x̂u − i

√
2

r
sin 2F δa,b; (A.22a)

−
√

2∇bα
iC

(0,1,a)
i (α) = ∇bα

iC
′(a)
i (α) = −i2

√
2

(
F ′ − 1

2r
sin 2F

)
(−1)ax̂−ax̂b

− 4

r
sin2 F

[
1 1 1

u a b

]
x̂u − i

√
2

r
sin 2F δa,b. (A.22b)

Some combinations of the C(α) matrices used in calculations:

(−1)b∇bα
iC

(d)
i (α)∇−bα

i′C
(d′)
i′ (α) =

= 8

(
1

r2
sin2 F − F ′2

)
(−1)d+d′ x̂−dx̂−d′ − 8

r2
sin2 F (−1)d δd,−d′ ; (A.23a)

(−1)b∇bα
iC

(d)
i (α)∇−bα

i′C
′(d′)
i′ (α) =

= 8

(
1

r2
cos 2F sin2 F − F ′2

)
(−1)d+d′x̂−dx̂−d′ − 8

r2
cos 2F sin2 F (−1)d δd,−d′

+ i
16
√

2

r2
cos F sin3 F (−1)d′

[
1 1 1

u d −d′

]
x̂u; (A.23b)

(−1)b∇bα
iC

′(d)
i (α)∇−bα

i′C
(d′)
i′ (α) =

= 8

(
1

r2
cos 2F sin2 F − F ′2

)
(−1)d+d′x̂−dx̂−d′ − 8

r2
cos 2F sin2 F (−1)d′ δd′,−d

+ i
16
√

2

r2
cos F sin3 F (−1)d

[
1 1 1

u d′ −d

]
x̂u. (A.23c)
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Appendix B. Definitions for the SU(3)
soliton
The functions C

′(Ā)
α (q) defined in (II.1.2) constitute nonsingular 7×7 matrices. We can introduce

the reciprocal functions C ′α
(B̄)

(q) by
∑

Ā

C ′(Ā)
α (q) · C ′β

(Ā)
(q) = δα,β , (B.1a)

∑
α

C ′(Ā)
α (q) · C ′α

(B̄)(q) = δ(Ā)(B̄) . (B.1b)

Here (Ā) and (B̄) denote the basis of the irrep (1, 1), with an exception of the state (0, 0, 0).
The functions C ′α

(0)(q) are not defined.

The properties of the functions C
′(K)
α (q) follow from ∂α∂βD(λ,µ) = ∂β∂αD(λ,µ):

∂βC ′(K)
α (q)− ∂αC

′(K)
β (q)−

√
3
[

(1,1) (1,1) (1,1)a

(K′) (K′′) (K)

]
C
′(K′)
β (q)C ′(K′′)

α (q) = 0 , (B.2)

and are correct for all states (K) including (0, 0, 0). The following properties of the functions
C ′α

(K̄)
(q) are useful:

C ′α
(K̄′)(q)∂αC ′β

(K̄′′)(q)− C ′α
(K̄′′)(q)∂αC ′β

(K̄′)(q) +
√

3
[
(1,1) (1,1) (1,1)a

(K̄′) (K̄′′) (K̄)

]
C ′β

(K̄)
(q)

=
√

3z′′C ′(0)
α (q)C ′α

(K̄′)(q)C
′β
(K̄′′)(q)−

√
3z′C ′(0)

α (q)C ′α
(K̄′′)(q)C

′β
(K̄′)(q). (B.3)

The second order term of the Skyrme Lagrangian (I.3.21)

Tr
(
U̇

+

UU̇
+

U
)

= Tr
(
A

+

AȦ
+

AȦ
+

A
)

+ Tr
(
AU0

+

AȦ
+

AȦ
+

U0

+

A
)

− Tr
(
A

+

AȦU0

+

AȦ
+

U0

+

A
)
− Tr

(
AU0

+

AȦ
+

U0

+

AȦ
+

A
)
, (B.4)

and the fourth order term

Tr

([
U̇

+

U, (∂kU)
+

U
][

U̇
+

U,
(
∂kU

) +

U
])

= −(−1)c Tr

([
U̇

+

U, (∇cU)
+

U
][

U̇
+

U, (∇−cU)
+

U
])

=− (−1)c Tr

(
A

[ +

AȦ, (∇cU0)
+

U0

][ +

AȦ, (∇−cU0)
+

U0

] +

A

)

− (−1)c Tr

(
AU0

[ +

AȦ,
+

U0 (∇cU0)
][ +

AȦ,
+

U0 (∇−cU0)
] +

U0

+

A

)

+ (−1)c Tr

(
A

[ +

AȦ, (∇cU0)
+

U0

]
U0

[ +

AȦ,
+

U0 (∇−cU0)
] +

U0

+

A

)

+ (−1)c Tr

(
AU0

[ +

AȦ,
+

U0 (∇cU0)
] +

U0

[ +

AȦ, (∇−cU0)
+

U0

] +

A

)
, (B.5)
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are expressed in more usable form for quantization procedure.
In the case of the fundamental representation the Λk matrix generators (II.1.3) reduce to the

standard Gell–Mann matrices λi:

〈(1, 0)| J (1,1)
0,0,0 |(1, 0)〉 =

〈
z=− 1

2 ,j=1
2 ,m=1

2

∣∣
〈
− 1

2 , 12 ,− 1
2

∣∣
〈

0,0,0

∣∣

|z=− 1
2 ,j=1

2 ,m=1
2〉 |− 1

2 , 12 ,− 1
2〉

∣∣0,0,0
〉

∣∣∣∣∣∣∣∣∣∣∣




− 1

2
√

3
0 0

0 − 1

2
√

3
0

0 0
1√
3




〈(1, 0)| J (1,1)
0,1,0 |(1, 0)〉 =




1
2

0 0
0 −1

2
0

0 0 0




〈(1, 0)| J (1,1)
0,1,1 |(1, 0)〉 =




0 − 1√
2

0

0 0 0
0 0 0


 〈(1, 0)| J (1,1)

0,1,−1 |(1, 0)〉 =




0 0 0
1√
2

0 0

0 0 0




〈(1, 0)| J (1,1)

− 1
2
, 1
2
, 1
2

|(1, 0)〉 =




0 0 1√
2

0 0 0
0 0 0


 〈(1, 0)| J (1,1)

− 1
2
, 1
2
,− 1

2

|(1, 0)〉 =




0 0 0
0 0 1√

2

0 0 0




〈(1, 0)| J (1,1)
1
2
, 1
2
, 1
2

|(1, 0)〉 =




0 0 0
0 0 0
0 − 1√

2
0


 〈(1, 0)| J (1,1)

1
2
, 1
2
,− 1

2

|(1, 0)〉 =




0 0 0
0 0 0
1√
2

0 0




(B.6)

Symbols by the first matrix denote the basis functions
〈
z, j, m

∣∣.
The antisymmetrical isoscalar factors are:

[
(1,1) (1,1) (1,1)γ=1

(Y )Z,I (1)− 1
2
, 1
2

(Y +1)Z− 1
2
,I+ 1

2

]
=

[
(I−Z+1)(Z−I+1)(I−Z+3)

3·4(I+1)

] 1
2

;

[
(1,1) (1,1) (1,1)γ=1

(Y )Z,I (1)− 1
2
, 1
2

(Y +1)Z− 1
2
,I− 1

2

]
=

[
(I+Z)(I+Z+2)(−I−Z+2)

3·4·I

] 1
2

;

[
(1,1) (1,1) (1,1)γ=1

(Y )Z,I (−1)
1
2
, 1
2

(Y−1)Z+ 1
2
,I+ 1

2

]
=−

[
(I+Z+1)(I+Z+3)(−I−Z+1)

3·4(I+1)

] 1
2

;

[
(1,1) (1,1) (1,1)γ=1

(Y )Z,I (−1)
1
2
, 1
2

(Y−1)Z+ 1
2
,I− 1

2

]
=

[
(I−Z)(I−Z+2)(Z−I+2)

3·4·I

] 1
2

;
[

(1,1) (1,1) (1,1)γ=1

(Y )Z,I (0)0,1 (Y )Z,I±1

]
= 0;

[
(1,1) (1,1) (1,1)γ=1

(Y )Z,I (0)0,1 (Y )Z,I

]
=

[
I(I+1)

3

] 1
2

;
[

(1,1) (1,1) (1,1)γ=1

(Y )Z,I (0)0,0 (Y )Z,I

]
= Z. (B.7)



Appendix B. Definitions for the SU(3) soliton 85

The symmetrical isoscalar factors are:

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (1)− 1
2
, 1
2

(Y +1)Z− 1
2
,I+ 1

2

]
=−

[
(I−Z+1)(Z−I+1)(I−Z+3)

3·5(I+1)

] 1
2

×(I+Z+ 1
2
);

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (1)− 1
2
, 1
2

(Y +1)Z− 1
2
,I− 1

2

]
=

[
(I+Z)(I+Z+2)(−I−Z+2)

3·5·I

] 1
2

×(I−Z+ 1
2
);

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (−1)
1
2
, 1
2

(Y−1)Z+ 1
2
,I+ 1

2

]
=−

[
(I+Z+1)(I+Z+3)(−I−Z+1)

3·5(I+1)

] 1
2

×(I−Z+ 1
2
);

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (−1)
1
2
, 1
2

(Y−1)Z+ 1
2
,I− 1

2

]
=−

[
(I−Z)(I−Z+2)(Z−I+2)

3·5·I

] 1
2

×(I+Z+ 1
2
);

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (0)0,1 (Y )Z,I+1

]
=

[
(I+Z+1)(I+Z−1)(I−Z+1)(I−Z−1)(I+Z+3)(I−Z+3)

3·5(I+1)(2I+3)

] 1
2

;

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (0)0,1 (Y )Z,I−1

]
=−

[
(I+Z)(I−Z)(I+Z+2)(I+Z−2)(I−Z+2)(I−Z−2)

3·5·I(2I−1)

] 1
2

;

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (0)0,1 (Y )Z,I

]
= [3·5·I(I+1)]−

1
2 × (Z(I2+I−Z2+4)) ;

[
(1,1) (1,1) (1,1)γ=2

(Y )Z,I (0)0,0 (Y )Z,I

]
= 5−

1
2×(I2+I−Z2−1). (B.8)

The isoscalar factors and the Clebsch–Gordan coefficients for the representation (0,0) are
[112]:

[
(λ,µ) (µ,λ) (0,0)

Z,I Z′,I′ 0,0

]
=− (−1)Z+I

[
2(2I+1)

(λ+1)(µ+1)(λ+µ+2)

] 1
2
δ−Z,Z′δI,I′ ; (B.9a)

[
(λ,µ) (µ,λ) (0,0)

Z,I,M Z′,I′,M ′ 0,0,0

]
=− (−1)Z+M

[
2

(λ+1)(µ+1)(λ+µ+2)

] 1
2
δ−Z,Z′δI,I′δ−M,M ′ . (B.9b)

For easier manipulation with expressions we group some symmetry properties of the isoscalar
factors

[
(1,1) (1,1) (1,1)γ

(Y ′)Z′,I′ (Y ′′)Z′′,I′′ (Y )Z,I

]
=

= (−1)I′+I′′−I+γ
[

(1,1) (1,1) (1,1)γ

(Y ′′)Z′′,I′′ (Y ′)Z′,I′ (Y )Z,I

]
=

= (−1)I′+I′′−I+γ
[

(1,1) (1,1) (1,1)γ

(−Y ′)−Z′,I′ (−Y ′′)−Z′′,I′′ (−Y )−Z,I

]
=

= (−1)I′′−I+Z′
[

2I′′+1

2I+1

] 1
2 [

(1,1) (1,1) (1,1)γ

(−Y ′)−Z′,I′ (Y )Z,I (Y ′′)Z′′,I′′

]
=

= (−1)I′+Z′+γ

[
2I′′+1

2I+1

] 1
2 [

(1,1) (1,1) (1,1)γ

(Y ′)Z′,I′ (−Y )−Z,I (−Y ′′)−Z′′,I′′

]
=

= (−1)I′−I−Z′′
[

2I′+1

2I+1

] 1
2 [

(1,1) (1,1) (1,1)γ

(Y )Z,I (−Y ′′)−Z′′,I′′ (Y ′)Z′,I′

]
=

= (−1)I′′−Z′′+γ

[
2I′+1

2I+1

] 1
2 [

(1,1) (1,1) (1,1)γ

(−Y )−Z,I (Y ′′)Z′′,I′′ (−Y ′)−Z′,I′

]
, (B.10)
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and the SU(3) Clebsch–Gordan coefficients

[
(1,1) (1,1) (1,1)γ

Z′,I′,M ′ Z′′,I′′,M ′′ Z,I,M

]
=

= (−1)γ
[

(1,1) (1,1) (1,1)γ

Z′′,I′′,M ′′ Z′,I′,M ′ Z,I,M

]
=

(−1)γ
[

(1,1) (1,1) (1,1)γ

−Z′,I′,−M ′ −Z′′,I′′,−M ′′ −Z,I,−M

]
=

= (−1)Z′+M ′
[

(1,1) (1,1) (1,1)γ

−Z′,I′,−M ′ Z,I,M Z′′,I′′,M ′′

]
=

(−1)Z′+M ′+γ
[

(1,1) (1,1) (1,1)γ

Z′,I′,M ′ −Z,I,−M −Z′′,I′′,−M ′′

]
=

= (−1)Z′′+M ′′
[

(1,1) (1,1) (1,1)γ

Z,I,M −Z′′,I′′,−M ′′ Z′,I′,M ′

]
=

(−1)Z′′+M ′′+γ
[

(1,1) (1,1) (1,1)γ

−Z,I,−M Z′′,I′′,M ′′ −Z′,I′,−M ′

]
. (B.11)

The series of the Clebsch–Gordan coefficients

J
(1,1)
(A) J

(1,1)
(B) =

[
(1,1) (1,1) (0,0)

(A) (B) (0)

]
J

(0,0)
(0) +

[
(1,1) (1,1) (1,1)γ=1

(A) (B) (C)

]
J
′(1,1)
(C)

+
[

(1,1) (1,1) (1,1)γ=2

(A) (B) (C)

]
J
′′(1,1)
(C) +

[
(1,1) (1,1) (3,0)

(A) (B) (C)

]
J

(3,0)
(C)

+
[

(1,1) (1,1) (0,3)

(A) (B) (C)

]
J

(0,3)
(C) +

[
(1,1) (1,1) (2,2)

(A) (B) (C)

]
J

(2,2)
(C) . (B.12)

The submatrix elements are expressed by using a series of the Clebsch–Gordan coefficients
(B.12)

[
(1,1) (1,1) (0,0)

(A) (B) (0)

]〈
(λ,µ)

(D)

∣∣∣ J
(1,1)
(A) J

(1,1)
(B)

∣∣∣ (λ,µ)

(D)

〉
=

〈
(λ,µ)

(D)

∣∣∣ J
(0,0)
(0)

∣∣∣ (λ,µ)

(D)

〉

=
〈
(λ, µ)

∥∥ J (0,0)
∥∥ (λ, µ)

〉 [
(λ,µ) (0,0) (λ,µ)

(D) (0) (D)

]
; (B.13a)

[
(1,1) (1,1) (1,1)γ=1

(A) (B) (C)

]〈
(λ,µ)

(D′)

∣∣∣ J
(1,1)
(A) J

(1,1)
(B)

∣∣∣ (λ,µ)

(D)

〉
=

〈
(λ,µ)

(D′)

∣∣∣ J
′(1,1)
(C)

∣∣∣ (λ,µ)

(D)

〉

=
〈
(λ, µ)

∥∥ J ′(1,1)
∥∥ (λ, µ)

〉 [
(λ,µ) (1,1) (λ,µ)γ=1

(D) (C) (D′)

]
; (B.13b)

[
(1,1) (1,1) (1,1)γ=2

(A) (B) (C)

]〈
(λ,µ)

(D′)

∣∣∣ J
(1,1)
(A) J

(1,1)
(B)

∣∣∣ (λ,µ)

(D)

〉
=

〈
(λ,µ)

(D′)

∣∣∣ J
′′(1,1)
(C)

∣∣∣ (λ,µ)

(D)

〉

=
〈
(λ, µ)

∥∥ J ′′(1,1)
∥∥ (λ, µ)γ=1

〉 [
(λ,µ) (1,1) (λ,µ)γ=1

(D) (C) (D′)

]

+
〈
(λ, µ)

∥∥ J ′′(1,1)
∥∥ (λ, µ)γ=2

〉 [
(λ,µ) (1,1) (λ,µ)γ=2

(D) (C) (D′)

]
. (B.13c)

Here we choose
〈
(λ, µ)

∥∥ J ′(1,1)
∥∥ (λ, µ)γ=2

〉
= 0.



Appendix B. Definitions for the SU(3) soliton 87

The exact expressions of the submatrix elements follow from the equations (B.13):

〈
(λ, µ)

∥∥ J (0,0)
∥∥ (λ, µ)

〉
=− 1

2
√

2
CSU(3)

2 (λ, µ); (B.14a)

〈
(λ, µ)

∥∥ J (1,1)
∥∥ (λ, µ)

〉
=

√
CSU(3)

2 (λ, µ); (B.14b)

〈
(λ, µ)

∥∥ J ′(1,1)
∥∥ (λ, µ)

〉
=−

√
3

2

√
CSU(3)

2 (λ, µ); (B.14c)

〈
(λ, µ)

∥∥ J ′′(1,1)
∥∥ (λ, µ)γ=1

〉
=−

√
3

2
√

5

CSU(3)
3 (λ, µ)√
CSU(3)

2 (λ, µ)
; (B.14d)

〈
(λ, µ)

∥∥ J ′′(1,1)
∥∥ (λ, µ)γ=2

〉
=

1

2
√

5

(
λµ(2 + λ)(2 + µ)(1 + λ + µ)(3 + λ + µ)

CSU(3)
2 (λ, µ)

) 1
2

; (B.14e)

where CSU(3)
2 (λ, µ) and CSU(3)

3 (λ, µ) are the eigenvalues of the quadratic and cubic Casimir op-
erators of SU(3):

CSU(3)
2 (λ, µ) =

1

3

(
λ2 + µ2 + λµ + 3λ + 3µ

)
; (B.15)

CSU(3)
3 (λ, µ) =

1

9
(λ− µ)(2λ + µ + 3)(2µ + λ + 3). (B.16)

The trace of two group generators is expressed by the formula

Tr
〈

(λ,µ)

(D)

∣∣∣ J
(1,1)
(A) J

(1,1)
(B)

∣∣∣ (λ,µ)

(D)

〉
= (−1)A 1

8
dim(λ, µ)CSU(3)

2 (λ, µ)δ(A)(−B), (B.17)

where dim(λ, µ) = 1
2
(λ + 1)µ + 1)(λ + µ + 2) is the dimension of the irrep.

The trace of three group generators is calculated by using the series of CG coefficients (B.12)
and the expressions of the submatrix elements (B.14)

Tr
〈

(λ,µ)

(D)

∣∣∣ J
(1,1)
(A) J

(1,1)
(B) J

(1,1)
(C)

∣∣∣ (λ,µ)

(D)

〉
= −(−1)ZC+MC

√
3

16
dim(λ, µ)

×
{[

(1,1) (1,1) (1,1)γ=1

(A) (B) (−C)

]
CSU(3)

2 (λ, µ) +
[

(1,1) (1,1) (1,1)γ=2

(A) (B) (−C)

] 1√
5

CSU(3)
3 (λ, µ)

}
. (B.18)

The properties of the wave functions of the SU(3) group and the transformations of the matri-
ces are similar to the SU(2) case

∣∣∣∣
(λ, µ)

Z, I,M

〉†
= (−1)Z+M

∣∣∣∣
(µ, λ)

−Z, I,−M

〉
, (B.19a)

D
(λ,µ)
(Z,I,M)(Z′,I′,M ′)(α) = (−1)Z+M−Z′−M ′

+

D
(µ,λ)
(−Z′,I′,−M ′)(−Z,I,−M)(α). (B.19b)
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According to the Wigner–Eckart theorem the differential forms of the SU(3) Wigner matrices
are expressed as follows:

∂iD
(λ,µ)
(z,j,m)(z′,j′,m′)(q) =

∂

∂qi
D

(λ,µ)
(z,j,m)(z′,j′,m′)(q)

= C
(Z,I,M)
i (q)

〈
(λ, µ)

z, j,m

∣∣∣∣J
(1,1)
(Z,I,M)

∣∣∣∣
(λ, µ)

z′′, j′′,m′′

〉
D

(λ,µ)
(z′′,j′′,m′′)(z′,j′,m′)(q)

= C
′(Z,I,M)
i (q)D

(λ,µ)
(z,j,m)(z′′,j′′,m′′)(q)

〈
(λ, µ)

z′′, j′′, m′′

∣∣∣∣J
(1,1)
(Z,I,M)

∣∣∣∣
(λ, µ)

z′, j′,m′

〉
;

(B.20a)

∂iD
(λ,µ)
(z,j,m)(z′,j′,m′)(−q) =

∂

∂qi
D

(λ,µ)
(z,j,m)(z′,j′,m′)(−q)

=− C
(Z,I,M)
i (q)D

(λ,µ)
(z,j,m)(z′′,j′′,m′′)(−q)

〈
(λ, µ)

z′′, j′′,m′′

∣∣∣∣J
(1,1)
(Z,I,M)

∣∣∣∣
(λ, µ)

z′, j′,m′

〉

=− C
′(Z,I,M)
i (q)

〈
(λ, µ)

z, j, m

∣∣∣∣J
(1,1)
(Z,I,M)

∣∣∣∣
(λ, µ)

z′′, j′′,m′′

〉
D

(λ,µ)
(z′′,j′′,m′′)(z′,j′,m′)(−q);

(B.20b)(
∂iD

(λ,µ)
(z,j,m)(z′′,j′′,m′′)(q)

)
D

(λ,µ)
(z′′,j′′,m′′)(z′,j′,m′)(−q) =

= C
(Z,I,M)
i (q)

〈
(λ, µ)

z, j,m

∣∣∣∣J
(1,1)
(Z,I,M)

∣∣∣∣
(λ, µ)

z′, j′,m′

〉
; (B.20c)

D
(λ,µ)
(z,j,m)(z′′,j′′,m′′)(−q)

(
∂iD

(λ,µ)
(z′′,j′′,m′′)(z′,j′,m′)(q)

)
=

= C
′(Z,I,M)
i (q)

〈
(λ, µ)

z, j, m

∣∣∣∣J
(1,1)
(Z,I,M)

∣∣∣∣
(λ, µ)

z′, j′,m′

〉
. (B.20d)

For the derivation of the canonical momenta it is sufficient to restrict the consideration to the
terms of second order in the velocities:

∫
sin θdθdϕ Tr

(
U̇

+

UU̇
+

U
)
≈

=
π

4
dim(λ, µ)CSU(3)

2 (λ, µ)

(
4

3

∑
M

(−1)M
{

q̇i, C
′(0,1,M)
i (q)

}{
q̇i′ , C

′(0,1,−M)
i′ (q)

}
sin2 F

+
∑
Z,M

(−1)Z+M
{

q̇i, C
′(Z, 1

2
,M)

i (q)
}{

q̇i′ , C
′(−Z, 1

2
,−M)

i′ (q)
}

(1− cos F )

)
; (B.21)

∫
sin θdθdϕ Tr

(
A

[ +

AȦ, ∂kU0

+

U0

][ +

AȦ, ∂kU0

+

U0

] +

A

)
≈

≈
∫

sin θdθdϕ Tr

(
AU0

[ +

AȦ,
+

U0∂kU0

][ +

AȦ,
+

U0∂
kU0

] +

U0

+

A

)

≈
3

26
dim(λ, µ)CSU(3)

2 (λ, µ)(−1)Z−M ′+1
{

q̇l, C
′(Z,I,M)
l (q)

}{
q̇l′ , C

′(−Z,I,M ′)
l′ (q)

}

× 2

3

∫
sin θdθdϕDI

−M ′,m′(−α)
(
∂kD

I
−m′,m′′(α)

)
DI
−m′′,m(−α)

(
∂kDI

m,M(α)
)

=
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= −π

8
dim(λ, µ)CSU(3)

2 (λ, µ)

×
(

8

3

∑
M

(−1)M
{

q̇i, C
′(0,1,M)
i (q)

}{
q̇i′ , C

′(0,1,−M)
i′ (q)

} (
F ′2 +

2

r2
sin2 F

)

+
∑
Z,M

(−1)Z+M
{

q̇i, C
′(Z, 1

2
,M)

i (q)
} {

q̇i′ , C
′(−Z, 1

2
,−M)

i′ (q)
} (

F ′2 +
2

r2
sin2 F

) )
; (B.22)

∫
sin θdθdϕ Tr

(
A

[ +

AȦ, ∂kU0

+

U0

]
U0

[ +

AȦ,
+

U0∂
kU0

] +

U0

+

A

)
≈

≈
∫

sin θdθdϕ Tr

(
AU0

[ +

AȦ,
+

U0∂kU0

] +

U0

[ +

AȦ, ∂kU0

+

U0

] +

A

)

≈ −π

8
dim(λ, µ)CSU(3)

2 (λ, µ)

×
(

8

3

∑
M

(−1)M
{

q̇i, C
′(0,1,M)
i (q)

}{
q̇i′ , C

′(0,1,−M)
i′ (q)

} (
cos 2F · F ′2 +

2

r2
sin2 F cos2 F

)

+
∑
Z,M

(−1)Z+M
{

q̇i, C
′(Z, 1

2
,M)

i (q)
}{

q̇i′ , C
′(−Z, 1

2
,−M)

i′ (q)
} (

cos F · F ′2 +
1

r2
sin 2F sin F

))
.

(B.23)

For the derivation of the Lagrangian density the following expressions are needed:

∑
M

(−1)
1
2
−M

{
J

(1,1)

( 1
2
, 1
2
,M)

, J
(1,1)

(− 1
2
, 1
2
,−M)

}
= −ĈSU(3)

2 + ĈSU(2) +
(
J

(1,1)
(0,0,0)

)2

, (B.24)

∑

M,M ′

[
1 1 1

M M ′ u

]
J

(1,1)
(0,1,M)J

(1,1)
(0,1,M ′) = − 1√

2
J

(1,1)
(0,1,u), (B.25)

[[
J

(1,1)
(0,1,·) × x̂

]
u
,
(
J

(1,1)
(0,1,·) · x̂

)]
= 2i

(
J

(1,1)
(0,1,u) − x̂u

(
J

(1,1)
(0,1,·) · x̂

))
, (B.26)

E(Ā)(B̄)(F ) J
(1,1)

(Ā)
J

(1,1)

(B̄)
=

= − 1

a 1
2
(F )

ĈSU(3)
2 +

(
1

a 1
2
(F )

− 1

a1(F )

)
ĈSU(2) +

1

a 1
2
(F )

(
J

(1,1)
(0,0,0)

)2

, (B.27)

E(Ā)(B̄)(F )DI
(B̄′)(B̄)(x̂, F (r)) J

(1,1)

(Ā)
J

(1,1)

(B̄′) =

= − cos F

a 1
2
(F )

ĈSU(3)
2 +

(
cos F

a 1
2
(F )

− cos 2F

a1(F )

)
ĈSU(2) +

cos F

a 1
2
(F )

(
J

(1,1)
(0,0,0)

)2

+ i

(
sin 2F

a1(F )
+

sin F

a 1
2
(F )

)(
J

(1,1)
(0,1,·) · x̂

)
− 2

sin2 F

a1(F )

(
J

(1,1)
(0,1,·) · x̂

)(
J

(1,1)
(0,1,·) · x̂

)
. (B.28)
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Here DI
(B̄′)(B̄)

(x̂, F (r)) is a Wigner matrix of the SU(2). The summation is over the SU(2)
representations I = 1

2
and 1, and the corresponding bases

E(Ā)(B̄)(F )
[
(1,1) (1,1) (1,1)a

(Ā) (0,1,u) (C̄)

]
J

(1,1)

(B̄)
J

(1,1)

(C̄)
=

1√
3

(
1

2a 1
2
(F )

+
1

a1(F )

)
J

(1,1)
(0,1,u), (B.29)

E(Ā)(B̄)(F )
[
(1,1) (1,1) (1,1)a

(Ā) (0,1,u) (C̄)

]
DI

(C̄′)(C̄)(x̂, F (r))J
(1,1)

(B̄)
J

(1,1)

(C̄′) =

=
1√
3

{
−

[
J

(1,1)
(0,1,·) × x̂

]
u

(
sin F

2a 1
2
(F )

+ i
2 sin2 F

a1(F )

(
J

(1,1)
(0,1,·) · x̂

))

− i

(
sin F

2a 1
2
(F )

ĈSU(3)
2 −

(
sin F

2a 1
2
(F )

− sin 2F

a1(F )

)
ĈSU(2) − sin F

2a 1
2
(F )

(
J

(1,1)
(0,0,0)

)2
)

x̂u

+

(
cos 2F

a1(F )
+

cos F

2a 1
2
(F )

+ i
sin 2F

a1(F )

(
J

(1,1)
(0,1,·) · x̂

))
J

(1,1)
(0,1,u)

}
. (B.30)
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noncanonical SU(3) soliton

The antisymmetrical isoscalar factors are:

[
(1,1) (1,1) (1,1)γ=1

1 1 1

]
=

1√
2 · 3;

[
(1,1) (1,1) (1,1)γ=1

2 2 1

]
= −

√
5√

2 · 3;

[
(1,1) (1,1) (1,1)γ=1

2 1 2

]
=

1√
2
;

[
(1,1) (1,1) (1,1)γ=1

1 2 2

]
=

1√
2
. (C.1)

The symmetrical isoscalar are:

[
(1,1) (1,1) (1,1)γ=2

2 2 2

]
= −

√
7√

2 · 5;
[

(1,1) (1,1) (1,1)γ=2

1 1 2

]
= −

√
3√

2 · 5;

[
(1,1) (1,1) (1,1)γ=2

1 2 1

]
=

1√
2
;

[
(1,1) (1,1) (1,1)γ=2

2 1 1

]
=

1√
2
. (C.2)

The submatrix elements are expressed by using a series of the Clebsch-Gordan coefficients
(B.12), some of which have exact values:

〈
(1, 0)

∥∥∥ J
(0,0)
SO(3)

∥∥∥ (1, 0)
〉

=
8

3
√

2
;

〈
(1, 0)

∥∥∥ J
(1,1)
SO(3)

∥∥∥ (1, 0)
〉

=
4√
3
;

〈
(1, 0)

∥∥∥ J
′(1,1)
SO(3)

∥∥∥ (1, 0)
〉

=− 4;

〈
(1, 0)

∥∥∥ J
′′(1,1)
SO(3)

∥∥∥ (1, 0)
〉

=− 4
√

5

3
. (C.3)

The trace of two group generators is expressed by the formula

Tr
〈

(1,0)

(D)

∣∣∣J(L1,M1)J(L2,M2)

∣∣∣(1,0)

(D)

〉
= (−1)M12 δL1,L2δM1,−M2 . (C.4)

The trace of three group generators is expressed by the formula

Tr
〈

(1,0)

(D)

∣∣∣J(A)J(B)J(C)

∣∣∣(1,0)

(D)

〉
= (−1)MC+12

√
3

{ [
(1,1) (1,1) (1,1)γ=1

(A) (B) (−C)

]

+

√
5

3

[
(1,1) (1,1) (1,1)γ=2

(A) (B) (−C)

] }
. (C.5)
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The trace of four group generators is expressed by the formula

Tr
〈

(1,0)

(D)

∣∣∣J(L1,M1)J(L2,M2)J(L3,M3)J(L4,M4)

∣∣∣(1,0)

(D)

〉
= 4

[
(2L1 + 1)(2L2 + 1)

× (2L3 + 1)(2L4 + 1)
] 1

2
∑

k

(−1)u
{

L1 L2 k

1 1 1

}{
L3 L4 k

1 1 1

}

×
[

L1 L2 k

M1 M2 −u

] [
L3 L4 k

M3 M4 u

]
. (C.6)



Appendix D. Calculations with
computer algebra system

The basis states in a general SU(3) irrep (λ, µ) are specified by the parameters (Z, I, M), where
the hypercharge is Y = 2

3
(µ − λ) − 2Z. However expressions with sums over the parameters

(Z, I, M) are inconvenient for consideration. All basis vectors of SU(3) are distributed in the
grating which is restricted by ABCDEF hexagon, and the sides of which are described only by
the parameters λ and µ (see Fig. 4).

Figure 4: The space of the basis vectors of the SU(3) representation.
The concentric circles indicate the number of independent basis vec-
tors with the same Y and M but different isospin I [112, 113].

To fulfil a symbolic summation over all basis vectors inside the hexagon for our expressions
we use the computer algebra system MATHEMATICA. The algorithm of summation was created
considering inequalities (II.1.5), which are satisfied by the basis state parameters. Summation
from the minimal to maximal isospin and hypercharge values is performed by the following
algorithm:

(Expression)/.
{
I→ x+y

2 ,Z→ y–x
2

}
;

Sum
[
%,{x,0,µ},{y,0,λ},

{
M,x+y

2 ,–x+y
2

}]
//Fullsimplify.

These above simple commands lead to the correct sum in the expressions without denomina-
tors. Using partial summation it is possible to calculate the expressions with denominators:

Function[ x−,Z−,M− ] :=
(
(Expression)/.

{
I→ x

2

})
;(

Sum
[
Function[ x,Z,M ],{x,µ,λ + µ},

{
Z,x

2 – λ,µ – x
2

}
,
{
M,–x

2,
x
2

}]
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Sum
[
Function[ x,Z,M ],{x,λ + 1,µ – 1},

{
Z,x

2 – λ,x
2

}
,
{
M,–x

2,
x
2

}]

Sum
[
Function[ x,Z,M ],{x,0,λ},

{
Z,–x

2,
x
2

}
,
{
M,–x

2,
x
2

}])
//Fullsimplify.

By using the actions (II.1.6) of the generators on the basis states, we use the MATHEMATICA
to find the matrix elements of the SU(3) group generators in any representation. The expressions
of group generators traces are derived from the actions (II.1.6) by using the appropriate permu-
tations.

0 1 2 3 4 5
r�

1

2

Π

F

HΛ, ΜL = H2, 1L

HΛ, ΜL = H1, 1L

HΛ, ΜL = H1, 0L

Classicalsolution

Figure 5: Solutions of the profile function F (r̃) for the B = 1
skyrmion in various SU(3) representations.

Numerical calculations of the integro-differential equation (II.6.3) can be performed in the
following way.

1. Using the classical profile function (see Fig. 2) and any pair of empirical baryon
observables, for example, the nucleon mass (II.2.8) and the isoscalar radius〈
r2

〉
= − 2

πe2f2
π

∫
r2F ′ sin2Fdr, we fit two model parameters fπ and e and calculate all

required integrals in the quantum equation (II.6.3).

2. Using the known asymptotic solution (II.6.7) (and its derivative) we can adopt a simple
procedure solving the differential equation and find the first approximation of the quantum
solution F1(r̃) and the constant k1 in (II.6.7).

3. The obtained function F1(r̃) can be used to recalculate fπ, e and the integrals. The proce-
dure described in item 2 can be used again to get the second approximation to the quantum
solution F2(r̃) and the constant k2.

4. This procedure can be iterated until the convergent solution and the parameters fπ, e as
well as stable values of Mcl(F ), ∆Mk(F ), ak(F ), m̃(F ) are obtained. The self-consistent
set then can be used to calculate numerous phenomenologically interesting quantities.

Quantum profile function solutions with the model parameters determined from the nucleon
mass and the isoscalar radius are shown in Fig. 5. A successful in initial guess requires only
10–20 iterations to get 5–6 fixed digits in all integrals and fπ, e values.
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Santrauka

Disertaciją sudaro disertanto mokslinių darbų sąrašas, įvadas, nagrinėjamo modelio teorinė ap-
žvalga, trys pagrindiniai skyriai, išvados, keturi priedai, kuriuose pateikiamos skaičiavimuose
naudotos pagalbinės išraiškos ir cituojamos literatūros sąrašas.

Įvade trumpai supažindinama su nagrinėjamu modeliu, pagrindžiamas darbo aktualumas, su-
formuluojami darbo tikslai ir mokslinis naujumas, pristatomi disertacijos ginamieji teiginiai ir
pateikiama darbo rezultatų aprobacija.

Pirmo skyriaus pradžioje pateikiama trumpa Skyrme’os modelio istorinė apžvalga. Toliau
aprašomas netiesinis sigma modelis, kurio pagrindu buvo sukonstruotas Skyrme’os modelis.
Pateikiamas klasikinio Skyrme’os modelio formalizmas ir jo praplėtimas įvedant aukštesnio
laipsnio lagranžiano narius. Toliau skyriuje aprašomas racionalaus atvaizdžio artinio forma-
lizmas ir įvairūs Skyrme’os modelio apibendrinimo metodai. Šiame skyriuje taip pat aprašomas
Wess-Zumino dėmens matematinis aparatas ir Skyrme’os modelio kvantavimas.

Antrame skyriuje pateikiamas Skyrme’os modelio apibendrinimas bet kuriam SU(3) grupės
neredukuotiniam įvaizdžiui (λ, µ). Skyriaus pradžioje apibrėžiamas modelio unitarusis laukas,
sukonstruojami SU(3) grupės generatoriai ir užrašomas jų veikimas į bazines būsenas. Toliau
pateikiamas SU(3) klasikinio Skyrme’os modelio formalizmas ir kanoninio kvantavimo pro-
cedūra. Kvantuojant įvedamos kvantinės kolektyvinės koordinatės, išvedamos metrinio tenzo-
riaus ir solitono inercijos momentų išraiškos. Užrašomas kvantinis lagranžianas ir nuo įvaizdžio
priklausančios kvantinės masės pataisos. Apskaičiuojamas Wess-Zumino narys ir užrašoma
hamiltoniano išraiška. Skyriaus pabaigoje pateikiamas chiralinės simetrijos pažeidimo narys.

Trečiame skyriuje įvedamas Skyrme’os modelio solitoninis sprendinys, kuris apibrėžtas ne-
kanoninėje SU(3) ⊃ SO(3) bazėje. Skyriaus pradžioje pateikiamas klasikinis sprendinys, ka-
noninių ir nekanoninių bazinių vektorių sąryšiai bei nekanoninių generatorių išraiškos. Toliau
nagrinėjamas modelio kvantavimas, užrašomos solitono inercijos momentų, efektyvaus lagran-
žiano ir kvantinių pataisų išraiškos. Skyriaus pabaigoje pateikiamos hamiltoniano tankio ir chi-
ralinės simetrijos pažeidimo nario išraiškos.

Ketvirtame skyriuje nagrinėjamas SU(3) Skyrme’os modelio nekanoniškai įdėtas solitonas
racionalaus atvaizdžio artinyje, kai barioninis krūvis B ≥ 2. Skyriaus pradžioje pateikiamas
racionalaus atvaizdžio solitoninis sprendinys, barioninio krūvio tankio išraiška ir klasikinio
modelio formalizmas racionalaus atvaizdžio artinyje. Toliau, po kanoninio kvantavimo, už-
rašomi solitono inercijos momentai, lagranžiano tankio išraiška ir naujos kvantinės pataisos.
Skyriaus pabaigoje pateikiamos hamiltoniano ir chiralinės simetrijos pažeidimo nario išraiškos.

Pagrindiniai rezultatai ir išvados:

1. Topologinis Skyrme’os modelis apibendrintas bet kuriam SU(3) grupės neredukuotiniam
įvaizdžiui (λ, µ). Jeigu klasikiniam modelyje priklausomybė nuo įvaizdžio išreiškiama
bendru daugikliu prieš Lagrange’o funkciją, tai kanoniškai kvantuojant kvantinės pataisos
esminiai priklauso nuo įvaizdžio. Įvaizdį (λ, µ) galima traktuoti kaip naują diskretinį
modelio fenomenologinį parametrą.
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2. Wess-Zumino nario priklausomybė nuo neredukuotinio įvaizdžio (λ, µ) išreiškiama dau-
gikliu, proporcingu SU(3) grupės trečiojo laipsnio Casimir’o operatoriaus tikrinei vertei.
Dėl to sau sujungtiniams įvaizdžiams (λ = µ) Wess-Zumino narys išnyksta.

3. Simetriją pažeidžiančio nario Lagrange’o operatoriaus funkcinė priklausomybė nuo funk-
cijos F (r) įvairuoja skirtingiems įvaizdžiams. Sau sujungtiniams įvaizdžiams simetriją
pažeidžiantis narys supaprastėja iki SU(2) Skyrme’os modeliui įprastos formos.

4. Įvestas naujas Skyrme’os modelio solitoninis sprendinys, kuris apibrėžtas nekanoninėje
SU(3) ⊃ SO(3) bazėje. Kanoniškai kvantuojant gaunamos naujos kvantinių pataisų išraiš-
kos ir du skirtingi solitono inercijos momentai, iš kurių vienas sutampa su SU(2) solitono
momentu. Wess-Zumino narys nekanoniškai įdėtam SO(3) solitonui visada lygus nuliui.

5. Išnagrinėtas Skyrme’os modelio nekanoniškai įdėtas solitonas racionalaus atvaizdžio ar-
tinyje, kai barioninis krūvis B ≥ 2. Kanoniškai kvantuojant gaunami penki skirtingi
solitono inercijos momentai ir kvantinės pataisos. Aukštesniems įvaizdžiams Hamiltono
operatorius nėra diagonalus nekanoninės bazės būsenų atžvilgiu. Šis artinys gali būti
panaudotas aprašant lengvuosius branduolius kaip specialius solitonus.
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mechanika, reliatyvizmas, gravitacija, statistinė fizika, termodinamika (190 P)
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