ViLNIUS UNIVERSITY

INSTITUTE OF THEORETICAL PHYSICS AND ASTRONOMY

OLIVER SCHARF

On the Theory of Hyperfine Structure
of Many-Electron Atoms

DoCTORAL DISSERTATION
PHYSICAL SCIENCES, PHYSsICS (02P)

VILNIUS, 2006



The dissertation has been accomplished in 2002 — 2006 at Vilnius University Institute of Theoretical Physics and
Astronomy, Vilnius, Lithuania.

The Institute is entitled to give a doctorate with Vilnius University, following resolution No. 457 adopted by the
Government of the Republic of Lithuania, April 14, 1998.

Scientific supervisor

Zenonas RuDZIKAS, prof. habil. dr. (Vilnius University Institute of Theoretical Physics and Astronomy,
Physical sciences, Physics, 02P)

Consultant
Gediminas GAIGALAS, prof. habil. dr. (Vilnius University Institute of Theoretical Physics and Astronomy,

Physical sciences, Physics, 02P)

The Doctorate Committee

Chairman

Bronislovas KAULAKYS, prof. habil. dr. (Vilnius University Institute of Theoretical Physics and Astron-
omy, Physical sciences, Physics, 02P)

Members

Romualdas KARAZIJA, prof. habil. dr. (Vilnius University Institute of Theoretical Physics and Astronomy,
Physical sciences, Physics, 02P)

Gintautas KAMUNTAVICIUS, prof. habil. dr. (Vytautas Magnus University, Physical sciences, Physics, 02P)
Algirdas AUDZIJONIS, prof. habil. dr. (Vilnius Pedagogical University, Physical sciences, Physics, 02P)
Kazimieras GLEMZA, dr. (Vilnius University, Physical sciences, Physics, 02P)

Opponents

Pavelas BogpaNoVICIUS, prof. habil. dr. (Vilnius University Institute of Theoretical Physics and Astron-
omy, Physical sciences, Physics, 02P)

Dalis BALTRUNAS, habil. dr. (Institute of Physics, Physical sciences, Physics, 02P)

This thesis is scheduled to be maintained at on March 17th, 2006 at Vilnius University Institute of Theoretical
Physics and Astronomy.

Address: A. Gostauto 12, 01108 Vilnius, Lithuania.

The thesis summary was posted on February, 2006.

The copies of the entire thesis are exposed at the library of Vilnius University Institute of Theoretical Physics

and Astronomy.



VILNIAUS UNIVERSITETAS

TEORINES FIZIKOS IR ASTRONOMIJOS INSTITUTAS

OLIVER SCHARF

Hipersmulkiyju saveiky
daugiaelektroniuose atomuose teorijos

pletojimas

DAKTARO DISERTACIJOS SANTRAUKA
FIZINIAT MOKSLAI, FIZIKA (02P)

VILNIUS, 2006



Disertacija rengta 2002—2006 Vilniaus universiteto Teorinés fizikos ir astronomijos institute.
Doktorantiiros teisé suteikta su Vilniaus universitetu, 1998 04 14 Lietuvos Respublikos Vyriausybés nutarimas
Nr. 457.

Mokslinis vadovas

Zenonas RupzikAs, prof. habil. dr. (Vilniaus universiteto Teorinés fizikos ir astronomijos institutas,
fiziniai mokslai, fizika, 02P)

Konsultantas
Gediminas GAIGALAS, prof. habil. dr. (Vilniaus universiteto Teorinés fizikos ir astronomijos institutas,

fiziniai mokslai, fizika, 02P)

Doktoranturos komitetas

Pirmininkas

Bronislovas KAULAKYS, prof. habil. dr. (Vilniaus universiteto Teorinés fizikos ir astronomijos institutas,
fiziniai mokslai, fizika, 02P)

Nariai

Romualdas KARAz1IA, prof. habil. dr. (Vilniaus universiteto Teorinés fizikos ir astronomijos institutas,
fiziniai mokslai, fizika, 02P)

Gintautas KAMUNTAVICIUS, prof. habil. dr. (Vytauto DidZiojo universitetas, fiziniai mokslai, fizika, 02P)
Algirdas AUDZIJONIS, prof. habil. dr. (Vilniaus pedagoginis universitetas, fiziniai mokslai, fizika, 02P)
Kazimieras GLEMZA, doc. (Vilniaus universitetasi, fiziniai mokslai, fizika, 02P)

Oponentai

Pavelas BoeDANOVICIUS, prof. habil. dr. (Vilniaus universiteto Teorinés fizikos ir astronomijos institutas,
fiziniai mokslai, fizika, 02P)

Dalis BALTRUNAS, habil. dr. (Fizikos institutas, fiziniai mokslai, fizika, 02P)

Disertacija bus ginama vieSame doktorantiiros posédyje, kuris vyks 2006 m. kovo 17 d. val.
Vilniaus universiteto Teorinés fizikos ir astronomijos instituto saléje.

Adresas: A. Gostauto g. 12, 01108 Vilnius, Lietuva. Tel. 2620939, faks. 2125361

Disertacijos santrauka iSsiusta 2006 m. vasario d.

Su disertacija galima susipaZzinti Vilniaus universiteto Teorinés fizikos ir astronomijos instituto bibliotekoje.



Contents

Introduction. . . . . . . . . L 5
1 Historical and theoretical background . . . .. ... .. ... ... ... .. 12
1.1 The multiconfiguration approach . . . . ... ... ... ... ... 16
1.2 The representation of the atomic wave function . . . . . . . . . .. 19
2 The hyperfine structure operator . . . . . . . ... ... ... ... 25
2.1 Irreducible tensorial form in second quantization . . ... ... .. 27
2.2 The general expression for the matrix elements . . . . . . ... .. 30
2.3 Explicit expressions for a two-shell system . . . . . . . .. ... .. 41
3 Implementation of the expression in computer programs . . . . . .. . .. 44
3.1 Implementation in the symbolic environment of MAPLE . . . . . . 45
3.2 Implementation for the ATSP package . . . . . . . ... ... ... 58
4 Multiconfiguration ab initio calculations . . . . . . . ... .. .. ... .. 59
4.1 The hyperfine structure of Vanadium . . . . . ... ... ... ... 61
4.2 Multiconfiguration Hartree-Fock calculation . . . . . . .. ... .. 63
4.3 Multiconfiguration Dirac-Fock calculation . . . . . ... ... ... 7
4.4 The script for the applied method . . .. ... ... ... ... .. 89
Conclusion. . . . . . . . . L e e 91
Outlook . . . . . . . o e e 92
Bibliography . . . . . . . . . e 93
Santrauka . . . . . ... 99



Introduction

With the advent of high resolution spectroscopy at the end of the last century, an
additional structure became visible in many fine structure transition lines in atoms and
ions, typically a hundred times smaller than the fine structure. Some of these lines
arise due to the different nuclear mass and nuclear volume of the different isotopes of
an element. This isotope shift alone, however, can not explain all the lines observed.
The additional hyperfine structure lines arise from the orientation energy between
the static magnetic and electric fields of the nucleus and the static magnetic and electric
fields of the electron core. The splitting from this interaction energy Eng is given in very

good approximation by Casimir’s formula [1]:
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with C = F(F+ 1) —I(I+1) —J(J +1). The separation between two hyperfine lines
is proportional to the A factor with some correction given by the B factor. Additional
corrections are, except for special cases, even smaller and rarely resolved. The number
of hyperfine lines follow from angular momentum coupling of the nuclear spin I with the
angular momentum of the electrons J to the final momentum F and the selection rules
for photon emission.

Modern experimental methods allow the measurement of this splitting for practically
any atom and ion, including extreme ionization degrees. The high precision with which
the hyperfine lines can be determined make them an ideal tool for calibration and fre-
quency reference standards throughout the whole spectral range. The definition of one
second, for example, is based on the splitting between the hyperfine levels with F = 4
and F = 3 of the fine structure level %S, /2 in Cesium ('33Cs). This transition is measured
and defined as the frequency standard Av = 9192631770Hz [2]. Another well-known
hyperfine line arises from the magnetic dipole transition between the hyperfine levels
F =1 and F = 0 of the ground state of hydrogen. This is the 21 cm ™' line whose spatial
distribution in space revealed the spiral structure of our Milky Way for the first time.
Since then there is constant need for accurate hyperfine structures for analyzing stellar
spectra [3,4].

For the spectroscopist, the distinct structure of the lines contributes considerably to

the interpretation and analysis of high resolution spectra. Knowledge of the A and B



factors helps to interpret line forms, to identify fine structure transitions in many line
spectra and to designate fine structure levels. Recent hyperfine measurements for the
well-known element Niobium have revealed, for example, that false designations of its
fine structure levels exist in standard tables [5].

From the theoretical point of view the A and B factors represent a bridge between
properties of the nucleus and the electrons. The A factor is a product of the static nuclear
magnetic moment and the magnetic field produced by the electrons (see Eq. 2.6). The
nuclear magnetic moment can be measured directly (for example with atomic beam
magnetic resonance techniques) without the use of hyperfine structure. The magnetic
field of the electron core can then be calculated from the atomic wave function.

The B factor is a product of the nuclear quadrupole moment and the electric field
gradient of the electrons (see Eq. 2.7). As no experimental technique exists to deter-
mine nuclear quadrupole moments in a direct way, most information about the nuclear
quadrupole moment is obtained from hyperfine structure calculations.

Comparison of the experimental splitting with the theoretically calculated one allows
for a test of correlation and relativistic effects and, as a result, of the atomic wave
function. With the advent of nano technology, accurate wave functions are of great
importance for the growing need to predict various physical properties of atomic systems.
It is therefore of importance to develop reliable computational methods that can be used
to supply hyperfine structure data.

During the past two decades the methods for obtaining the required wave functions
and the numerical codes have been developed to a high level [6,7]. Although large-scale
fully relativistic calculations are now feasible and can give fairly accurate results [8,9],
the large-scale multiconfiguration calculations are still very expensive computationally.
Recent progress in large scale multiconfiguration and configuration interaction calcu-
lations, together with today’s powerful computers, has made it possible to calculate
hyperfine structure in light atoms to very high accuracy [10, 11]. For heavy elements
and atoms with many strongly correlated electrons, however, various problems are en-
countered and ab initio calculation of the hyperfine structure remains a great challenge
for atomic theoreticians.

The main task in a multiconfiguration calculation is to find a method for the gen-
eration of the configuration state functions. In practical calculations, and especially for
heavier elements, their number is constrained by available computer storage, convergence

problems, and other hardware and software limitations. The number of configuration
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state functions must be kept to a manageable level, and therefore restrictions have to be
imposed so that the most important electron correlation effects are captured. There are
many different ways of doing this, depending on the atomic property that is to be ob-
tained. For the hyperfine structure, the most common approaches are the orbital-driven
method [12] and the approach by Bieroni et.al. [13]. These approaches have been applied
only to atoms and ions with one or two outer (valence) electrons. For more complex
atoms the core correlations were neglected leading to deviation of more than 100% from
the experimental results [14, 15]. Recently, most attention was payed to evaluate the
B factor were core correlations are less important [16]. To apply these approaches to
the A factor of more complex many-electron atoms and ions, more details about the

correlations that are important for the hyperfine structure are necessary.

The aim of the thesis

The purpose of the present work is to further extend the multiconfiguration calculation
of the hyperfine structure to complex many-electron atoms and ions. The thesis aims
at designing a systematic method which makes it possible to obtain the important
correlations and to estimate the uncertainty of the results of the hyperfine structure

factors for atomic systems with many outer (valence) electrons.

The main tasks of the thesis

To achieve this aim, more time efficient programs, advanced computing facilities and a
method for the detailed study of the correlations that are important for the hyperfine

structure are needed. That leads to the following tasks:

1. Adapt the hyperfine structure operators to the new developments in spin-angular
integration techniques. The relevant expressions for the A and B factors have
to be transformed from coordinate into second quantized particle representation
with additional quasispin space. Using graphical methods closed expressions for
the A and B factors for any complex many-electron atom or ion with an arbitrary
number of open shells is to be obtained that is based on the smallest set of standard

quantities, the reduced coefficients of fractional parentage.

2. Implement the general underlying technique in the form of the symbolic program-

ming language MAPLE [17] for the atomic application development systems RacaH



and Jucys. Use these enhancements to program the hyperfine structure utility
Hrs that allows the efficient manipulation and calculation of hyperfine structure

expressions.

Based on the experience from the symbolic Hrs package, implement the spin-
angular integration technique into the Hsr module of the ATSP package for large

scale calculations.

. Install and test the software for obtaining multiconfiguration atomic state functions

on the BEnDROSIOS F1zikos KATEDROS cluster at Vilnius Pedagogical University.

Design the systematic method that observes the correlations, that estimates the
convergence and that allows one to assign an error to the hyperfine structure

calculation. Test the method.

The scientific innovations

1.

The new expression for the magnetic dipole and electric quadrupole factor is valid
for any open-shell atomic system and is based on the smallest set of standard

quantities, the reduced coefficients of fractional parentage.

The atomic application development systems Racan and Jucys are extended by the
vital part of one-particle spin-angular integration. Based on the new developments
in programming paradigm, the symbolic programming, they are not only able to
provide the standard quantities from the atomic shell theory but also to support
the symbolic manipulations and the numerical computations of expressions from

the atomic structure theory.

The calculations are performed on a five node cluster allowing for large scale cal-
culations. Together with the new version of the hyperfine structure program a
method for the detailed study of the hyperfine structure of complex many-electron
atoms is feasible. Compared with existing approaches less ad hoc assumptions
about important correlations have to be made and more detailed information about

the influence and convergence of the correlations is obtained.

The detailed influence of correlations on the hyperfine structure of Vanadium is

calculated using multiconfiguration approximations.
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Statements to be defended

1. The expressions of the hyperfine structure factors are valid for any open-shell atom
or ion. Compared to known expressions, less computation time is spend for their

evaluation.

2. The atomic application development systems Racau and Jucys together with the
hyperfine structure package Hrs are of help for theoretical work as well as for the
experimentalist. For the hyperfine structure, they allow on the fly evaluation and
presentation of hyperfine structure data and expressions, both in semiempirical

and ab initio approach. A fast adaption to similar physical problems is possible.

3. The proposed method for the multiconfiguration hyperfine structure calculations
allows one to make efficient approximations on the configuration state function
space, to monitor the convergence and influence of various correlations and to

assign an error on the calculation.

4. BExpression, programs and the method give the possibility to study hyperfine struc-
ture splitting of complex atoms and ions and using modern computing facilities to

achieve fairly accurate results.

Organization of the thesis

The thesis is organized into five chapters. Chapter 1 presents a historical overview of the
developments in the field of hyperfine structure calculations. The common approaches
are reviewed and the theoretical background of the multiconfiguration approach as well
as symmetry-adapted wave functions in quasispin space are explained in more detail.
Based on this theory, new explicit expressions of the hyperfine structure matrix elements
are derived in Chapter 2. The explicit expressions for a two-shell system are presented.
The third chapter shows the implementation of the underlying theory, in particular the
general expression for the hyperfine structure, in computer codes. In Chapter 4 the new
method for hyperfine structure calculation is developed. It is applied to the ground state
hyperfine structure calculation of Vanadium, in both multiconfiguration Hartree-Fock

and Dirac-Fock approximations. The thesis ends with the conclusions and outlook.
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1 Historical and theoretical background

Wolfgang Pauli interpreted, in 1924, the magnetic interaction part of the hyperfine
structure. A nucleus has a magnetic dipole moment in the direction of its spin-angular
momentum. The electron shell forms an effective magnetic field directed along the
electron quantization axis. The magnetic part of the hyperfine structure therefore results
from the magnetic coupling (orientational energy) between the nucleus and the electrons
leading to the A factor. Significant deviations from the theoretical predictions thus far
led Schiiler and Schmidt to introduce quadrupole coupling into the theory in 1935. The
nucleus is modeled as an equatorial symmetric charge distribution around its nuclear
axis. The electrostatic potential at the electron position, due to the nucleus, leads to
additional electric perturbation and defines the B factor. The hyperfine energy expressed
by these factors leads to Casimir’s formula, Eq. I of the introduction.

In terms of angular theory, the hyperfine interaction couples the electron core mo-
mentum ] weakly with the nuclear momentum I to the final atomic momentum F. In
the multiconfiguration Hartree-Fock approximation, the fine structure splitting of the
energy terms is treated as a first order perturbation. The matrix element of the operator
is calculated with respect to the zero-order wave function. Consequently, the hyperfine
splitting, as an even smaller perturbation, can be treated in the same approximation.
The angular momentum coupling between the electron core and the nucleus is regarded
as being so weak that the angular momenta J and I are independently observable as is
their coupled momentum F. The potentials of the electric and magnetic fields of the
nucleus, caused by the distribution of nuclear charges and currents, are expanded into
multipole momenta of rank k around I. The hyperfine structure energy Ens can then
be calculated as the decoupled product of a nuclear part M%) and an electronic part
TM by [18):

Enes = (JIF[|MM.TM | JIF)

I F
= Z(—n””{] : k}<I|M(”|lI><IT(k)II>- (11)

k=1 I



1 Historical and theoretical background

The explicit formulas for the nuclear multipole moments are derived in [19]. The nuclear

magnetic multipole momentum of order k is given by

Mg™ = (—Uk[V”’{r“C(”} : (ki oL gssm)] (1-2)
and the nuclear electric multipole momentum by
MK = ykc, (1.3)

The components of the spherical tensor C*) are related to the spherical harmonic func-

tion Yyq by

. 4 \12
ey = (zm7) Ve (14)

The gradient in Eq. 1.2 only applies to the expression in the curled brackets. The
gyromagnetic ratios are equal to gy = 1 and g5 = 5.58 for protons and g1 =0 and g5 =
—3.82 for neutrons. One important observation can be made from Eq. 1.2 and Eq. 1.3.
As inversion symmetry is conserved and the nucleus has (to very good approximation)
well defined inversion symmetry, the magnetic multipoles have to be zero for even k and
the electric multipoles have to be zero for odd k.

The first term of the magnetic multipole momentum is the magnetic dipole moment
having k = 1. For a nucleus abbreviated by |IM;), the magnetic dipole moment is

defined as the matrix element with the projection M =1 of the total spin I,
weo= (IM=1MxV[IM;=1) . (1.5)

This quantity is directly observable in experiments and often known to within a few
millinuclear magnetons (un = 5.0507866(17) - 10727 Am?). The first electric multipole
moment with k = 0 is the usual Coulomb interaction with a point-like nucleus already
included in the atomic Hamiltonian, compare Eq. 1.7. The next term with k = 2 defines

the electric quadrupole moment,
Q = HIM =M IM;=1). (1.6)

As mentioned in the introduction, there is no direct experiment to measure this value.

The electric quadrupole moments obtained by different authors often differ and are



usually only known within some millibarn (b = 1028 mz). Higher order multipole
moments are barely observed’. This work takes the nuclear parts from experiments.
Extensive tables of nuclear magnetic dipole and electric quadrupole moments of many

atoms can be found in [20].

For the calculation of the hyperfine structure, sophisticated semiempirical, pertur-
bational and multiconfiguration approaches have been developed. The Sandars-Beck
effective-operator formulation of the theory of hyperfine structure [21] allows one to
interpret the hyperfine structure data for complex many-electron atoms and ions. In-
termediate coupled wave functions for the fine structure states of interest are calculated
within the semiempirical parametric fitting approach. These wave functions are used
to calculate expansion coefficients of the Sandars-Beck radial integrals that, in turn,
are treated as adjustable parameters [21]. This allows one to represent many experi-
mental data in terms of a few fundamental parameters. The inherent problem of this
approach is the lack of detailed understanding of the interactions responsible for the
hyperfine structure observed. For complex atoms, parameters are often ignored to avoid
nonphysical conditions [22] and further theoretical modeling is necessary [23,24]. While
still providing the best quantitative reproduction of a large body of experimental infor-
mation, this approach has been challenged within the past few years by the ab initio
approaches.

The main breakthrough in this field has been the introduction of many-body pertur-
bation theory. The techniques are similar to those introduced by Feynman in the work
on quantum electrodynamics. A systematic perturbation expansion is taken to repre-
sent the wave function. Lindgren and Morrison [25] give many details of the approach
in their book. The perturbation method has the great advantage that one can take
a certain (small) property, like hyperfine interaction, as a perturbation and, using the
many-body diagrammatic analysis, calculate only the modifications of the total wave
function which contribute to the value of that property. Parts of the wave function that
do not contribute are ignored. The coupled cluster theory is a new development in this
field.

An alternative method, developed at the same time as the many-body approach is

the multiconfiguration formalism. The Hartree-Fock method assumes that each electron

"For atoms in special fields (ligandenfield or crystalfield) or due to selection rules higher order
multipoles can be observed.



1 Historical and theoretical background

is orbiting in an central field independently of the nucleus and the remaining electrons.
The correlated consistent movements of the electrons are ignored. But these move-
ments, causing the additional so-called correlation energy, are indispensable for many
atomic properties. Correlation can be included using a multiconfiguration atomic state
function. The atomic wave function is expressed as a mixture (superposition) of wave
functions of different electronic configurations of the same parity. In 1952 Jucys derived
the multiconfiguration Hartree-Fock equations [26]. Both the mixing coefficients and ra-
dial orbitals are obtained in a self-consistent procedure from these equations. The wave
function is further used in the first-order perturbation theory for the hyperfine interac-
tion to calculate the magnetic dipole and the electric quadrupole interaction constants
for any specified state, using no adjustable parameters. The advantage of the multicon-
figuration approach is its ability to work with atoms and ions having any number of
open shells.

The multiconfiguration approach holds the promise of greater physical insight into
the various mechanisms responsible for observed trends as well as anomalies in the
hyperfine structure. This does not necessarily result in an improvement, but the case
for the discrepancies between experiment and ab initio values might be deduced. The

main ideas behind this approach are given in the following section.

The theoretical frame for studying the properties of free atoms and ions is the atomic
shell theory. The concepts of angular momentum and spherical tensor operators are
combined in an intricate way to make use of both the spherical symmetry of free atoms
and the indistinguishability of identical particles in quantum mechanics. Since the
pioneering work of Racah [27-30] in the 1940s, many people have helped to develop this
powerful theory which today is used in a large number of atomic codes and case studies
on the behavior of free atoms and ions.

The atomic shell structure explains the chemical properties of the elements and the
periodic table. The central topic of this model concerns the efficient evaluation and
computation of the many-electron matrix elements for different one- and two-particle
operators. For any properly adapted many-particle basis, the matrix elements can always
be decomposed into the so-called spin-angular coefficients and radial integrals. The
spin-angular coefficients are expressions in 3nj-symbols and are the building blocks for

most atomic structure computations as well as for atoms and molecules within crystals.



1.1 The multiconfiguration approach

Any computer program for atomic physics therefore necessarily needs to compute spin-
angular coefficients. The practical theoretical foundation to do this in the form of Racah
algebra was given by Jucys, Levinson and Vanagas in their famous work [31].

Jucys and Bandzaitis [32] developed general graphical methods and sum rules that
allow one to simplify the matrices, to detect symmetries and zero elements and, for the
first time, to compute the phase from the graphical rules. Based on this work, one of the
first codes, NJSYM [33] was replaced by NJGRAF [34] leading to a considerable speed-
up of atomic structure calculations. More complex calculations became feasible. The
packages based on this approach are still used in a large number of computations [35].
However, accurate atomic structure calculations are needed for more efficient approaches
as more correlation effects are required to explain the improved experimental accuracy
and number of atomic data that are obtained, especially for open d- or f-shell atoms.

Another milestone was laid by Gaigalas, Kaniauskas and Rudzikas [36] by considering
graphs that are based on second quantization in coupled tensorial form and an additional
quasispin symmetry. Considering quasispin explicitly [37] allows one to obtain matrix
elements of any one- or two-particle operator that are independent of the occupation
number of the subshells. The refined graphical methods allow one to find expressions for
matrix elements of any one- or two-electron operator for an arbitrary number of shells in
an atomic configuration. Both diagonal and off-diagonal, with respect to the configura-
tion, matrix elements are treated uniformly. The coefficients of fractional parentage or
unit tensors form a large set of standard quantities used in traditional approaches. The
approach used in this thesis uses a smaller set of standard quantities: the (in all three
spaces) reduced coefficients of fractional parentage [38]. In contrast to the coefficients
of fractional parentage, they are independent of the shell occupation and their phase is
uniquely defined. The representation of the wave function in this approach is reviewed

in the second section of this chapter.

1.1 The multiconfiguration approach

The Hamiltonian of the atomic shell model exhibits the spherical symmetry and every
electron moves independently in the field of the nucleus and some average potential V

due to the remaining electrons. An electron 1y bound to an atom of nuclear charge
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Z with energy €y is described by the stationary Schrodinger equation (in atomic units

[au])
Z
Hi [ i) = [—Vf—r—k-l-vk]hbk) =ex| k), (1.7)

where other nuclear and relativistic effects as well as external fields are ignored. The

potential Vi is the averaged Coulomb repulsion energy due to all other N — 1 electrons,

N
1
Vi = ) (il —— ;). (1.8)

| T —73

j=1;j#k
The total atomic wave function of all electrons is formed by an antisymmetrized product
wave function ¥ based on the single electron wave functions {. As this atomic wave
function is a normed state of a Hilbert space, the expectation value of Eq. 1.7 defines
the energy functional E[V],

_(YIHIY)

Hy=~———. = E[VY]. 1.
(H) W) (V] (1.9)

If |¥) is an eigenvalue of H, than E[V] is stationary at W. This is equivalent to [39]
O0E = E[V+ Y] —-E[VY] =0, (1.10)

where |V + 8V ) is an infinitesimally small variation of |W) .

The spherical symmetry is best exploited if the one-electron wave function is
expressed as eigenfunction of the spin and angular momentum operator using the
ansatz [18]

) = \nlmlsms>anl(T)Yr(ﬁ)l(e,@)o(ﬁL- (1.11)

The angular momentum part is represented by the eigenfunctions of the angular mo-
mentum operator 1, the spherical harmonics YT(;)[ and the spin part of the wave function
is given by the eigenfunction 0(;)&. Choosing the radial part of the orbitals so that the
energy in Eq. 1.7 is minimized, the Hartree-Fock equation is obtained [40]. The bound
state solutions for this equation are a discrete set of radial parts R, (r). The wave

functions (Eq. 1.11) are called single electron spin-orbitals or spectroscopic orbitals.



1.1 The multiconfiguration approach

A more realistic model uses a linear combination of orthonormal states [ ),

N
Wy = ) cilbi). (1.12)
i=1

The expansion Eq. 1.12 includes so-called correlation orbitals that do not necessarily
have the number n of nodes, but an arbitrary number [40]. They augment the spec-
troscopic orbitals and account for the correlation in the electron core. Applying the
variational principle leads to the equivalent expression of Eq. 1.10,
N
Z((lbi“‘“lbj )—Ed(i,j))c; = 0 foralli=1,... N. (1.13)

j=1

Using the explicit expression for the Hamiltonian (Eq. 1.7), a coupled system of integro-
differential equations, the so-called Hartree-Fock-Jucys equations are obtained (see [41]
and references therein). The radial functions depend on the potential formed by the
orbitals and on the mixing coefficients ¢;. The equations can be solved self-consistently.
The potentials are calculated from some initial estimates for the radial functions and
mixing coefficients. The potentials are used to determine new radial wave functions and
the new mixing coefficients which are used for new estimates of the potentials. This
procedure is repeated until convergence is obtained.

The multiconfiguration Hartree-Fock approximation captures correlation effects. The
solution can be approximated with arbitrary accuracy if enough terms in Eq. 1.12 are
taken into account. This, however, is constrained by computing capacities and limitation

methods for the expansion have to be used.

So far relativistic effects have been neglected. A first correction to the multicon-
figuration Hartree-Fock approximation is done by adding Breit-Pauli operators to the
Hamiltonian Eq. 1.7. These seven operators are obtained by expanding the relativistic
many-electron equation in powers of the fine structure constant « and taking the terms
until «? into account. A part of these operators commute only with J, therefore the

wave function is the eigenfunction of J and its projection J,,

N
M) = > il LiSMy) . (1.14)

i=1
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The wave function is given in so-called intermediate coupling and configuration state
functions with different LS are included. A comprehensive treatment can be found in [42]
and computational aspects in [6].

The full relativistic generalization of the multiconfiguration Hartree-Fock approxima-
tion is the multiconfiguration Dirac-Fock approximation. The Hamiltonian is replaced

by its relativistic analog,
He = ca-p+(B—T1)c?+ Vn+ Vi, (1.15)

with o« = (g g), p = (2) 91 ) The Pauli spin matrices are o and 1 is the 2 x 2 unit
matrix. In this work the monopole part of the electron-nucleus Coulomb interaction Vy

is modeled from a two-parameter Fermi function of the nuclear density [43]

Po

The potential Vi is the mutual electron Coulomb repulsion, see Eq. 1.8, and p is the

energy-momentum vector. Relativistic single electron spin-orbitals are of the form

1

Inkjm;) = —( (1.17)

P Q!
T )

1Qne QLY

where QET'? denotes the two-component angular dependent spin-orbital function and P

and Q are the radial components [41]. The quantum number « is defined by
kK = x(j+1/2) forl=jx1/2. (1.18)

The variational principle leads to the multiconfiguration Dirac-Fock equations that have

to be solved self-consistently in the same way as their non-relativistic counterpart.

1.2 The representation of the atomic wave function

In second quantization representation, the spin-orbitals are created or annihilated by

spherical tensor operators acting in angular momentum and spin space. A spin-orbital

(ls)

is created by operating with an electron creation operator a'**’ on a vacuum state |0)

Ao 10) = lmysmg) . (1.19)
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The operator d%f,]k , obeying the Fano-Racah phase system, creates the vacuum state

~ (1 (Ls)
01(111151)15 [lmsmg) = (—1)Hstmtms aT_ml_smS [ lmsmsg) =1(0) (1.20)
where a*_f}ujlk is the hermitian conjugate of a&f&s , called annihilation operator. As

electrons are fermions, the creation and annihilation operators obey the following anti-

commutation relations:

(L s1) (12 s2) (b os1) (12 s2)

{am:17:151 ’amfzﬁzlsz } = {a'mllmsl >aTm12msz } - O (121)
1 + (L )

{aT(nL?ms)] »a‘mfzizlsz } = o(Limysimg,, Lomy, soms, ) . (1.22)

A product wave function of equivalent electrons in a shell is created by repeated use of
the creation operators, defining the phase by

(L s)
Uy, s, [Ilmh S, ) .. lmy  smg Y [lmy s )]0 [ Tmg smgy >]

= (=1)&! [lmy, smg, ) |...) [ Imygsmg, ) . (1.23)

The mutual electron interaction couples the spin and angular momenta. If the non-
central Coulomb repulsion prevails over the relativistic spin-orbit interaction, the angular
momenta 1 of the N electrons couple to a resulting total momentum L and the spin
momenta s to the final spin momentum S. The angular momenta | and s of the Nth

electron are coupled to its antisymmetric parent wave functions |IN"'L’S”)

I v LS S
NS L ISMMs) = Y [ , H o ]
M Mg myms M mi Mp It Mg ms Ms

x [ INTTL/S'MyME ) [ Tmygsmg ) . (1.24)
The use of the conventional Clebsch-Gordan coupling coefficients (the expression in
square brackets) assures the conservation of the angular symmetry [25].

The final wave function has to be antisymmetric under the exchange of any two

electrons. To form a complete antisymmetric wave function | nlINLS ) for all N electrons,
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a linear combination that assures the antisymmetry under the exchange of the Nth

electron is used,

IINLSM{Mg) = Z( N SO)UANLS Y[ INTTL’S) 1, LSMMs ) . (1.25)
L's
The expansion coefficients ( IN"1(L’S’)1|INLS ) are called coefficients of fractional parent-
age. The tensorial properties of the wave function and the creation operator allow to
couple the creation operator to the wave function of N—1 electrons to the final momenta
Land S

@ <IN S = Y el NS M{MY)

M’L Mg mymg

X

I L L H s S S

]. (1.26)
mi M{ Mg Il mg M{ Ms

By projecting Eq. 1.26 on the wave function (INLSM| Mg |, the relationship
(VLS a s iN=TLrsy = (=N (NIL, SH2QNLS [IN-I(L/S/)L)y - (1.27)

between the reduced matrix element of the creation operator and the coefficients of
fractional parentage is obtained [41].

For 1 > 1 there can be more than one term with the same L and S quantum numbers.
An additional symmetry is needed that serves to distinguish the terms. The Hamiltonian
does not change the number of paired electrons, i.e. two electrons nl1? coupled to a final
momentum of L =0 and S = 0. Such an electron pair is created or annihilated by the
following operators, respectively,

M _ sy q(19]© () __draqs), a(1s)]00)
q, = z[a Six a s] , q, = z[a X @ ] . (1.28)

Together with the operator

i 00 00
g =1 {[aas)x aﬂsJ]( '+ [a!™)x a(W]( )} (1.29)
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these three operators meet the conditions for being irreducible components of a momen-

tum operator g, called quasispin. The z-component of q can be written as

4z = —iql))=[N—-Npl/4 (1.30)
where N = [a's x &"](%0) counts the electrons in the pairing state and Ny, = [@" x

a1s)](%0) the missing ones (the holes). The quasispin of all pairing states in a shell can

be coupled to the total quasispin momentum Q:

an _ _% 21+ 1)/2 [a¥x q1)](00) . (1.31)
ng - _% (2L4+ 1) [@bxa )]0 (1.32)
QY =—7 (41+2)2 {la"xa!*) ) + [@"xal)] )} (1:33)

The eigenvalue of the z-projection is related to the number of electrons in a shell,

Mo = =(N—2L+1). (1.34)

N =

As the quasispin operator Q commutes with L and S, the states of the 1N configuration

can be characterized by the eigenvalues of the operators L% L, S%S,, Q2 and Q.
\TL].QLSMQMLM5> . (1.35)

Instead of using the quasispin and its projection, an equivalent representation is given
by

InNVLSM M) (1.36)

using N and the seniority quantum number v = 21 + 1 — 2Q as additional quantum
numbers. Additional symmetries have to be used for 1 > 2; more details are found
in [41] and the reference therein.

Acting with a's) on a shell state, one electron is created and one hole is annihilated.
Thereby the projection of the quasispin mq is changed by one half, see Eq. 1.30. The

annihilation operator decreases mq by one half. The commutator relations between the
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components of q and the creation and annihilation operators show, indeed, that a('s)

and a'* are components of an irreducible tensor of rank q = 1/2 in the quasispin space

1 ) q 1 q
QW al® = i Jalq+ 1)[ ald ), (1.37)
m p m+p
where
(Ls) _
a form=1/2
ald — / (1.38)
a form=-1/2.

Second quantization operators can be expanded in terms of triple tensors in orbital,
spin and quasispin space. The wave functions of a shell of equivalent electrons are
classified using the quantum numbers L, S, Q, M, Ms and M of the three commuting
angular momenta in these spaces. Therefore the Wigner-Eckhart theorem [25] can be
applied in all three spaces. The completely reduced matrix elements are independent
of the shell occupation. The completely (in all three spaces) reduced matrix element of
the creation operator is called reduced coefficient of fractional parentage. It is related

to the coefficients of fractional parentage (Eq. 1.39) by [41]

(MNaQLS TN (0 QiLiS1)L) = (-1)NT(NIQ, L, 8)) 712

Qi 1/2 Q

(lQLS Il a9 [ loc; Q1L1S7) . (1.39
Mo, 1/2 Mg Q 1Q1L1Sy (1.39)

The main advantage of these reduced coefficients of fractional parentage over the usual
ones is that they are independent of the shell occupation number N. Their number
is thus much smaller. Furthermore, the quasispin methodology defines a consistent
phase for all reduced coefficients of fractional parentage. Tables of their values exist in

published version [38] and in electronic form [44].

With repeated use of Eq. 1.24, the shells can be coupled one to another to the final

momenta L and S,

[YLMLSMs)® = i1} 1 L3S, 2y 2 y2L285, L1aS12, nalh *v3LsS3, L1238 123
MY mLmSm, LM SMs),  (1.40)
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where additional quantum numbers are denoted by y. This wave function is only anti-
symmetric in the permutation of electrons inside each shell. To antisymmetrize the wave
function between different shell permutations, the following restricted permutations are
used
™ nd 1/2
VLM SMs) = (%) > (=DPPIYLMSMs)® (1.41)
P

where the sum is over all permutations #, involving coordinate exchange only between
two different subshells such that the coordinate number within each subshell remains in

an increasing order. This wave function is called a configuration state function.

If the relativistic spin-orbit coupling is stronger than the non-symmetric part of
the Coulomb interaction, the electron spins 1 and s couple to the total momentum
j. The Coulomb interaction couples the total j, to the final momentum J. To form
antisymmetric states, the same formalism based on the relativistic reduced coefficients
of fractional parentage is used. A shell is denoted by [n1j™] ). No additional symbols are
necessary in this coupling scheme. For the final configuration state function, all shells
are successively coupled to the final momentum J and additionally antisymmetrized by

permutations between the shells.

A general configuration consists of groups of equivalent electrons

m
Y ol enp i, N=) Ng. (1.42)
a=1

From this configuration, the configuration state functions are formed and used as the
[Vi) in Eq. 1.12 for the multiconfiguration approach to determine the radial orbitals
and the mixing coefficients. Thereby, the atomic state function |V ) is obtained that is

used in the calculation of the atomic properties.
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The expression for the hyperfine operators are derived in detail in [45]. These operators
are transformed for this thesis to triple tensors in orbital 1, spin s and total spin j space
using atomic units and the standard (Fano-Racah) phase system.

The tensorial expression of the electric interaction follows from the development of
the electrostatic potential into spherical harmonics. With the definition of the nuclear
electric multipole momentum Eq. 1.3, the electric multipole interaction operator has the

form

k -k —k—1(k)
TN = - er (Ghy (2.1)

As pointed out in [45], the contributions of the part of the electronic wave function that
is inside the nucleus can be ignored. The detailed tensorial structure indicating the

ranks in 1, s and j spaces for one electron is given by the triple tensor
T, (kO)k = _jkp—k=Tek) (2.2)

Following from that, C'¥) acts in the 1 space and there are no operators acting in the
s space. The tensors of the electron part of the magnetic multipole interaction are the

following;:

1 /zk
(k) _ o2 —k—
T, S ( [C

k2 g, \/(Zk +3)(k+ 1)[c§k+”><s§”](”) (2.3)

with gyromagnetic ratio g5 = 2.00232. The operator of the magnetic multipole interac-

tion of one electron has two terms with different tensorial structure, namely

T, KOk | T (11K = o2 —k-24k /2kk—1 [C(k—l]XL(]] (k)

+ Lo 22 okt 3) 1+ N[CIxsD] T (24)




The first term acts in 1 and j spaces and has rank k, while the second has the rank k+ 1

in 1 space, the rank 1 in s space and the rank k in j space.

To arrive at Eqg. 2.3 one has to assume that the electrons do not penetrate the
nucleus. The s electrons, however, have a certain probability of being in the nucleus.
This contribution depends essentially on the radial wave function at the nucleus and
is the most difficult part to determine in hyperfine structure calculations. The Fermi
contact contribution is a first-order effect for a point nucleus. An arbitrary distribution
of the magnetization inside the nucleus can be assumed. In order to get higher-order
effects, it is necessary to make more realistic assumptions about the nucleus. Such
effects lead to the so-called hyperfine anomaly [46]. Although this is a small effect, it
has been observed experimentally for the dipole interactions of s electrons in many cases.
There are other nuclear size effects which may contribute to the hyperfine anomaly [45].

Without the hyperfine anomaly, the detailed calculation lead to the contact contribution

k+1 2k—1 _ 1K)

(k) _ 2. sk k+1 N (k—1)

Te = E 21 gs i T . T 6(13)[8). ><C]. ]
j

= T (k1Dk (2.5)

where 8(r) is the three-dimensional delta function.

The spin-angular integration allows one to calculate the magnetic dipole constant
A and electric quadrupole constant B in terms of the reduced matrix elements of the
electron spherical tensors Tmm, T,V and T, for any atom or ion with any number of

open shells by:

M 1 (ki ko) 1 (ki ke) 1
A = — (N T + T iy, 2.6
L T U@ D (26)

— 4J(2] —1) s
oo Q\/(]+])(ZI+1)(2]+3)<]||Te Ny . (27)

The atomic state function is abbreviated by | ] ). These two constants are experimental

measurable quantities, see Eq. I from the introduction.
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2.1 Irreducible tensorial form in second quantization

The hyperfine structure operator is a one-particle operator. One electron of the bra
function interacts with one electron of the ket function. The second quantization ap-
proach represents any one-particle operator by a sum over all possible single particle
matrix elements (i|f|j). The creation a and annihilation a’ operators for the particles

i and j define the operator attributes,

F = ) aigf (ilflj). (2.8)

iJ
Spherical tensor operators play a central role in the atomic theory. They transform into
each other according to their rank, defined by the space they are acting in. The creation
and annihilation operators for an electron act in the orbital space of the electron 1 and
its spin space s. As the one-particle operator acts in the same spaces, it has the ranks
ki and kg ascribed, respectively. Applying the Wigner-Eckhart theorem on the matrix

element in Eq. 2.8, the one-particle operator can be written as

Flaks) — _ Z [klk]Vz[ UV ke 1][ s’ ks s]
- y Ivs
nlmm,, m. A mullmg o mg
n/l/mim;
(Ls) T(Us’) ki ks RYN
X Gy, @ by (s [FTSTImVs7) L (2.9)

Using the definition Eq. 1.20 for the annihilation operator allows one to couple the
second quantization operators and express any spherical one-particle operator in the

following compact form:
o (klks)
Flak) = —[kl,ksr‘/z[a“” xa!l “] (nis|fRk) In'ts”) . (2.10)

The creation and annihilation operators are components of a tensor in quasispin space

as pointed out in Eq. 1.38. The operator F is given with additional quasispin space by

) (klks)
Flak)  — —[kl,ks]“/z[afZLS) xal}"’ )] (nis|IfMk) s’y . (2.11)

This representation is universal for any one-particle operator, only the single electron

ki ks

reduced matrix element (nls|| £ ) [[n’l’s’ ) defines the peculiarities of the operator.
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The tensorial structure of the hyperfine structure operators are known (Eq. 2.2,
Eq. 2.4, Eq. 2.5). The one-electron submatrix elements (nil;s || £ (Kiks) [Im;ls ) for the
electric quadrupole, magnetic dipole and the Fermi contact term are derived, now. The
submatrix elements depend only on the values of the ranks in 1 and s spaces. The
dependence on the value of rank in the j space is in the tensorial part of the formula.
Therefore, in the treatment of one-electron submatrix elements for a physical operator

only the values of the ranks in the | and s spaces are indicated. The expression T (ks

ki ks

for the notation of the submatrix element is used instead of T J% for the operator.

kl ks)

The tensorial part of F is called the pure spin-angular coefficient and is the same

for any one-particle operator.

The electric multipole interaction operator Eq. 2.2 has the tensorial structure k; = k

and ks = 0. The one-electron submatrix element is
(s || Te®O InUsy = —ikc® vy (=1 nv)y . (2.12)

It is not equal to zero if l + k 4+ 1’ is an even number.

The operator of the magnetic multipole interaction Eq. 2.4 has two terms with dif-
ferent tensorial structures. The first term acts in 1 and j spaces and has rank k, while
the second has the rank k+1 in 1 space, rank 1 in s space and rank k in j space. Keeping

in mind that

_ (K)o, i _ ,
L) = 5 ey

y \/(l+l’+k+1)(1’+k—l)(1+k—1’)(l+l’—k+1) (2.13)

k(2k —1) ’

the one-particle submatrix element has the form:

’17 1 . 1 — ’ —k— AN
(s [T < Im/Vs) = 5 o (LICH L) (L 2 m L)

X JLHV F RV k=1L k— 1)L+ Uk 1) (2.14)

Taking into account that, for k = 1, Eq. 2.13 becomes

ULV = UL+ DL DY), (2.15)
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the one-electron submatrix element of the operator T, (10) ig equal to

(s | T 1O Imsy = —% L+ D2L+ VS U) (nlr 3 n'l)y . (2.16)

k+11)

The second term Ty, | in Eq. 2.4 has the general one-electron submatrix element

- ik+3 , L ,
(nls | T 1V 1 s>=7cngs ey (ntr 2 Int’)

x \/§(2k+3)(k+1). (2.17)

It follows from here that for T " the diagonal, with respect to the orbital momentum

quantum number 1, one-electron submatrix elements are

(nls || TV In'1s) =

(nlr=3In'1) . (2.18)

o? 1511+ 1)(2L+ 1)
T2\ 2 -

This is in accordance with [47]. The off-diagonal (with respect to 1), one-electron sub-

matrix elements have the forms:

3, 511 —1)
1

2D’ (1— - _=Z - 7
(nls || T2 0" (1-2)s) 59205\

(nr3In'1-2) (2.19)

and

, 3 51+ 1)(1+2) 3

(s T I/ (142)sy = —zcngs @I (nlIr=3n'14+2) . (2.20)
The Fermi-contact term has the tensorial structure k; = 0 and ks = 1. Using the relation
(nl]|4mr2d(r) [|nl) = (nl||8(r) || nl) between the three-dimensional (from Eq. 2.5) and

one-dimensional delta functions, the one-electron submatrix element can be written as

o? 321+ 1)

2
(nls|| T ©V ||n’l’s>:—795 > <nl||gr_zé(r)||n’l>6(l,0)6(l’,0). (2.21)

This term is nonzero only for s electrons.

kiks) || m;l;s; ) of all three operators of

The one-electron submatrix element ( nilisi|| T
the hyperfine interaction is necessary to obtain the explicit tensorial second quantization

form of the hyperfine interaction operators. The main peculiarity of these expressions
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is the use of the tensorial properties of the operators in orbital 1, spin s and quasispin q
space. For instance, the final expressions of the electric multipole interaction operator
in the coupled tensorial form of second quantization follows from Eq. 2.11 by inserting

the one-electron submatrix element Eq. 2.12:

Fo=TM =i > [K772u1c™y)

ng LL Y ].j

e L 61 1(kO)K
X (nily|r 1IITle]-)[a](/C; ) % aﬁ/zl’ SJ] . (2.22)

In a similar way, the relevant expressions for the other hyperfine operators are found:

o? 2 _
Fo=Tel = —50s D YU+ 1)l 3r8(m) lingy)

byl
. : o011
x[a{/ghs) xaﬁ/zl’ s]]( )6(11,0)6(15,0) (2.23)
and
Fao = T = —it1 % S YLk D+ kL)
m — 'm - i j j -
Zkﬁnili,njlj
x (L k= 1)L+ =K+ 1) (Ll C )
_k— . 1 (kO)k
X(TliliHT‘ k ZHTLJ'L)’)[(H(ZLIS) xai‘f‘m’s)]
1, (k+1)
— 5@t go[==— 3 (uIctL)
nilinyl

(qlis)

T ) 7(k+1 Dk
x(nili|lr k 2”1’1]'1]')[0,1/2 (g L,s)] ‘

xa_,

(2.24)

In the following section the new hyperfine structure expressions Eq. 2.22, Eq. 2.23
and Eq. 2.24 are used for the efficient evaluation of the matrix elements of the hyperfine

interaction operators for arbitrary electronic configurations.

2.2 The general expression for the matrix elements

In a configuration state function, the interacting electron is coupled to a shell. The shell,
in turn, is coupled to the other shells. The decoupling of the electron can be done by

applying graphical techniques. They are explained, for example, in [36]. Rather than
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going into details, the calculation of the decoupling part R is illustrated by consider-
ing an example (without mentioning the phase). The general formula are summarized
thereafter. The calculation follows the approach described in [37].

Each space is independent and therefore each space can be decoupled separately.
The explicit calculations are done for one space only. For several spaces, one has to take
the product of the decoupling elements, R = Ry - Rs for LS-coupled wave functions, for
example. In the following, the space is denoted by L, a shell is abbreviated by |A) and
an electron by |1). The matrix element A of a one-particle operator with rank k in the
L space acting on the shells a and b of configuration state functions with u shells then

reads

Aab = (MAL12A30023. .. Al o - AV LT v AL
o A1l a1  ALLTF™ (@, B) [ A AL, AsL 55 ALL

1...a

AL ML Al ALY, (2.25)

The graphical representation of this matrix element is given in Fig. 1. Rules exist for
cutting through the graph, connecting two loose ends or connecting three loose ends by
a new vertex [25]. The main cutting lines are indicated in Fig. 1 by the dashed lines
(I, II, IIT and IV). Cutting through line I and connecting the loose ends, the left part
can successively be cut further into the delta function parts, see Fig. 2. This decoupling

element amounts to
a—1
Ri = J[8(LaL’a) 8(Lizcn L 12..00) - (2.26)
=1

Cutting at line IT through three lines, the loose ends are connected by a new vertex. The

part that is cut free can be transformed into Fig. 3, which is essentially a 6j-symbol,

, 1/2 k L’ L
Ry = (—1bartliiatlath [La,L,L..a] / { . . “ y ¢ } (2.27)
1...a—1 1...a 1...a
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Cutting along III for all following parts v, a product of 6j-symbols expression is obtained,

b—1

' 122 la L' v Ly
RIII — H (_])laJerJrL]me]JrL 1w [L1...vf1aL,1___v] / { a 1..v-1 1;..\1 1 }
v=a-+1 Ly L1...v L 1..v

(2.28)

The part between the cutting lines IIT and IV leads to a 9j symbol as depicted in Fig. 4,

L1 v—1 la Li v
Rrv = [L1.v1,Lb, L1 b, k2 L'y Lz . (2.29)

L'y k L'

In the part that is left over, similar to the part v, all parts before u — 1 are cut out to

obtain a product of 6j-symbols,

_ H 1 k+L,+L; v 14+L"7 L L’ 1/2 k L/1...\»'—1 Ll...v—1
Ry = H (—1) [ 1.v—1 1,,,\,] Lol o .
v=b+1 v T..v T..v

(2.30)

The final part is again a 6j-symbol,

, 12| kL3 Ly
R = (=D U )Y { Lo ‘fj‘ } (2.31)
uw

Any decoupling matrix for the one-particle operator R is given as a product of dif-
ferent parts of the Rx. The analytical expressions for the decoupling matrices presented
in this section are general and valid for any non-scalar one-particle operator (operator

consisting of tensorial products of tensorial operators). For one interacting shell, the
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}I }H }HI }IV
Lp Ly Lij Liv Lij Liwi
| | | |
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| | | |
| | | |
B AR
| I | K|
| , | ;o
L L L Lo L Ly
| | | |
| | | |
| | | |
| | | |
| | | |
/7 ’ ‘ /7 ‘ ’ ‘ ’ ‘ ’
Lp  Lin | Lij | Liy | Lij Ly

Fig 1. Graphical representation of the matrix element for a one-particle op-

erator acting between two different shells i and j. The operator acts in orbital

space with rank k, only. The configuration state functions have u shells. Cuts
through the diagram are indicated by the dashed lines (I,II,IILIV).

Ll. i
L
L, (I S L; Li.i
Ll,“i-l
L
i . P i . P
Fig 2. Delta func- Fig .3 art Cl, Fig .4 art -C4,
. . obtained by cut- obtained by cutting
tion, obtained by ) )
ting out the inter- out the part be-
the first parts left of ) .
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2.2 The general expression for the matriz elements

operators of second quantization act on the same shell denoted by a. The decoupling

matrix has the expression:

R(la, Lo, k1) = [Lal 7"/28(Ly, L) ... 8(La1, L, 1)8(Last, Lhq) ... 8(Ly, LY)
8(Ly, L7, ki) foru=1
C foru=2
y Ci1Ca(ky,a+1,u—1)C3 fora<3u>2 (2.32)
8(Liz2,L1,) ... 0(Lazia1, Lgy o q)
xC1Ca(k,a+1,u—1)Cs fora>3,azuu>2
8(Liz2,L,) ... 0(L12 a1, Ly, . )C3 fora=u,u>2.

The notation (L1, L], ki) stands for the triangular condition. That is one if [[; — 1| <
ki<Li+ L{ is fulfilled, and zero otherwise. The coefficient C; is

Ci = (—U(P[LQ,T/]VZ{ k}l LT& ?,1 }’ (2.33)

where the values of parameters ¢, J, T and T’ occurring in expression Eq. 2.33 are given

in Table 1. The remaining two coefficients are

Table 1. Parameters for C; of Eq. 2.33

u a () ] T T’
2 1 L1+2L'1—L2—L'+k1 Ly L L’
2 2 L1—|—L+L'2—|—k1 L4 L L’
u+2 1 L1+2L'1—L2—L'12+k1 Ly L2 L'12
u#2 2 L1+L12+L’2+k1 Ly L2 L/12
u#2 a>2 Liz.a-1+Liz.at+ gtk L12..a-1 Li2..a L) o
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CZ ( kla kmin ) kmax)

kInax
H (_1)kLJrLi‘FL]Z“.ifl+L;2“,i[L12”ii],L;z 1]1/2
i:k'min
_ ki L, o7 Liziia 2.34
x{ U L2441 v for Kmin < Kmax ( )
L Lia L,
0 for Kmin > Kmax
and
, ki J7 ]
C; = (e ’ (235)
j L L’

where the parameters @, j, ] and ]’ are given in Table 2.

Table 2. Parameters for C; and C3 of Eq. 2.34 and Eq. 2.35

u @ j J J’
u#a ki+Lu+ L2 w1 +L7 Ly Liz. Lo
a ki—Li2 w1 +2L+ L —L L12. w1 Lu L},
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In the case of two interacting shells, one operator of second quantization acts upon a
shell «x and the second one acts upon 3. The shells a and b are defined in the following

equation by a = min{x, } and b = max{«, 3}. The decoupling element is given by

R(la, La> 1’b> Lb»kl) = (_] )C[Lay Lb]_1/26(L1»L;) M 6“—(1—1 ) L:l_] )6(La+1 ) L
o 8(Loot, Ly )8(Lost, L) - 8(Lu, L)

’
a+l)

Ca(Kq2, K15, k) fora=1,b=2,u=2
Ca(Kq2, K15, ki) C3 fora=1,b=2,u=3
Ca(Ki2, K1y, k) Calky, 3,u—1)C3 fora=1,b=2u>3
C1Ca(Kqz,a+1,b —1)Ca(Kqz, K15, ki)
XCo(ky,b+1,u—1)C3 fora<3,b>2b#u
X9 CiCa(Kyz,a+1,b—1)Ca(Ki2, K, k1) fora<3,b>2b=u (2.36)

6(L12,L15) .o 0(Liz a1, L, )G

xCa(Ki2, @+ 1,b — 1)CalK12, K/ ki)

XCo(ky,b+1,u—1)C3 fora>3,b>2,b#u
8(L1z2,L1,) ... 0(L1za1, L5, o )G

XCz(Ku,a—i-],b—])C4(K12,K;2,k1) fora>3,b=u.

If x < in Eq. 2.36 then Kjp =14 and K;z = 1g. If « > 3 then Ky, = 1g and K{z = lg.
The phase factor ( is

0 for x <
{ = (2.37)
la+1lb—ky fora>p

and the additional coefficient C, is defined as

Ji k1 T
Calki ko ki) = 1,205k 1) ko T2 ¢ - (2.38)
J; ki I3

The values of the parameters Jq, ]{, J2, 15, J3 and ]; that occur in Eq. 2.38 are given in
Table 3.
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Table 3. Parameters for C4 in Eq. 2.38

a b u J1 Ji J2 J5 J3 J5
1 2 uzb Ly L{ L, Lé L2 L2
1 2 b L L L 1, L L
azl b#q2 b Lows L, L, 1, L L
in all other cases L1 b1 | I Ly | Liv Ly

After the interacting shells are decoupled, the matrix element Eq. 2.25 can be written

as

ab—HR (alas %) [plps )

ki ks
x (nalasLaSall[a;3" )xa_gglbs)]“ Imples LpSp) . (2.39)

The tensorial part

Kike
(nalas LaSall[a! ) x a (8™ 9] ™ jnglys LuSe) (2.40)

is efficiently evaluated in quasispin space. If the operator acts on two different shells a
and b, the creation and annihilation operators decouple and leading to the expression

for Eq. 2.40 in quasispin space of

(lasLaSa ||[a (dla s) xag?;b S)](kl “Imples LuSp) =
(15 xaQalaSaMollay3' ¥ 11 cxaQaLasasz
N/ ,
X (l No O(beLbSbMQH (1 qlq ||],bb O(beI_bSbMQ> . (2.41)

By applying the Wigner-Eckhart theorem in quasispin space the submatrix elements of

operators of type aﬁﬂq Y are obtained in the form

(INaQLSMgllafd ' 1Y a/Q'L'S'M{)

Q" 1/2 Q
My mq Mg

172

~[o]

(LaQLS[la'@ts) Ila’Q'L’S"y . (2.42)
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The last factor is the matrix element, reduced in all spaces, of the tensor a!d!'s), It
is proportional to the so-called completely reduced coefficient of fractional parentage,
compare Eq. 1.39.

If the operator acts on the same shell a, the tensorial expression is the compound

operator
N q ls) (q Us)qlkuks) N /AT ’CI/AA’
(MNaQLSMql[am,  x am 7| N «'Q'L'S'Mp)
B 12 4 a4 kq ][ Q kq Q
=2 [Q] ,
Ky mq, Mg, Mg MQ mq Mqg

x (nlaQLS||W kakiks) Inlo/Q'L’S" ), (2.43)

where (nlaQLS || W (kq Tt ks ) [Imla’Q’L’S”) denotes the completely reduced matrix el-

ement of the tensorial operator W (ka K k) (1, nl) = [a(qls) X a(qls)](qulkS) in qua-
sispin space. In terms of the fully reduced coefficients of fractional parentage
(LaQLS |l a'™ [Ila’Q'L’S") (2.44)
one finds
1/2

(nl OCQLS ”W(kq ki ks) Inl OCIQ /L/S/> _ (_])Q+L+S+Q'+L'+S'+kq +ky +ks [kq>kl»k8:|
s {q q kq}{l l kl}{s sks}
«" QLS Q, Q Q” I—-’ I—- I—” S, S S”
e <10€QLS m a(qls) |||LOCNQ”L”S”><1OCHQNLHSH |H a(qls) |||].OC/Q/L,S/> ) (245)

The decoupling of the interacting electrons from their shells amounts to simple expres-
sions proportional to the completely reduced coefficients of fractional parentage. These

are the standard quantities behind this approach.

In order to evaluate the hyperfine splitting of the atomic energy levels Eyng(IJF),

the submatrix elements of the operator TN with respect to the wave functions having,
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in general, an arbitrary number of electronic shells is needed. In the case where the

electronic wave function of the atom is given by a configuration state expansion
WILS)T) = > cilbi(LiS)T) (2.46)
i
the electronic submatrix elements can be written as follows:

(WILSTIFRMR IR W (L8] )y = Y cicy (Wi(LiSOTIFM*SIE 1/ (L/S)]")

1

L, S/
) )
=Y cigi{ ki ks ko Ik Le Sl (s(LiSOITFM S g/ (L)) . (2.47)
R Li Si ]

Both submatrix elements, diagonal and off-diagonal with respect to the electronic con-
figurations of the operators under consideration are needed, as can be seen from Eq. 2.46
and Eq. 2.47.

The matrix elements of the one-particle non-scalar operator F (ks

) between config-

uration state functions with u open shells,

[Pu(LS)) = Ml LiS1mal2LoS5L12812 - .. el LaSali. aS1.a
... lel?b LvySeLl1 vS1. ... TLuIE“LuSuLS) (2.48)

can be expressed as a sum over one-electron contributions

(UL IFRS pLL'S)y = ) (bu(LS)[F(nale, nolo) DL(L'S))

Nag,la,Mp,l

(2.49)
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where

(Bu(LS) [IF(nala, nplo) DL (L'S)) = (1) [y, ksl /2
X R(l(b l’b) I—(la Lb) I—ép I—];a kl)R(Sv S(l) Sba Séu S]ﬁpks){é(nala)nblb)

(kiks)
THINEe %aQaMag, LaSa)

lo la
X (1 %aQaMa, LaSall|ays'® xa ™

+ (1= 8(nala, noly)) (L0 #aQaMa, LaSallayy™ * 110° %aQaMq,LaSa)
NI
X <L§b (XbeMQb LbSb || a_gqalb v || Lb b OCbeMQb LbSb ) }

X (Nalas | TES) [ nples ) . (2.50)

The decoupling parts R are given in the form of 3nj-symbols, delta functions and phase
factors. The tensorial parts are given by the creation and annihilation operator expres-
sions and are related to the completely reduced coefficients of fractional parentage. The
additional phase factor A arises from the reordering needed to match the decoupled

creation and annihilation operators in the Bra and Ket vectors and is given by

0 TLala - lelb

A — max(a,b)—1 (2_51)
1+ Z N, Nala # Nyly .

r=min(a,b)

To calculate the hyperfine structure from an atomic state function with any number of

open shells in [S-coupling, one has to evaluate Eq. 2.47. In detail, one has to calculate

e the decoupling matrices R(lq, lb, La, Lv, Lg, L{, ki) and R(sq, Sb, Sa, Sv, Sg, Si, ks),
Eq. 2.32 and Eq. 2.36;

e the submatrix elements of irreducible tensor operators

la la (kiks) lel ’ ’ ’ 7 Q7
(18 %aQaMq, LaSall[a;3™® x ajh' ™™ 5" auQuMy, 14, ) and

(INaQMqLS|lay," 11N «QM{LS ) based on the standard

quantities and the definitions Eq. 2.42, Eq. 2.43 and Eq. 2.45;
e the phase factor A, Eq. 2.51;

e and the one-electron submatrix elements (nqlgs || T | nylys ), Eq. 2.12, Eq. 2.16,
Eq. 2.17 and Eq. 2.21.
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2.3 Explicit expressions for a two-shell system

The matrix element for a two-shell system can be written in a general way using Eq. 2.49
and Eq. 2.50 as

(iMoo LS ol N 0nlS, LS [TFRR) 1™ o LS il N2 1585 17S”)
EF(klks)(]z.]lzl) _ (_] A+][k[, :I]/z

x [R(1, 100 (1,1 (1) [al 3 xa (81 ] 1y

+R(2,2")fRk)(2,27) <2H[a ats) agg‘s

+R(1,27800)(1,2) (1 ey 1117y 20 el 1127

|12

+R2,1E92,1) 20 a3 12 (eS| (2.52)

The examination of the the coupled creation and annihilation expressions leads directly
to three distinct cases: Ny = Nj and N = N/, Ny = Nj — 1 and N; = NJ +1
and N7 = N7+ 1 and Nz = N/ — 1. The matrix elements of other combinations of
the occupation numbers are zero. In the first case where N; = N and N, = N, by

evaluating the decoupling parts R(1,1’) and R(2,2’) using Eq. 2.32 one ends up with

Flkiks) (12:1727) )AH [k, ks —-1/2

1 / ls) (qls)(kiks)
f(klks 1 (q q 1’
[{ L ) ij}{ N . o } (L1 ¢T3 xals = T )
2

% 6“_2,]_2) SZ, 1 L 2L Ly —L'—ki +51 —28] =S5 —S"—ks [L/ S/]]/Z
kr LY L S’ S
1 5 L2 N 5 92 flkaks) (2,2') (ZH[G (qls) Xagjzls (kiks) 12)
Ly L L S S § )
x  8(L1,L})8(S1,85)(—1)b T ratSi =525,k [L',S’]Vz}. (2.53)

Further simplifications occur if one shell (here the first one) is closed. Then [; =
S1=L1,=8=0,L=1LS,=S§L; =1L"and §, = S’. The 6j-coefficient before
flaks)(117) evaluates to zero if ky or kg is not equal to zero. The two 6j-coefficients

before f(<ks)(2 2’) have simple expressions

ki L7 L ,
{ 01 .y }:(—1)L+L+k15(k1,L,L')[L’,L]—‘/Z (2.54)
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and analog for S. In the case of a closed first shell with N, = N é the phase A = 0 and

the matrix elements evaluate to

Flke)(12;1727) = 8(ky, L, L")3(ks, S, ) (— 1) HHE Hhat5 4574k

XL ke, S, Tl /26 00)(2,27) (2 [ag 3 a )

12 ] e

12"y . (2.55)
Expressing the coupled creation and annihilation operator part in terms of the com-
pletely reduced coefficients of fractional parentage (||| a(9's) |||y’) with y = laQLS

leads to

Flaks)(12;1727) = 8(ky, L, L")8(ks, S, S7) (—1) L HRatSTS e 1 gy 'S g ] 7172
k 7k
fklks(zz)Z[ q q OI][ Q, q Q ]
Kymgl Mal Mq2 Mgq Mg mq Mg

X[k, ki, kel /2[Q]1/2(—1) QL +S2+Q) +15 +5) g Hha+ks

5 {q q kq}{l 1 kl}{s s ks}
Q7 LS Q/ Q Q// L/ L L// S/ S S//

X (1202Q2L2S2 [l a9t [ 1,a”Q"L"S™ )
x (L’ Q”L”S” |l a9ts) | 1,05Q5L5S5 ) (2.56)

The last step is to use the definition of the hyperfine structure submatrix elements with
appropriate ranks k| and ks to evaluate the submatrix element f. For the orbital term
the ranks are ky = 1 and ks = 0 and f is given by Eq. 2.16. For the diagonal hyperfine
interaction matrix element between a closed shell 1 and the second shell 2 = | 3d* iP ) the

coupled operators of second quantization evaluate to —3/v10. All together the result is

1
T.19(1,3d*3P;1,3d*3P) = —— UL+ 121+ 1)(nl]r3|nl)
4 4 zx/%‘/
= %(3d\|r‘3|\3d>. (2.57)

The radial integral must be evaluated with wave functions obtained, for example, in
a multiconfiguration Hartree-Fock calculation or treated as adjustable parameters in a

semiempirical approach.
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The general expression of the matrix elements of the hyperfine structure operator was
derived. This expression was based on second quantization, the concept of quasispin,
graphical methods and the smallest set of standard quantities, the completely reduced
coefficients of fractional parentage. The expression is valid for any open shell atomic
wave function of symmetry adapted configuration state functions in Russel-Sandars (LS)

coupling. The special case of a two shell system was considered explicitly.



3 Implementation of the expression in computer programs

The formula to calculate the hyperfine structure splitting constants A and B for a general
multiconfiguration atomic state functions was derived in the last chapter. T'wo computer
programs to calculate the hyperfine constants from a multiconfiguration atomic state
function have been developed during the work on this thesis.

The programs have to evaluate the general formula Eq. 2.50. The pure spin-angular
factor of the matrix element between the electron n4l, of the configuration state function
(P (LS)| and the electron nyply of the configuration state function | (L’S’)) is thus
derived. The decoupling parts Ry are calculated by Eq. 2.32if a = b or Eq. 2.36if a # b.
To evaluate the coefficients Cy, additional procedures for the 3nj-symbols are used. The
tensorial parts are evaluated by Eq. 2.42 and Eq. 2.45. The standard quantities of the
completely reduced coefficients of fractional parentage are taken from their tabulated
values.

The special hyperfine structure submatrix elements are evaluated, one for the electric
quadrupole interaction (Eq. 2.12), two for the magnetic dipole interaction (Eq. 2.16 and
Eq. 2.17) and one for the contact term (Eq. 2.21).

For a bra and ket configuration state function, the hyperfine contributions of all
electrons in turn have to be obtained and summed up, see Eq. 2.49. The additional
decoupling factor due to the coupled angular momentum L with the spin momentum S
to the final momentum J is evaluated, compare Eq. 2.47.

In the multiconfiguration approximation, the atomic state function |W(LS)]) is a
linear combination of configuration state functions |{i(LiSi)]J) and their weights c;.
Thus, for every combination of the configuration state functions i and j the hyperfine
contribution has to be evaluated and multiplied by the appropriate weights, see Eq. 2.47.

The results define the (J|| T (ki ks )k [|T) part of Eq. 2.6 and Eq. 2.7. They are multi-
plied by the nuclear factor u or Q to get the A and B factors.

More detailed information can be found in the source codes. In order to use this
algorithm, functions for the 3nj-symbols and Clebsch-Gordan coefficients, as well as
for the reduced coefficients of fractional parentage, are needed. Furthermore, a way to
extract the quantum numbers from atomic state functions must be given and procedures

that calculate the radial parts.
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3.1 Implementation in the symbolic environment of MAPLE

MaPLE is a powerful programming language based on symbolic programming — the uni-
fying idea is that every element can be represented as a symbolic expression. Symbolic
programming has come to the forefront of computing as the next large-scale change in
programming paradigms after the concept of object-oriented programming. MAPLE's
rich symbolic programming language is designed from the ground up for manipulation
of structured expressions. When solving an equation using symbolic programming, one
can give the input just as on paper, without manual reduction to ”computer friendly”
form. One then can get not only numerical results, but also closed form solutions, per-
haps including parameters that can be further manipulated as optimized or solved for.
MaPLE incorporates a high-level programming language that allows the user to define
his own procedures. These can be grouped into packages of specialized functions and
loaded on demand. MaprLeE can be used in batch mode for solving complex problems
and developing algorithms or interactively allowing its use as a quick "pocket calcula-

tor”.

During the past years an atomic application development system based on the
standard quantities of the angular momentum theory and the atomic shell model has
been developed in MaPLE. It is made up of the Racan and the Jucys packages.

The Racau package is designed as an environment for the symbolic manipulation,
simplification and computation of any number of 3nj-symbols and Clebsch-Gordan co-
efficients as well as various integrals over spherical harmonics. Additional symbols and
functions from the angular momentum theory and their fast and reliable computation
are defined [48-51], too. The Jucys package mainly contains quantities from the atomic
shell model [52,53]. It is based on the concept of quasispin and second quantization (in
a tensorial form) for the classification of operators and wave functions. All expressions,
therefore, have an unified convention and notation for the standard quantities. Both
packages include about 300 procedures, from which about 10 are sufficient for daily
work. Detailed information about the arguments and functions can be obtained from
the user manual coming with the package. A brief description of the versions of Racan

and Jucys are presented in the paper [54].

The procedures of the Jucys and the Racau packages are extended [54,55] in this
thesis. Next to the implementation of the complete reduced coefficients of fractional

parentage, a short but powerful notation is introduced for the creation and annihilation
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operators as well as for the products of such operators and their reduced matrix elements.
For one open shell, the evaluation of the spin-angular coefficients of one- and two-
particle physical operators are possible. All the coefficients and the matrix elements
from above are equally supported for both LS— and jj—coupled operators and functions.
The Racan package is enlarged for complex atoms with several open shells. The concept
of configuration state function and atomic state functions is implemented. Then the spin-
angular integration (for one-body interaction) is extended to the many open shell case
in LS—coupling. The general approach outlined in the last chapter is used to evaluate
the matrix elements up to the radial part and the reduced matrix element.

The concept of symbolic programming is followed that allows for an almost literal
translation of theoretical formulas and their evaluation. With these extensions, all the
procedures for calculating the hyperfine structure matrix elements are implemented [55].
The algorithm for hyperfine structure calculations is programmed in a new package,
called Hrs [56]. The experience gained from the investigations on the hyperfine structure
of Niobium [5] was used to design data-structures and procedures that are of use for the
experimentalist, too. It was installed at the Universitit Kassel, Fachbereich Physik'.
The algorithm that is used is the same as the one for the large scale ab initio approach
shown in the next section.

The semiempirical approach treats the radial parameters left over after spin-angular
integration as adjustable parameters. In a least square fit approximation they are fitted
to the experimental A and B factors. Both approaches are implemented in the package,
allowing a combined tackling of hyperfine structure problems in an environment with
unified definitions.

The extensions made to the Racan and JUCYs package are tabulated in Table 4.
The MaPLE input commands and its output is typeset in the following as:

> Input;
Output
To use these functions, the atomic structure packages must be loaded into MarLE:
> with(Racah) :with(Jucys) :with(HFS):

Welcome to Racah - Mindaugas!

Welcome to Jucys! - II

"http:/ /www.physik.uni-kassel.de/fritzsche /programs.html
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Table 4. MAPLE functions for computing the spin-angular coefficients, matrix elements
for any one-particle operator and the hyperfine structure. Apart from these main func-
tions, a few auxiliary procedures are provided in order to facilitate the communication
with and within atomic structure programs RAacaH and Jucys and to evaluate the
3nj-symbols. All functions are explained in detail in the interactive help.

Function

Description

asf_LS(),asf_jj()
csf_LS(),csf jj()

csf_tabulate()
Racah_rcfp()

Racah shell_coefficients()

Racah_angular_coefficient()

hfs_submatrix()
hfs_environment()
hfs_A(),hfs_B()

hfs_fit()

hfs_energy()
hfs_intensity()

hfs_plot()

Represents a LS- or jj-coupled atomic state function.
Represents a LS- or jj-coupled configuration state
function.

Extracts the quantum numbers of a configuration
state function.

Returns the reduced coefficients of fractional parent-
age in LS— or jj—coupling.

Returns the (reduced) matrix element of the tenso-

3 2
rial operator [aﬁﬂz) X aiﬂ:’;]( : [(11(1(113/1) X aﬁﬂjj]( 1)><

or

X )1(K)
[afﬁg X (11(1(1‘:;)]( 2]] in LS- or jj-coupling, respec-
tively.

Returns the pure spin-angular coefficients for one- or
two-particle operators of a single open shell in [S-
or jj-coupling and of one-particle operators with any
open shell in [S-coupling.

Returns the hyperfine structure submatrix element
with the tensor structure of rank k; in orbital and ks
in spin space.

Defines the nuclear data for the hyperfine structure.
Expresses the A or B factor in its spin-angular and
radial parts for an atomic state function.

Does the hyperfine structure parameterization for all
given levels. All spin-angular parameters are calcu-
lated and a least square fit of the unknown radial
parameters to obtain theoretical A and B factors is
performed.

Calculates the hyperfine level energies.

Calculates the relative intensities of all hyperfine
lines arising from the two given levels.

Plots a scheme of the splitting between two fine struc-
ture states.
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The atomic state functions, the configuration state functions and the shells are defined
in close analogy to the general string notation of these quantities. Together with further
informations about a fine structure level, the electronic part is defined by a level LS() data-
structure. A shell |InIN« LS) is defined by the shell LS([n,1],N, «,L,S) command. The
quantum numbers are standard: n for principal, 1 for orbital, L for the coupled angular
and S for the coupled spin momentum quantum numbers. N is the occupation number
and « stands for all additional quantum numbers needed for a unique classification of
the state (v, w). The command csf LS() keeps the information of a configuration state
function together. Using the additional argument check tests if the shells are correct and
if all couplings fulfill the triangle condition |a — b | < ¢ < a+b. To define a configuration
state function of two shells, say 4d* °D and 5s' %S coupled to °D; /2 in MAPLE one would
define the symbol D6 5D 3.2 as a configuration state function:

> D6.5D_3_2 := csf LS (shell LSC "4d"4 5°D"), shell LSC "5s"1 2°S"), 2, 5/2,
3/2, check);

D6.5D_3.2 := csf LS(C shell LS(C [4,2], 4, 4, 2, 2), shell LS(C [5,0], 1, 1, O,
1/2), 2, 5/2, 3/2)

The last three numbers are the final [ = 2, S = 5/2 and ] = 3/2 quantum numbers.
MaprLE checks if the shells and their coupling are valid and returns the shell in numeric
representation. In a multiconfiguration approximation, an atomic wave function is de-
fined as a linear combination of m configuration state functions. The command asf LS()
defines an atomic state function in MaPLE:

> P4.3P4.32 := csfLS( shell LSC "4d"4 3"P4"), shell LS("5s"1
2°S"Y,1,3/2,3/2):

> asf D6 := asf LS (D6.5D_3.2, 0.995, P4.3P4.32, 0.061);

asf D6 := asf LS(C csf LS(C shell LSC [4,2],4,4,2,2), shell LSC [5,0], 1, 1,
0, 1/2), 2, 5/2, 3/2), 0.995, csfLS(C shell LSC [4,2], 4, 4, 1, 1),
shell LSC [5,60]1, 1, 1, O, 1/2) ,1 ,3/2 ,3/2), 0.061)

The asf LS() is a list of configuration state functions followed by their mixing coefficients.
To hold the information about a fine structure level together, the structure level LS() is
defined. Any keyword together with any data-structure can be set, erased or returned.
Giving the level designation as a name for the structure, one can store additional data.
For instance, the hyperfine structure of the level °D; /2 of the configuration 4d%5s at an
energy of 12300 cm™' is examined. The A and B factors with errors are obtained using
laser-induced fluorescence (LIF). One can define the following structure':

"The units of the quantities are not stored. The package follows the general convention and treats
fine structure in [cm~ 1] and hyperfine structure in [MHz].
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> d4s1 D632 := level LS (Energy=12300, A=852.543, B=-64.572, Aerr=0.002,
Berr=0.041, Method="LIF"):

To work with the quantum numbers, the command csf _tabulate() exists. It creates a table
of all quantum numbers of a configuration state function:

> Ket:= csf_tabulate( P4.3P4.3.2 ):
and allows one to extract the table entries simply by:
> [Ket[1][1],Ket[Q][1],Ket[L][1],Ket[SI[1],Ket[mQ][1]];
[2, 1/2, 1, 1, 1/2]
The atomic state functions for an atom can be stored in a file and read in. The electronic
part is then defined in MAPLE and can be used efficiently for further work.
The calculation of the spin-angular integration requires the computation of a large

number of Clebsch-Gordan and 3nj-symbols. The corresponding existing procedures

have been optimized for computation speed [57].

As pointed out, the Jucys package is based on the completely reduced coefficients
of fractional parentage. To obtain a reduced coefficient of fractional parentage, the
procedure Racah_rcfp(1,Q,L,S,Q’,L,S’) is used:

> Racah._rcfp(2,3/2,1,1,1,3,3/2,algebraic);
8.197560616

which is equivalent to the matrix element

(3a**Fslla; ;" 13d2°Ps) = 8.197560616. (3.1)

K ks

The next building block is the matrix element of the tensor w ! ). To evaluate this

tensor, for example

2 25)7(10)
(38 *F l[a,3*" x a3 ] T 13ad*F) (32)

one would type in MAPLE:

> Racah_shell _coefficients(W.LS(C a_LS(2, 1/2), alS( 2, -1/2), 1, ®),
shell LSC "3d3 4F"), shell LS( "3d3 4F");

-4.098780311

The close analogy with the general formula is preserved. The missing part for the spin-
angular integration is the decoupling parts. The formulas are implemented allowing one
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to calculate the spin angular coefficient for any one-particle operator in LS-coupling. The
command Racah_angular_coefficient() calculates the angular coefficient up to the reduced
matrix element. First one indicates by F to calculate a one-particle operator. Then the
ranks follow, [k, ks, k] = [0, 1, 1] in this example. The following argument is the atomic
state function. The optional argument check tests if the atomic state function is valid.
The final argument defines the output format:

> Racah_angular _coefficient( "F", [0,1,1], asfLS(C csfLS(C shell LS(C "3d3
4F"), shell LS( "4s1 2S"), 3, 2, 3), 1, check), float);

[-0.6274950218, "F([®,1,1], 3, 2, "3d"34s"1", 3, 2, "3d"34s"1")"],
[-0.4677071738, "F([0®,1,1], 4, O, "3d"34s"1", 4, 0, "3d"34s"1")"]

The following result (after rounding the sixth digit) is obtained

(3d3*F 4s' 28 2F3||F OV ||3d3 9F 45 %S ?F3)
= —0.627495(3d || ©V ||3d) — 0.467707 (4s|| £ °V) ||4s) . (3.3)

Each angular coefficient is given, followed by a string that indicates the type (F for one-
particle operator), the ranks [k, kg, k] and the quantum numbers n,1 of the bra shell
followed by the bra configuration and the same for the ket shell. This string defines the

symbol for the reduced matrix element.

The extensions so far are generally adaptive for any one-particle operator in atomic
systems. The special nature of the hyperfine structure operator is given by its reduced
matrix elements. Functions to evaluate them up to the radial part are defined and are
bundled together with some additional functions into the Hrs package for hyperfine
structure examinations. The Hrs package is distributed with a file niobium.tzt that
defines the atomic state functions of the nine low-lying levels in Niobium. They are
obtained in [58]. An extract of this file is given in Fig. 5. The ground state, for example,
is defined by the symbol D6_12. The experimental values of the A and B factors are
stored, in addition. A file of this kind defines the atomic state functions for the Hrs
package. It is loaded into MAPLE by:

> read("niobium.txt"):

Having set up the level structure of the atom, the nuclear data have to be defined. These
data are supplied using the command hfs_environment(). For Niobium, the nuclear spin
is 9/2 h, the magnetic dipole moment in nuclear magnetons is © = 6.1705 un and the
electric quadrupole moment is Q = —0.36 barn [58]. In MAPLE the same units are used,
so one defines:
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D6_1_2:=level_LS (Name="(5D) 6D 1/2",A=1868.218,Aerror=0.002,Energy=0, Asf=asf_LS(
csf_LS(shell_LS([4, 2],4,4,2,2),shell_LS([5, 0],1,1,0,1/2),2,5/2,1/2), .99261,
csf_LS(shell_LS([4, 2],4,4,1,1),shell_LS([5, 0],1,1,0,1/2),1,3/2,1/2), .7934e-1,
csf_LS(shell_LS([4, 2],4,2,1,1),shell_LS([5, 0],1,1,0,1/2),1,3/2,1/2), -.7737e-1,
csf_LS(shell_LsS([4, 2],4,4,2,1),shell_LS([5, 0],1,1,0,1/2),2,3/2,1/2), -.935e-2,
csf_LS(shell_LS([4, 2],4,4,2,2),shell_LS([5, 0],1,1,0,1/2),2,3/2,1/2), .723e-2,
csf_LS(shell_LS([4, 2],4,4,0,0),shell_LS([5, 0],1,1,0,1/2),0,1/2,1/2), .499%e-2,
csf_LS(shell_LS([4, 2],4,0,0,0),shell_LS([5, 0],1,1,0,1/2),0,1/2,1/2), -.340e-2,
csf_LS(shell_Ls([4, 2],4,4,1,1),shell_LS([5, 0],1,1,0,1/2),1,1/2,1/2), .28le-2,
csf_LS(shell_Ls([4, 2]1,4,2,1,1),shell_LS([5, 0],1,1,0,1/2),1,1/2,1/2), —.278e-2,
csf_LS(shell_Ls([4, 2],3,3,1,3/2),shell_LS([5, 0],2,0,0,0),1,3/2,1/2), -.4737e-1,
csf_LS(shell_Ls([4, 2],3,3,1,1/2),shell_LS([5, 0],2,0,0,0),1,1/2,1/2), -.364e-2));

D6_3_2:=level_LS (Name="(5D) 6D 3/2",A=852.543,Aerror=0.003, B=-64.572,Berror=0.41,
Energy=154.2, Asf=asf_LS(

csf_LS(shell _LS([4, 21,4,4,2,2),shell_LS([5, 0],1,1,0,1/2),2,5/2,3/2), .99493,
csf_LS(shell _LS([4, 21,4,4,1,1),shell_LS([5, 0],1,1,0,1/2),1,3/2,3/2), .6140e-1,
csf_LS(shell_LS([4, 2],4,2,1,1),shell_LS([5, 0],1,1,0,1/2),1,3/2,3/2), -.6142e-1,
csf_LS(shell_LS([4, 2],4,4,2,1),shell_Ls([5, 0],1,1,0,1/2),2,3/2,3/2), -.1849%e-1
csf_LS(shell_LS([4, 2],4,4,2,2),shell_LS([5, 0],1,1,0,1/2),2,3/2,3/2), .1219%-1
csf_LS(shell_LS([4, 2],4,4,3,1),shell_Ls([5, 0],1,1,0,1/2),3,3/2,3/2), .1318e-1
csf_LS(shell_LS([4, 21,4,2,3,1),shell_Ls([5, 01,1,1,0,1/2),3,3/2,3/2), -.734e-2,
csf_LS(shell_LS([4, 21,4,4,1,1),shell_Ls([5, 01,1,1,0,1/2),1,1/2,3/2), .296e-2,
csf_LS(shell_LS([4, 21,4,2,1,1),shell_Ls([5, 01,1,1,0,1/2),1,1/2,3/2), -.27%-2,
csf_LS(shell_LS([4, 21,4,4,2,1),shell_Ls([5, 01,1,1,0,1/2),2,1/2,3/2), -.3e-4,
csf_LS(shell_LS([4, 21,4,4,2,0),shell_Ls([5, 01,1,1,0,1/2),2,1/2,3/2), -.166e-2,
csf_LS(shell LS ([4, 21,4,2,2,0),shell_LS([5, 0],1,1,0,1/2),2,1/2,3/2), .106e-2,
csf_LS(shell_LS([4, 2]1,3,3,3,3/2),shell_LS([5, 01,2,0,0,0),3,3/2,3/2), .2223e-1
csf_LS(shell_LS([4, 21,3,3,1,3/2),shell_LS([5, 01,2,0,0,0),1,3/2,3/2), -.3646e-1
csf_LS(shell LS ([4, 21,3,3,1,1/2),shell_LS([5, 01,2,0,0,0),1,1/2,3/2), —-.393e-2,
csf_LS(shell _LS([4, 21,3,3,2,1/2),shell_LS([5, 0],2,0,0,0),2,1/2,3/2), .160e-2,
csf_LS(shell_LS([4, 21,3,1,2,1/2),shell_LS([5, 0],2,0,0,0),2,1/2,3/2), —.41e-3));

Fig 5. Extract of the HFs input file of the atomic fine structure level of Niobium as
obtained in [58].

hfs_environment (I=9/2, mu=6.1705, Q=-0.36);

The hyperfine structure spectrum arising between two fine structure levels can be sim-
ulated. It will typically look like F'ig. 6:

hfs_environment (I=1);

> D4S1 := level LS (A=100, B=30, Energy=12034,
Asf = asf LS(C csf LS( shell LS(C "1s"1 2°S"), shell LS("2p"1 2°P"), 1,1,2),
1):

> D3S2 := level LS (A=300, B=20, Energy=14034,
Asf=asf LS (csf LS (shell LS("1s"2 1°S"), shell LS("2p°"2 1°D"), 2,0,2),
1):

hfs_ plot (D4S1, D3S2, 400, info);

The lines are simulated using Gauss functions with supplied full width at half minimum
(here 400 MHz) and relative intensities. A scheme of the hyperfine structure levels and
the transition lines between them is sketched on top of the plot. The optional argument
info types out the information about the hyperfine structure as shown on the right side
of Fig. 6.
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Hyperfine structure, fwhm : 400.0

1.6 Nuclear Spin: 1.0

Angular moment upper level: 2.0

Angular moment lower level: 2.0

Hyperfine parameter:

Upper level: A:300.000, B:20.000

- Lower level: A:100.000, B:30.000

Lines:

Energy : —611.250000 Lower level: -266.250 Upper level: -877.500
Intensity: 0.450000 F:1.0 F: 1.0

Energy : —758.750000 Lower level: -118.750 Upper level: -877.500

/ Intensity: 0.150000 F:2.0 F: 1.0
Energy : -46.250000 Lower level: -266.250 Upper level: -312.500
//\V Intensity: 0.150000 F:1.0 F: 2.0
Energy : -193.750000 Lower level: -118.750 Upper level: -312.500
Intensity: 0.694444 F:2.0 F: 2.0
Energy : -527.500000 Lower level: 215.000 Upper level: -312.500
Intensity: 0.155556 F:3.0 F: 2.0
Energy : 728.750000 Lower level: -118.750 Upper level: 610.000
Intensity: 0.155556 F:2.0 F: 3.0
_’// Energy : 395.000000 Lower level: 215.000 Upper level: 610.000
T T T T T T T T T T T T T T T T T T T T 7T Intensity: 1.244444 F:3.0 F: 3.0
- 5 0 500 10

1000 -500 1000

R SRR

Fig 6. Output of the command hfs_plot(). On the left side the simulated hyperfine
structure is given, on the right side the text output.

The theoretical expression for the A and B factors can be split into a sum where
each term of the sum is a product of a spin-angular coefficient times a radial integral.
This expansion can be used in the semiempirical analysis of the hyperfine structure or
ab initio calculations.

The matrix element (yLS] ||F(kl ks )k [|'v'L’S’]”) up to the reduced matrix element
(nls|| £k [[m’l’s”) is integrated by a call to the procedure Racah_angular_coefficient().
Historically, the coupling scheme normally used for hyperfine structure is SL-coupling
while [S-coupling is normally used for the fine structure. This leads to an addi-
tional phase factor. Therefore the coupling scheme has to be defined. Depending
on the approach (either semiempirical or ab initio) the hyperfine structure reduced
matrix elements have different definitions [21,47]. These definitions are set using the

hfs_environment(). The possibilities are summarized in Table 5.

The hyperfine submatrix elements can be expressed by spin-angular factor o times
a radial parameter a. If Nuclear in hfs_environment() is set to true, the nuclear data are
multiplied to the spin-angular data and only the pure radial coefficients are used as
parameters. In Table 6 the different definitions of the hyperfine submatrix elements
are compiled. Giving the ranks [k, ks] followed by [n,1] of the bra and ket electron,
hfs_submatrix() returns this expression:

> hfs_submatrix ([1,0],[2,1],[2,1]);

— 52 —
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Table 5. The possible settings for hfs_environment() and their explanations are sum-
marized. The units are indicated in square brackets. Each keyword defines the entry
as given by the definition.

Keyword  Entry Definition

I I Nuclear spin [h]

MU u Magnetic dipole moment [eh/(2m,)]

Q Q Electric quadrupole moment [barn]
Coupnine "SL” / "LS” Coupling scheme being used
ApPPROACH "abinitio” / "semiempirical” The approach being used

NucLEar  "true” / "false” Defines the radial part with or without

the nuclear data

-2V3  al1(2, 1, 2, 1)
Setting Nuclear to true one obtains:

> hfs_environment (Nuclear=true);

> hfs_submatrix ([1,0],[2,1],[2,1]);

-95.41068 V3 MUNUC 5 91(2, 1, 2, D)

All procedures are at hand to parameterize the A and B factors into their spin-angular
parts o and the radial parameters a:

> CSF := csfLS (shell LS("2p”"2 3"P"), shell LS("3p~"2 3°P"), 1,1,1):

> hfs A (CSF);

0.2500000007 a 01(2, 1, 2, 1, "2p"2 3p"2", "2p"2 3p°2")
+ 0.2500000007 a01(3, 1, 3, 1, "2p°2 3p"2", "2p"2 3p°2")
+ 0.1250000002 a_12(2, 1, 2, 1, "2p°2 3p"2", "2p"2 3p°2")
+ 0.1250000002 a_12(3, 1, 3, 1, "2p°2 3p"2", "2p"2 3p°2")
1, 2, 1
1, 3, 1

+

0.2499999999 a_10(2, , "2p"2 3p"2", "2p”"2 3p"2")
0.2499999999 a_10(3, , "2p"2 3p72", "2p”2 3p"2")

+

The radial parameters are given by the name ay k.. In round brackets, the n and 1

values for the bra and ket electron are given, respectively. To distinguish the radial
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Table 6. The definition of the magnetic dipole («) and electric quadrupole (f3) sub-

matrix elements. g5 is the electronic g factor, pt; the magnetic dipole moment, Q the

electric quadrupole moment and I the nuclear spin. (*): The contact term in the ab

initio approach is only defined for 1 = 0, otherwise the submatrix element is zero. This
is not the case in the semiempirical approach.

Semiempirical,

Ab wnitio Semiempirical  Nuclear  nuclear
o =221+ T)(2L+ 1) A Blo 28 «(O1)
Xd = —9s i?gfig))(ffﬂf ol1?) = éo‘d Hoa 2%““2)
xe = —gsm (%) o= Lo Ho 34 a1
Ba= g B2 = B, QiBg  Qip®?

p13) — ]30 Q;p13

g — ]30 Q;pM

parameters arising from different configurations, bra and ket configurations are given,

too. The output for the A factor in the example translates to

A = (2p°°P 3p®°P Py || T + Tcl12p” °P 3p* °P °Py)
= 0250032 +0.250a2% +0.125a75 % +0.125075 P
2p,2; 3p,3
+0.250a75 " 4 0.250a75P . (3.4)

If the A factors are known for more levels than the radial parameters, they can be least

square fit to the experimental data.

To test the hyperfine package and show its capabilities, a semiempirical hyperfine
structure analysis for Niobium was performed. The fine structure analysis has been
done [58] for the two low-lying even-parity configurations 4d* 5s and 4d3 5s%. The mixing
coefficients were obtained by diagonalizing the energy matrix using a series of pure SL
states. The A and B factors for these nine levels 4d*5s ®D and 4d35s2 F of 7>Nb are
known experimentally. The level LS() data-structure is defined in the file niobium.tzt,
see Fig. 5. The hfs_environment() is defined:
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> hfs_environment( Coupling="SL", Approach="semiempirical", Nuclear=false,
mu=6.1436, Q=-.37, I1=9/2);

The radial parts aE:kl and bL‘:kl are least square fit to the observed hyperfine structure

splittings
Ar = Dot o +eaiyaf) + ofgaty (35)
nl
and
By = ) [B&rbgs+Bibis+ BN b (3.6)
nl

With the package Hrs this can be done using the procedure hfs fit(). Parsing the level LS()
as arguments for hfs_fit(), one has to define whether to fit to the magnetic dipole factor
A or the electric quadrupole factor B:

> hfs_ fit (D6.1.2, D6_3.2, D6.52, D6_72, D692, F4.32, F4. 52, F4.72, F49.2,
’A!);
> hfs_fit(D6-1.2, D632, D6.5.2, D6.7.2, D6.9.2, F4.32, F452, F472, F49.2,

!B!);

The results are summarized in Table 7 and Table 8. The result for the radial parameters
for the A and B factors calculated by Hrs are in agreement with the results obtained
by [58].
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3.2 Implementation for the ATSP package

3.2 Implementation for the ATSP package

The multiconfiguration Hartree-Fock code MCHF determines radial functions that define
the orbitals of configuration states in the expansion of a non-relativistic wave function
of a many-electron atom or ion. This code has been combined with others that per-
form angular and radial integrations to form an atomic-structure package ATSP for the
prediction of atomic properties [6].

A Fortran Hrs program [47] exists for the ATSP package. The integration over
the spin-angular variables is based on the scheme outlined in [59]. This spin-angular
integration is replaced by the approach outlined in Chapter 2. The reduced coefficients
of fractional parentage, the matrix element of the W (kg ke ks)

are taken from the Fortran library SAI [60].

tensor and the 3nj-symbols

The ATSP package was installed on the Benprosios Fizikos KaTeEDROS cluster at Vil-
nius Pedagogical University, division of general physics. This five node cluster has AMD
Athlon(tm) XP 2800+ processors with 2079.581 MHz CPU. The unpublished new ver-
sion of the MCHF atomic-structure package [61], based on dynamic memory allocation,
sparse matrix methods, and the new angular library is used for the multiconfiguration
Hartree-Fock calculations.

The new hyperfine program and the installation of the ATSP package were tested on
two small cases. First, the hyperfine structure of the ground state of Lithium was calcu-
lated, compare [62]. As the hyperfine structure of Lithium is only given by the contact
term, the other submatrix elements were tested by the hyperfine structure calculation
of Beryllium [63]. The results agreed with the ones calculated using the new version of
the hyperfine structure program.

The available computing power and the refined programs allow to use a very detailed
method for the hyperfine structure calculation. In the following chapter the method is
explained on the calculation of Vanadium. The approach is automated by a script
that handles the communication between the modules of the ATSP or GRASP package.
The case specific data are supplied in form of three files. The script then calls the
required modules, monitors their states and outputs the results of the hyperfine structure
calculation. This is explained in more detail at the end of the next chapter.

Without the new refinements and advanced computing capacities, the calculations

performed would not have been feasible.
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Application of the multiconfiguration approach to a complex many-electron atom is
hampered by the vast number of configuration state functions that contribute to the
atomic state function. The unlimited atomic state function consists of all of them,
including the unbound solutions. A first truncation is made by looking at the energy
separation of the different fine structure levels. Levels that lie energetically close are
chosen as reference set while the others can be ignored. The orbitals of the reference
sets are called spectroscopic. The correlation to these orbitals is introduced by partly
substituting them with correlation orbitals. These orbitals are only defined by their
angular symmetry and do not necessarily have the correct number of nodes as the
spectroscopic orbitals do. The substitutions define the additional configuration state
functions. Their admixture is determined in the self consistent procedure. A manageable
number of these configuration state functions has to be determined in order to represent
the most important correlations that take place.

The important configuration state functions are identified from the structure of the
operators that are involved. The hyperfine structure is a single-particle operator. As a
result, single substitutions of the electron orbitals with correlation ones give the main
contribution. Double substitutions are most important for the Coulomb operator. Triple
and higher substitutions do not interact directly and have less influence. A reasonable
point of departure is, therefore, to limit the number of substitutions to double at most.

The correlations can be divided into three types. Outer electrons are less tightly
bound and interact strongly with each other. They are called valence electrons, the
correlation between them is called valence correlation. The radial orbitals undergo
changes compared to the Hartree-Fock or Dirac-Fock orbitals. Inner electrons are tightly
bound. They do not change from their (Dirac-)Hartree-Fock radial orbitals and define
the core. Substitutions of core orbitals with the correlation orbitals lead to the core
correlation. Correlations of the third type take place between core and valence orbitals,
the core-valence correlation. The electrons near the nucleus are so tightly bound and
screened by the outer electrons that they do not experience correlations. They define
the closed orbitals and their substitutions are ignored.

The usual approach, outlined in [13], is to calculate the three correlation types part
by part. In turn, more correlation orbitals are included until convergence is obtained.

The correlation orbitals from previous calculations are kept fixed. Selected substitutions



are taken into account and configuration state function with a weight lower than a certain
cutoff are ignored, a technique called condensing. These calculations aim to obtain most
of the orbital relaxations to the correlations that take place. In a second calculation, all
orbitals are held fixed and a calculation with a larger configuration state function space
is performed. This configuration interaction calculation includes more correlations but

neglects further orbital relaxation.

This thesis is based on this calculation scheme. The correlations are introduced
in finer steps allowing to observe the influence of the correlation orbitals on the mag-
netic dipole interaction for each spectroscopic orbital. That involves to calculate for
each orbital in turn multiconfigurational the wave function and thereafter the hyperfine
structure. This is repeated for an increasing number of correlation orbitals with the
same symmetry. Compared with other hyperfine structure calculations a substantially
increased number of calculations have to be done.

The win of such step by step evaluation is threefold. First, convergence problems in
the self consistent procedure are minimized as only small changes are introduced within
each step. Second, the procedure allows to filter out correlations that have less influence
on the hyperfine structure. For complex many-electron atoms this approximation is an
inescapable necessity. Third, the step by step calculation allows to observe the contri-
bution and convergence of the different correlations. As correlations often compensate
in hyperfine structure only the step by step calculation can detect this.

The three correlation types (core, valence and core-valence) are therefore divided
into correlation groups for each spectroscopic orbital. The configuration state functions
of a group are included into the multiconfiguration approximation, the wave function
is determined and the hyperfine structure is calculated. If this group of configuration
state functions does not change the A factor by more than a certain limit, the group
is ignored. The substitution of the next orbital(s) with correlation orbitals of the same
layer is included.

Each layer consists of a number of correlation orbitals of different symmetry, labeled
by the Greek letters («, 3,7v,5, e and (). For each of these layers, the valence and the
correlation orbitals of the layer are varied in the self-consistent procedure. The core and

old correlation orbitals are held fixed if the next layer is included.
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The following notation is used to term the correlation groups. The type of cor-
relation is abbreviated by V,C and CV for valence, core and core-valence correlation,
respectively. For double substitutions in the cases of valence and core correlations, the
letter is doubled. The correlation layer is followed by the orbitals that are substituted
by the correlation orbitals. V(o«)4s means single substitution of the valence 4s orbital
with correlation orbitals of layer «. Double core substitution of the two orbitals 2s and
2p with two different correlation orbitals of layer 3 are denoted by CC(3)2s2p. If the
same correlation orbital is used for the substitution, only one layer will be indicated,

CC()2s2p.

4.1 The hyperfine structure of Vanadium

Vanadium belongs to the iron group elements. The hyperfine structure data of many
transitions of these elements are presently needed in various fields of astrophysics. Ig-
noring hyperfine structure effects and isotopic shifts when considering line formation
processes may result in a considerable overestimation of solar and stellar abundances
and in the wavelength shifts of saturated lines [64].

Natural Vanadium has only one stable isotope °'V(99.75%, I = %7) together with an
extremely long-lived isotope, >°V(0.25%, I = 61), that has a half-life of 1.5x 10" years.
The high spins and the complicated electronic energy levels that occur in all transition
elements result in extensive hyperfine structure in the atomic spectra. Vanadium °'V
has a nuclear magnetic dipole moment of p; = 5.1487057(2) puy, ( np Bohr magneton) and
a small electric quadrupole moment in the range of —0.052(10) barn to —0.033(10) barn,
the most exact value being Q = —0.043 barn. The values are taken from the table in [20].

Childs and Goodmann [65] measured the hyperfine structure of the ground state with
an atomic-beam magnetic-resonance technique. Several hyperfine structure splittings,
among them the ground state splitting, were analyzed in a semiempirical approach [66].

Semiempirical analysis has shown that the electron core in the low even-parity con-
figurations behave non-relativistic and the departure from the LS-limit is very small [67].
Hyperfine anomaly is not observed. A multiconfiguration Hartree-Fock approach there-
fore seems promising.

The ground term of Vanadium is 3d3 ‘S‘F 452 *F, forming the four levels *F; /2 (the

atomic ground state), 4R, /25 4F7/2 and 4F9/2. The next term, 3d* °D 4s °D, is about
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Table 9. The single configuration Hartree-Fock calculation of the hyperfine structure

of the ground state of Vanadium, 3d° 3F4s” *F. For each ], the contribution to the A

factor of the orbital, spin-dipole and contact term are given. The total A and B factor

is compared with the experimental measurements (Exp.) [65] and the semiempirical
results (Sem.) [66] .

single configuration Hartree-Fock Exp. Sem.
J Orbital  Spin-dipole = Contact Total from [65] from [66]
[ MHz ] [MHz] [MHz| |[MHz] [ MHz ] [ MHz ]
A 3/2 594.101 —50.982 0.0 543.119 560.048 547.923
A 5/2  360.704 —24.884 0.0 335.820 321.227 321.575
A 7/2 282905 —6.744 0.0 276.162 249.740 255.368
A 9/2 247542 11.801 0.0 259.344 227132 237.025

2000cm ™' away. Term mixing can thus be ignored and the configuration state function
space is limited to one reference configuration state function.

In Table 9 the single configuration Hartree-Fock results of the hyperfine structure are
compared with the experimental results [65] and the semiempirical calculated values [66].
The agreement with the experimental value is good. The Hartree-Fock calculation,
however, has no contact contribution as all ns shells are closed. If correlation is taken
into account, the open 3d shell will polarize the s shells. Therefore the good agreement
of the single configuration Hartree-Fock results with the experimental ones is accidental
and indicates a compensation of the polarization effect between the ns shells. The single
configuration Hartree-Fock calculation deviates from the experimental results by 3% for
] =3/2,4.6% for ] =5/2, 11% for ] = 7/2 and 14% for ] = 9/2. In comparison the
semiempirical analysis [66] represents the experimental values with a deviation of 2%
for ] =3/2,0.1% for ] =5/2 and 2% for ] = 7/2. The largest deviation being 4.4% for
]=9/2.
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4.2 Multiconfiguration Hartree-Fock calculation

The radial parts of the Hartree-Fock orbitals are given in Fig. 7. Three regions are
separated by the dotted lines. The near nucleus region is dominated by the 1s orbital.
This orbital is screened well by the other orbitals and tide bound to the nucleus. If
this orbital can be kept closed, that is the influence of correlation on this orbital can
be ignored, is discussed. The valence electrons, 3s, 3p, 3d and 4s are located in the
far nucleus region. They are less tightly bound and as Fig. 7 shows, their orbital wave
functions strongly overlap. The correlation, therefore, has a dominant effect on these
orbitals. As the valence electrons are in the far nucleus region their direct influence on
the hyperfine structure is small. Indirectly, however, the 3d shell polarizes the closed s
shells. That has a large net effect on the contact contribution. This is analyzed next.
The region in the middle is formed by the core orbitals 2s and 2p. To estimate their
correlation effects, the core correlation is analyzed in the multiconfiguration Hartree-
Fock and configuration interaction calculation based on the wave functions obtained
in the valence correlation calculation. The correlations are then studied together in a
multiconfiguration Hartree-Fock calculation and refined in a configuration interaction
calculation.

The correlation is introduced by adding the following layers of correlation orbitals:
«: p,d,forbitals.
B: p,d,f, gorbitals.
Y: p,d,f, g, horbitals.
d: p,d,f, g, hiorbitals.
€ p,d,f, g hiorbitals.
¢ p,d,f, g, hiorbitals.

Configuration state functions that arise from substitutions with the n = 3 orbitals are

included into layer «.

An overview of the influence of correlation on the Vanadium ground state and an
estimation for the contribution of the 1s shell was obtained, first. In Table 10 the

results for the A factor with ] = 3/2 obtained by single substitutions with increasing
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Orbital function [arb. units]

20 o7 | | | |

0 0.5 1 1.5 2 2.5

Radius r [au]

Fig 7. The radial orbital functions for each orbital obtained by single configuration
Hartree-Fock calculation. A rough classification of closed, core and valence region is
indicated by the vertical dotted lines.

layers of correlation orbitals are given. The calculation denoted by open 1s included
core excitations from the 1s shell, 1399 configuration state functions were included.
The calculation denoted by closed 1s excluded these excitations and consisted of 1256
configuration state functions.

Three important results were obtained. First, the hyperfine structure constant A
converged well within 1MHz after layer 6 had been included. The final A factor was
around 40 MHz too high compared to the experimental value. Second, the exclusion
of single excitations from the 1s shell introduced an error of less than 3.3 MHz, that is
less than 0.5% on the calculated value. The influence of the 1s shell was similar for the
other | values. Third, the most varying contribution was given by the contact term.
Starting with —8 MHz for layer «, it decreased to —96 MHz with correlation of layer (3
included, raised to 78 MHz with layer 'y and converged to 74 MHz. To get more accurate
results and to gain further insight into the correlation effects, a more detailed approach

is necessary that also includes double substitutions.
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Table 10. The results for ] = 3/2 of single substitutions with increasing layers for all
electrons (open 1s) are compared with the results of single substitutions keeping the
1s shell closed (closed 1s). The difference is noted. The contributions of the orbital,
spin-dipole and contact terms to the A factor is listed and the total A factor is given.

Layer Case Orbital Spin-dipole Contact A factor
[MHz] [MHz] [MHz] [MHz]

o4 open 1Is 602.235 —52.149 —8.022 542.064
closed Ts 602.236 —52.171 —7.951 542.114
difference —0.001 0.021 —0.071 —0.050

B open 1s 574.341 —46.326 —101.490 426.525
closed 1s 574.343 —46.364 —96.326 431.653
difference —0.002 0.038 —5.164 —5.128

2% open 1s 572.242 —46.482 81.982 607.743
closed Ts 572.243 —46.520 78.470 604.194
difference —0.001 0.038 3.512 3.550

1) open 1Is 572.062 —46.468 76.614 602.208
closed 1s 572.063 —46.504 73.381 598.940
difference —0.001 0.036 3.232 3.268

€ open 1s 571.778 —46.384 76.567 601.961
closed 1s 571.777 —46.411 73.347 598.713
difference 0.001 0.028 3.219 3.248

C open s 571.752 —46.375 77.196 602.573
closed 1s 571.752 —46.403 74.406 599.755
difference 0.0 0.028 2.790 2.818

The valence correlation was studied in detail. The aim was to obtain a configuration
state function space that is limited to the most important valence correlations for the A
factor. At the same time the error in the calculation due to this limitation was estimated.

The largest configuration state function space of the valence correlation that is feasi-
ble within the computing capacities includes all groups up to layer 3, all V() and some
lower VV(ee). The configuration state function space of almost 30000 functions was
divided into 189 correlation groups. The configuration state function space was enlarged
by one group, the wave function was obtained and the A factor was calculated. If the
change of the A factor was larger or equal to a given limit, this group was included in
the calculation for the next group. Five different limits were set: 0,0.5,1,3 and 5 MHz.

These calculations took about two month to complete. As a result, the detailed picture
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Fig 8. The valence correlation effects on the A factor for ] = 3/2. The value of the
A factor in dependence of increasing valence correlation groups (in total 189 groups)
is given. Five different limitation values are set: 0,0.5,1,3 and 5 MHz. The complete
calculation is done until the number of configuration state functions is around 30 000,
that is at part of the layer € groups. Significant groups are indicated in the figure.

of the valence correlation was obtained, see Fig. 8 for ] = 3/2. For all ], the correlations
between layer n = 3 and « mainly affect the orbital term. The changes of the A factor
are dominated by the contact contributions. Strong compensation is observed between
the V3s group that increases the A factor and the V4s group that decreases A substan-
tially. A similar compensation is observed for the VV3s and VV4s groups, however with
far less influence. Major correlations occur within layer 3 and vy and are saturated with
layer 6. As a result the restriction to groups of maximum layer § captures all single and
double valence correlations.

The final results of the hyperfine structure constants are given in Table 11. The

limited calculations are compared with the unlimited calculation up to layer 4. As



4 Multiconfiguration ab initio calculations

Table 11. Result of the limited valence calculation, ] = 3/2. The limitation value

is indicated by x. The calculation indicated by { includes parts of layer €. In the

column A the difference between A, and Ay is given. The number of configuration

state functions is listed in the second column (Csf) and the percentage deviation from
Ao in the final column.

Limit x Csf Ax A Percentage

[ MHz | [ MHz | [ MHz ] [ % ]
0 25069 519.53

of 209929 522.80 —3.27 0.6

0.5 15870 513.53 6.0 1.2

1 12630 514.93 4.6 0.9

3 6333 524.61 —5.08 1.0

5 4587 489.93 29.6 5.7

Fig. 8 shows, the influence of layer € was below the limit. However, layer € increased
the A factor for the unlimited calculation by 3 MHz. The limitation to layer & therefore

underestimated the A factor.

The threshold of 5 MHz omitted important correlations and deviated from the un-
limited calculation by 30 MHz. The limit of 3 MHz deviated by 5 MHz from the complete
calculation, only a small part of layer 6 was included. Setting the limit to 1 MHz groups
deviated by 5 MHz from the complete calculation and allowed one to half the number
of configuration state functions from 25069 to 12630 for layer 6. No improvement was
gained by the 0.5 MHz limit. The limit to groups above the 1 MHz amounted to 0.2% of
the experimental value for the A factor. As a result, the deviation from the unlimited
calculation was 1%. The limitation to layer d underestimated this calculation by 8 MHz
or 2%. In good approximation the valence correlation was calculated within an upper
error of 2% if the limited configuration state function space of groups that have changed
the A factor by more than 1 MHz was used. The error was dominated by the truncation

of the space to layer 6 and underestimated the A factor for | = 3/2.

The applied method allowed to limit the correlation groups from 189 groups to 77

most important ones if the limit is set to 0.2% of the experimental value. An error of



4.2 Multiconfiguration Hartree-Fock calculation

2% on the calculation was thereby introduced and the number of configuration state

functions was truncated to one half.

The limited configuration state function space for the core correlation was studied
next. To estimate whether the core correlation has its main influence due to orbital
variation or due to the mixing coefficients, this type of correlation was calculated in two
different ways: in a multiconfiguration Hartree-Fock calculation and in the configuration
interaction approach using the wave functions from the previous valence calculation.

The valence calculation showed that double substitutions are important. The ground
state of Vanadium has seven shells. Taking double substitutions from all shells into
account led to configuration state functions with nine shells. The atomic structure
package, however, allows at most eight shells in a configuration state function definition,
closed shells excluded. The 1s shell substitutions contributed less than 4 MHz for | =
3/2, see Table 10. That was less than the double substitutions included so far contributed
and less than the error of the calculation of 8 MHz. Therefore 1s shell substitutions were

excluded.

In the first calculations the core correlation groups were added to the Hartree-Fock
approximation, allowing all new orbitals to vary. The final number of configuration state
functions was 10540 setting up 49 groups. The core and core-core groups with substitu-
tions to the same layer showed correlation effects as can be seen in Fig. 9. The influence
is dominated by the contact contribution. The C(f3)2s group had most influence, raising
A by 130 MHz. Substitutions from two different layers were unimportant. The final A
factor was 642 MHz.

There was poor convergence with layer € for the multiconfiguration calculation as
can be seen in Table 12. Each subsequent layer undid partly the change introduced
by the layer before. A careful estimation of the change with layer ¢ would be around
25MHz or 5% of the calculated value. This layer, however, could not be included into
following combined valence and core correlation calculations as the configuration state

function space was too large.
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Table 12. Result of the core correlation multiconfiguration Hartree-Fock calculation.
The change of the hyperfine structure contributions after including a group is given
for the orbital, spin-dipole and contact contribution to the A factor and of the total A

factor.
Group Orbital Spin-dipole Contact Total

[ MHz | [ MHz ] [ MHz ] [ MHz |

C(x)2s —0.027 —0.523 —0.336 —0.885

C(B)2s 0.035 —0.376 130.094 129.753

C(y)2s —0.008 0.345 —20.803 —20.466

C(0)2s 0.005 —0.683 26.309 25.631

C(e)2s —0.001 0.663 —10.730 —10.068

C(x)2p —32.925 6.084 0.0 —26.840

C(B)2p 2.254 —0.056 —0.001 2.197

C(v)2p —7.477 1.0 0.570 —5.907

C(%)2p 1.268 0.164 0.023 1.455

C(e)2p 3.227 —0.571 —0.041 2.615

CC(w)2s 0.076 —0.024 —0.002 0.051
CC(B)2s 0.164 —0.039 15.895 16.020
CC(v)2s —0.564 0.119 —20.427 —20.872
CC(8)2s 0.856 —0.210 18.010 18.656
CC(e)2s —0.244 0.189 —18.227 —18.282
CC(«x)2p —1.957 0.537 0.284 —1.136
CC(B)2p 5.481 —1.021 5.233 9.693
CC(v)2p 0.932 0.435 —10.030 —8.662
CC(%)2p 1.315 —0.547 —4.481 —3.713
CC(e)2p 0.030 0.081 2.178 2.289
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In the second calculation, the core groups were included in a configuration interaction
calculation, using the orbitals from the previous valence calculation with 1 MHz limit.
The results are shown in Fig. 10. The single core excitations were again clearly visible,
double substitutions became unimportant. The increase by the C([3)2s group was down
to 60 MHz. The final A factor was 604 MHz. The core-core groups changed the hyperfine
structure by less than 5 MHz in total, with the main changes well below 2 MHz. The
core 2p groups converged within 1 MHz and contributed mainly to the orbital term.
The orbital and spin-dipole contribution converged for the 2s groups. The contact term
showed no clear convergence. However, the change from layer 3 to v and & was clearly
reduced and one could estimate the change due to layer € to be less than 10 MHz. For all
J values the configuration interaction calculation converged within 2% of the calculated

value.

Comparing the two calculations, clear orbital correlations are visible for the 2p and
2s orbitals. While the C groups all change in the same direction in the configuration
interaction calculation, this is not the case when the orbitals are allowed to vary. The
C2p groups converge well and have their main influence on the orbital term. The CC2p
groups are of minor importance and are orbital correlation in nature, only. Together
with the C2s and CC2s groups they form the limited core correlation configuration state
function space.

In both calculations, the two configuration state functions obtained by substitution

of one 2s electron by one s electron of the second correlation layer, (s,

2s'45 3d33F 3F Bsis ‘F (4.1)
and

2s'48 3d%3F °F BsiS 'F (4.2)

have a huge impact on the A factor. The two configuration state functions contributed
to the contact term, both through orbital and mixing correlation. There was no com-

pensation with the following layers for this contribution.
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Fig 9. Multiconfiguration Hartree-Fock calculation of the A factor for the core corre-
lation only. The A factor follows the change of the contact term.
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Fig 10. Configuration interaction calculation of the core correlation. The valence and
correlation orbitals from the valence calculation limited to 1 MHz were used.
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The correlations were studied together in a multiconfiguration Hartree-Fock calcu-
lation. Only groups of the limited valence and core configuration state function space
were used. A total of 93 most important correlation groups from the valence and core
correlation calculations done before form the configuration state function space, includ-
ing part of layer €. That amounted to a total of 14 133 configuration state functions.
After the valence and core groups of one layer have been included, their orbitals were
held fixed for the following groups of the next layers.

Four different calculations were performed to study the influence of the two configu-
ration state functions Eq. 4.1 and Eq. 4.2. In Fig. 11 they are compared with the valence
correlation calculation. The arrows indicate the most significant deviations between the
calculations. These calculations took about two month calculation time.

The first calculation included both of the two configuration state functions. The
final A factor was 620 MHz (I). The second calculation omitted the configuration state
function Eq. 4.1. The final A factor was 580 MHz (II). For the third calculation, all
configuration state functions from the C(n)2s groups were ignored. The final A factor
was 506 MHz (III). In the final calculation, both configuration state functions, Eq. 4.1
and Eq. 4.2 were omitted. The final A factor was 540 MHz (IV).

The orbital, spin-dipole and quadrupole term were not affected and had the same
dependence on the groups in all four calculations. The deviation of the different calcu-
lations was due to the contact contribution, only. This contact contribution was mainly
given by the correlation of the 2s shell. The influence was dominated by the admixture
of the correlation (3s orbitals of the two configuration state functions Eq. 4.1 and Eq. 4.2
with a weight of 0.0009274 and —0.0004695, respectively. From a total of 14133 config-
uration state functions the introduced correlation of these two changed the A factor by
80 MHz.

The exclusion of these two functions led to a very different behavior of the corre-
lations from layer v on compared with the other calculations. All valence groups with
double substitutions with one orbital from layer 3 showed no correlation any more. Cor-
relation occurred with the following layer 6 that were stronger compared to the other
cases. The core groups of layer € showed stronger correlations, too.

The detailed calculations allowed to estimate the error due to the convergence of
certain correlation groups. This error was 5% on the calculated A factor and dominated

by the 2s core correlation. It is given by the value in the round brackets in Table 13.
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Fig 11. The correlations for the A factor in the multiconfiguration Hartree-Fock cal-
culation using the limited valence and core configuration state function space. The
configuration state functions are divided into 93 groups. After the configuration state
functions of one group are included, the hyperfine structure factor A is calculated out
of the new atomic state function. Valence and core correlations are included within
each layer. The influence of the C([3)2s group is observed in different calculations: I.
With the C()2s group, II. Without the configuration state function 3d33F@s*F of the
C(3)2s group, IT1. Without any configuration state functions from the C(n)2s groups,
IV. Without the two configuration state functions of the C(f3)2s group, V. Valence
correlation, only.
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Contributions from the 1s shell and from triple or higher substitutions were estimated
to be less than 2%.

Combining core and valence correlation led to an overestimation of 15% from the
experimental value. Without correlation of the 2s orbital the A factor for | = 3/2
deviated by —10%. Ignoring the configuration state function Eq. 4.1 led to a deviation
of 4% over the experimental value, ignoring also the other configuration state function
underestimates A by —4%.

The C(s)2s group led to a significant deviation from the experimental result. Higher
substitutions than double could compensate that influence bringing the A factor closer
to the experimental value. However all s correlation orbitals were included with double
substitutions. Furthermore the weights of these two configurations is small, so matrix
elements with triple or higher substitutions contribute far less and could compensate for
only a part of the orbital relaxation.

Another reason for the dominant influence of the C(f3s)2s group could be that rela-
tivistic effects were not taken fully into account. The complete relativistic multiconfig-
uration Dirac-Fock calculation in the next section will refute this.

More work has to be done to conclude that maybe the numerical procedure used to
calculate the electron probability at the nucleus has to be improved.

The different behavior of the group dependency observed when the two configuration
state functions were ignored together with the convergence pattern of the groups suggest
yet another possibility. Ignoring the C(3s)2s group meant that correlations of the other
orbitals were included first and the C(f3s)2s group was included as C(ys)2s. That altered
the correlation with the 2s orbital and excluded the strong polarization. In other words,
including the 2s polarization before other correlations have occurred introduced a strong
s polarization orbital. The following correlation orbitals of the next layer could not
change this fixed orbital. That led to the bad convergence of the C2s groups and the
overestimation of the A factor.

Therefore the introduction of the core 2s correlation had to be done only after more
correlations had been introduced. This is sustained by the fact that the calculation
without the two configuration state functions Eq. 4.1 and Eq. 4.2 agreed within the
estimated error of 5% with the experimental value. Under these assumptions the two
configuration state functions were ignored for the following calculations.

The core-valence correlation was added in configuration interaction. The correlations

converged fast and they contributed less than 1% to the A factor. The change, except
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Fig 12. Based on the calculations without the C(ps)2s group, the core-valence cor-
relation was included as configuration interaction calculation, using only CV(n) and
CV(nn) groups.

for a few groups was well below 2 MHz, see Fig. 12. In a final configuration interaction
calculation the 88 valence groups that had been eliminated from the configuration state
function space were included, again group by group. These calculations took one month
of time.

Good convergence was obtained for the orbital, spin-dipole and quadrupole terms.
As one can see in Fig. 13, except for three groups, the changes were less than 2 MHz.

The last jump of less than 2 MHz occurred at layer 9.

The result of the multiconfiguration Hartree-Fock calculation without the two config-
uration state functions of the C(3s)2s group and the following configuration interaction
calculation with extended configuration state function space are given in Table 13.

Relativistic contributions to these results were obtained in Breit-Pauli approxima-
tion. All seven additional configuration state functions that were possible from the
configuration 3d34s? were added to the configuration state function space. The expan-
sion coefficients for the atomic wave function in intermediate LS] coupling were obtained
by the program BPCI [68]. The weights of the admixed terms were below 0.002. As can
be seen in Table 13, relativistic effects in Breit-Pauli approximation were negligible.

Compared with the experimental result, the obtained values for the A factor were in
good agreement with the experiment. The overall deviation was less than 2%. Except
for ] = 5/2, the multiconfiguration calculations were in better agreement than the

semiempirical values.
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Fig 13. The core-valence configuration interaction calculation was extended by the
groups left out in the multiconfiguration Hartree-Fock calculation.

Table 13. The hyperfine structure of the ground state of Vanadium, 3d3 3F4s? 4F.

Comparison of the experimental data (Exp.) [67] and semiempirical calculation (Sem.)

[66] with the calculated A factors. The Hartree-Fock (HF), limited multiconfiguration

Hartree-Fock (MCHF), the configuration interaction calculation (CI) and Breit-Pauli

corrections (CI+BP) are given. The last row lists the number of configuration state
functions (Csf).

] HF MCHF CI CI+BP  Exp.[67]  Sem. [66]

[ MHz ] [ MHz | [ MHz ] [ MHz | [ MHz | [ MHz ]

3/2 543 540(27) 562(28) 561 560.069(2) 547.923

5/2 336 320(16) 322(16) 323 321.251(3) 321.575

7/2 276 256(13)  252(13) 253 240.752(2)  255.368

92 259 237(12)  230(12) 230 227.136(1)  237.025
Csf 1 13296 29052 29059
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4.3 Multiconfiguration Dirac-Fock calculation

To test the method in the full relativistic framework and to further investigate the core
correlation, similar calculations in multiconfiguration Dirac-Fock approximation were
performed. The package for multiconfiguration Dirac-Fock calculations, Grasp [7], was
used for the calculations.

The configuration state functions [1; ) of the atomic state function (Eq. 1.12) were

defined using the notation
i) = [l N Ty alag, 1N2T2T12 alas, 1™ T3 T3 -.0) (4.3)

The relativistic subshells were regarded as belonging to the same correlation group as
in the multiconfiguration Hartree-Fock case. The shell 3d3, for example, splits into four
relativistic subshells [3ds /2]3, [3ds /2]2 [3d3 /5], [3d5,,] [3d3 /2]2 and [3d; /2]3. Substitutions
from these four subshells were again denoted by V3d. The set of correlation layers
included all orbitals of given | symmetry. That allows one to use the same method as in
the multiconfiguration Hartree-Fock calculations. The configuration state functions of
each correlation group were added in turn with increasing correlation orbital layer and
the atomic state function was determined self-consistently. The hyperfine structure was
calculated after one group was included.

The reference set was obtained by the Dirac-Fock calculation and verified by trans-
formation of the atomic state function from jj- into LS-coupled wave functions. The
transformation matrices were evaluated with the program LSJ [69]. The Dirac-Fock
calculation was based on all possible configuration state functions of the configuration
3d34s2 *F that could couple to the given | value. The transformations showed that the

wave functions were almost purely LS-coupled:

F30 = —0.5998 [3d3,21°2(3ds,213 3 [4sq 27 3 + 0.5900 [3d3,21°3 (481 5172 3
+0.3915 [3d3 5] 3[3d5,2]%2 3 48 2)* 3
—0.3309 [3d3/) 33d5 217 3 sy 52 3
—0.1714 [3ds5)* 3 (451 2)%2 3 (4.4)
= —0.999876 3d> iF 4s* 'F;,, — 0.013356 3d* 3D 4s® “D3 ,
+0.008387 3d* 1D 4s* °D3 , + 0.000181 3d> 5P 4s” °P3
—0.000021 3d* 3P 4s* P35, . (4.5)
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“Fs,n = 0.8218 [3d3/21°2(3ds,2]3 3 [4sq 207 3 + 0.3670 [3d3,21°3 (451 21% 3
—0.2741 [3d35)%[3ds 213 3 481,217 3
—0.2661 [3d3 5] 3[3d5,2]%2 2
—0.2096 [3d3,5]3[3d5,21%43 451 2]* 3 (4.6)
= —0.999939 3d> iF 452 'F5,, — 0.009026 3d> 3D 4s” “Ds5 ),
+0.005699 3d* 4D 4s? ?Ds,, + 0.002851 3d° IF 4s” F5,
—0.000052 3d> 3P 4s% *Ps ;. (4.7)

3 412" 3

“Fr, = 0.8421 [Bds0l 3 Bds/a)?4  4s) 023
+0.4557 [3d3,21%2[3ds,213 3 [4sy 223
7

—0.2884 [3d3 51 3[3d521%2 £ [4s1,2)* 5 (4.8)
= —0.999950 3d> iF 45 *F;,, + 0.003347 3d> JF 4s” °F; ),

+0.009454 3d9 3G 4s% 2G7 ;. (4.9)

Fop = 06791 [3d3/21°2[3ds]3 3 481217 §

—0.6717 [3d3 21 3[3ds 2174 £ [4s1 2% 3

—0.2960 [3ds21°3 (451 51* 3 (4.10)
= —0.999785 3d> {F 4s” ‘P, + 0.020747 3d> 3G 4s® 2Gy ),

—0.000315 3d* $H 45 “Ho ;. (4.11)

For each ] value these configuration state functions were used as reference set.

As in the multiconfiguration Hartree-Fock approximation, first single substitutions
with the reference set for core and valence orbitals were included to raising correlation
layers. In Table 14 the results of the A factor for substitutions including 1s (A1)
and excluding this substitutions (Ap, 1s) for raising correlation layers are compared.
Convergence within 2 MHz was obtained with layer 6. That was in the range of the 1s
shell correlation contribution. As a result this shell could be kept closed for all further
calculations, introducing an error of less than 0.4%. The relativistic influence, estimated
by comparing the results with the multiconfiguration Hartree-Fock calculation showed
that the influence is below 1%.
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Table 14. Results of the A factor in the single substitution calculation for ] = 3/2. The

results with substitutions of the 1s shell (As) and without (A, 15) were compared with

the multiconfiguration Hartree-Fock calculation with no 1s substitutions (Amcup no 15,

see Table 10). The experimental value is A = 560.048 MHz [65]. The number of
configuration state functions is given in the Csf column.

Layer Csf Als Csf  Apois Csf  AMCHF, no 1s

[MHz| [MHz| [MHz|
DF/HF 5 540 5 539 1 548
3, 865 535 789 517 137 542
B 1946 420 1742 411 309 432
Y 3191 607 2877 607 525 604
) 4450 601 4014 603 757 599
€ 5707 602 5149 603 1005 599
¢ 6962 602 6284 604 1256 600

The multiconfiguration Dirac-Fock calculation was performed for each ] value sep-
arately. The limit on the configuration state function group was set to 0.2% on the
experimental A value, that is 1 MHz for ] = 3/2. The single and double substitutions
of the valence and core electrons without 1s shell substitutions were divided into 273
groups. After each group, the hyperfine structure was determined from the new atomic
wave function. Once all groups of one layer were included, this orbitals were held fixed
and only the valence and new layer orbitals were varied. The results of the calculations
are given in Fig. 14. Groups that change A below the limit of 0.2% are indicated by the
small dots and were ignored. The groups above the limit are marked by the diamond
symbol and were used in the calculation that followed. These intensive calculations took
about three month of time.

More than 600000 interacting configuration state functions span the configuration
state function space for the ground state of Vanadium for single and double core and
valence substitutions by five correlation layers with the highest possible symmetry of
L =i. The core-valence configuration state functions more than doubled this space. The
restriction to groups that change the A factor by more than 0.2% limited the number of
groups for layer 6 from 71 down to 12 groups, and similar for the other | values. This

reduction of the configuration space, however, was not enough and additional condensing
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abbreviated by V for valence, C for core and CV for the core-valence groups.
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was used. The truncation was set that the deviation was 1% between the uncondensed
multiconfiguration calculation and the configuration interaction calculation based on the
wave functions of the condensed multiconfiguration calculation.

The level | = 3/2 showed the strongest correlation, followed by ] =7/2 and | = 9/2.
The level with ] = 5/2 showed very weak correlation. The influence of the core-valence
groups became negligible after layer yv. Two properties were the same for all J values.
First, the compensation of the 3s and 4s single valence groups was visible in the beginning
of the layer 3 groups. Second, there was a huge influence of the C(3)2s group. Some
major changes occurred that were different for each ] and all of them almost compensated
within the layer. The number of important groups shrank considerable from layer & on.

In order to estimate the convergence of the correlation groups and detect their in-
fluence, the change of the A factor was analyzed for the groups used. The valence
correlation groups converged well within 1% with layer €. For | = 3/2, the core group
seemed to converge with layer 6. However some groups of layer €, probably due to the
severe condensing, had an influence of around 20 MHz. For ] =5/2 and ] = 7/2 conver-
gence within 5 MHz was obtained. The core correlation for | = 9/2 seemed converged
well with layer 0 but layer € changed A by 10 MHz. Observing the trend with which
the change of each layer diminished, convergence within 2% for the core groups was
justified, except for ] = 3/2 with an error of 4%.

The approximation so far did not lead to agreement with the experiment, see Ta-
ble 15. The calculated A factor for | = 3/2 was 763 MHz, the experimental result was
560 MHz. That was a deviation of 36% of the experimental value while the estimated
error was only 4%. A similar result was observed in the multiconfiguration Hartree-Fock
approach. Only ] = 5/2 was near the estimated error, the case that did not show much

correlation.

The approximation was extended in configuration interaction approximation by in-
cluding configuration state functions of the limited groups that had been ignored due
to condensing. The wave functions were taken from the calculations before.

First, only the valence groups were used. After all valence groups of one layer were
included, the mixing coefficients of the atomic state function were determined and the
hyperfine structure was calculated. Thereafter, the atomic state function was condensed.

The cut-off was set so that the condensed calculation changed the A factor by less than
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Table 15. Result of the relativistic multiconfiguration approximation of the A fac-
tors. For each J, the single configuration Dirac-Fock calculation (DF) and the limited
multiconfiguration Dirac-Fock calculation (MCDF') are compared to the experimental
results [65]. The deviation from the experimental value is given (A) and the percentage
deviation (Percentage). In round brackets the estimated error on the calculation is
indicated, 4% for ] = 3/2 and 2% for the other ] values.

J DF MCDF Exp. [65] A Percentage
[MHz] [MHz] [MHz] [MHz] (%]
3/2 520.91 762(30) 560.069(2) -202 -36
5/2 330.32 313(6) 321.251(3) 8 3
7/2 274.46 189(4) 249.752(2) 60 24
9/2 257.83 132(3) 227.136(1) 95 42

0.2%. As these calculations needed a lot of computation time, no detailed calculation

was performed for each group. The calculations, shown in Fig. 15 took one month

to complete. Convergency below 1% compared to the calculated value was achieved.

Partial compensation took place between the change of layer 3 and the two following

layers.

The core groups were added to the configuration state function space of the valence

correlations. This was done in detail adding each group in turn. The A factor after the

groups were included is shown in Fig. 16 to Fig. 19. Layer € was omitted to include

more configuration state functions of the lower layers.
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Table 16. Result of the relativistic multiconfiguration calculation of the A factor.

The multiconfiguration calculation, the valence configuration interaction and the core

configuration interaction calculation are compared with the experimental results [65].
The errors are indicated in the round brackets.

J DF MCDF V-CI C-CI Exp.
[MHz] [MHz] [MHz] [MHz] [MHz]
3/2 520.91 762.86 558(6) 685(27) 560.069(2)
5/2 330.32 313.27 345(3) 327(6) 321.251(3)
7/2 274.46 189.20 298(3) 214(4) 249.752(2)
9/2 257.83 132.16 275(3) 172(4) 227.136(1)

The C2s groups had the main influence on the A factor. The C(f3)2s group dominated
over the others. The convergence of this group was not good and it was the main source
of error. The last change was around 4% of the calculated value for ] = 3/2, for all other
] around 2%. The results for the A factor are summarized in Table 16. The estimated
error for the configuration interaction calculations (CI) is given in round brackets. For
] = 5/2 agreement with the experiment was obtained. The other | values were off the
error limits. The deviation from the experiment was with 25% the highest for ] = 9/2.

The assigned error is much smaller than the deviation from the experimental result.
This points out that, as in the multiconfiguration Hartree-Fock approximation, further
effects have to be considered as a source of error.

In the multiconfiguration Hartree-Fock approach the C(fs)2s configuration state
functions were ignored to obtain good agreement with the experiment. In the multi-
configuration Dirac-Fock approximation, the C(fs)2s group could be divided into four
subgroups, depending on the occupation of the 3d> subshells, [3d; /Z]N‘ [3ds /Z]NZ with
N1+ N =3.

In Table 17 the calculations without configuration state functions of the subgroups
of C(P3s)2s are tabulated. The percentage deviation from the experimental value is
indicated in the error column. The error due to the calculation is 2% (4% for | = 3/2).

For ] = 3/2, very good agreement was obtained if the [3d3/,][3d5 /2]2 subgroup of
C(Bs)2s was ignored. The influence of the [3d5 /2]3 subgroup was below the error of the

calculation, therefore no information was obtained about whether this group was to be
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Table 17. The influence of the C(f3s)2s subgroups on the A factor is tabulated. The
deviation of the A factor from the experimental value is denoted by AA. The error
is given in the percentage deviation from the experimental value. Due to condensing,
the subgroups [3d;,,][3ds /2]2 and [3d; /2]3 were already eliminated for ] = 7/2 and

]=9/2.
J Type A AA Error
[ MHz | [ MHz | [ % ]
3/2 Experimental 560.069
Calculation 685 -124.931 22.3
Without subgroups of C(3s)2s
[3d3/21%(3ds,2] 607 -46.931 8.4
3d3,,1[3d5,21? 564 -3.931 0.7
[3d3/,][3ds,2]2, Bds 213 562 -1.931 0.3
[3d3,,](3d5,1%, [3d3,2]° 467 -93.069 16.6
[3d3,,1[3ds5 212, [3d3,2]%[3d5 2] 509 51.069 9.1
5/2 Experimental 321.251
Calculation 327 -5.749 1.8
Without subgroups of C(f3s)2s
[3d3,,]%[3d5 ] 318 3.251 -1.0
[3d3/2]13d5,2)? 318 3.251 -1.0
(3d3 ;] [3d5/2]2, [3d5/z]3 318 3.251 -1.0
3d3,,1(3d5,,1%, [3d32]° 318 3.251 -1.0
[3d3,2][3ds,2]2, [3d3,2]%3d52] 309 12.251 -3.8
7/2 Experimental 249.752
Calculation 214 35.752 -14.3
Without subgroups of C(f3s)2s
[3d3,,]%3d5 2] 228 21.752 -8.7
[3d3,,1[3d5,,1* 270 -20.248 8.1
[3d3/2][3ds,2]2, [3ds,213 270 -20.248 8.1
[3d3/2][3ds,2]2, Bd3 213 — — —
3d3,2](3ds,2]?, [3d3/21%(3ds5 2] 284 -34.248 13.7
9/2 Experimental 227.136
Calculation 172 55.136 -24.3
Without subgroups of C(f3s)2s
3d3/2]%3d5,2] 180 47.136 -20.8
3d3,,1[3d5,,]? 225 2.136 0.9
3d3,2](3ds5,2]?, B3ds 2] 282 -54.864 24.2
3d3,,][3ds,2]2, [3d3,2) — — —
[3d3,,1[3ds5 212, [3d3,2]%[3d5 2] 233 -5.864 2.6




4.3 Multiconfiguration Dirac-Fock calculation

Table 18. Hyperfine structure factor A for the ground state of Vanadium. The calcu-
lated values are compared with the experimental values (Exp.) [65] and the semiempiri-
cal results (Sem.) [66]. The single configuration Hartree-Fock (HF), the multiconfigura-
tion Hartree-Fock (MCHF') excluding the C(3s)2s group, the configuration interaction
calculation with the extended configuration state function space (MCHF+CI) and ad-
ditional Breit-Pauli correction (MCHF+BPCI) are listed. For the multiconfiguration
Dirac-Fock calculation the reference Dirac-Fock calculation (DF), the multiconfigu-
ration Dirac-Fock including the C(fs)2s [3d3,,][3ds /2}2 subgroup and configuration
interaction calculation with extended configuration state function space (MCDF+CI)
and the calculation excluding this subgroup (MCDF+Cl,excl.) are listed. In round
brackets, the estimated error on the calculation is given.

A factor [MHz]

Calculation ]=3/2 ]=5/2 ]=7/2 ]=9/2
HF 543 336 276 259
MCHF 540(27) 320(16) 256(13) 237(12)
MCHF+CI 562(28) 322(16) 252(13) 230(12)
MCHF+BPCI 561 323 253 230
DF 521 330 274 258
MCDF+CI 685(27) 327(6) 214(4) 172(4)
MCDF+CI,excl. 564(23) 318(6) 270(5) 225(5)
Exp. [65] 560.069(2) 321.251(3) 249.752(2) 227.136(1)
Sem. [66] 547.923 321.575 255.368 237.025

included or not. For ] = 5/2, the percentage error compared with the experimental
value was 1.8%. That was in the estimated error of 2% of the calculation. Ignoring of
the same subgroup as for ] = 3/2 lowered the result bringing it in the error limit of
the calculation. Again, no information about the [3ds /2]3 and [3d; /2]3 subgroups was
obtained as their influence was below the error limit. The calculation for | = 7/2 was
off the error limit. Ignoring [3d3,,](3d5 /2]2 underestimated A by 21 MHz and ignoring
[3d; /2]2[3d5 /2] overestimated A by 21 MHz. Good agreement was achieved for | = 9/2
if, again, the [3d;3 ,][3ds,]* subgroup was ignored. The final results of the A factor for
the hyperfine structure splitting of the ground state of Vanadium were then calculated
as given in Table 18. Compared with the experimental values, the estimated error
of the calculation was verified except for the | = 7/2, where the deviation from the

experimental value was 8%. This deviation might be due to condensing.



4 Multiconfiguration ab initio calculations

4.4 The script for the applied method

The calculations on Vanadium led to the development of a script file that performs the
calculations. The script RunNER handles the in- and output of the ATSP or GRASP
utilities. It is based on the Basu SHELL and cawk

The specific information about the case (i.e. reference configuration state function,
state, nuclear data) and the data for the the calculation (i.e. limit for including a
group, truncation limit for condensing (TL), acceptable difference for condensed and
uncondensed calculation of the A factor (Con.limit) and convergence limit in the mul-
ticonfiguration approach) are stored in a file CAsEDATA.

The complete configuration state function space is obtained by Lscen [6] in the mul-
ticonfiguration Hartree-Fock or cst [7] for the Dirac-Fock case. The program CLISTID
reads this configuration state function file and with the information from the CasepaTa
file it creates the groups. In the output file Groups the orbitals that are allowed to vary
have to be defined. This program was written in the C programming language to handle
a large number of configuration state functions.

The script RUNNER is based on these three files as indicated on top of Fig. 20.
It starts from an initial configuration state function list and an initial A factor Agiart
and adds the first group of the Grours file. It calls the procedures to perform the self-
consistent calculation until convergence is achieved or an error occurred. If successful the
program to calculate the hyperfine structure is called and the new A factor is compared
with the starting one. If the difference is below the limit, the group is erased from the
configuration state function list and RUNNER starts over with the next group.

If the difference between the old and the new A factor is above the limit, the configu-
ration state function space is checked. If it comprises more configuration state functions
than a maximal number MaAX.NR., the configuration state function space is condensed
at all weights below the truncation limit TL. The A factor Acon is determined in mul-
ticonfiguration approximation and the factor is checked if it does not differ from the
uncondensed result by more than the value Con.LimrT.

If it does differ more, the wave functions from the condensed calculation are taken and
the uncondensed configuration state function space is used in configuration interaction
calculation to obtain the A factor A.. If the difference between A and A is larger
than the limit Con.LivIT, the truncation value TL is divided by 10 and the uncondensed

configuration state function space is condensed using the less severe truncation value.



4.4 The script for the applied method

—— CLISTID —

Csf list Casedata Groups and Variation
RUNNER
Add next group [
Mchf/Mcdf
Hfs -> A

true false

Delete group

Go to Csfnr<Max. Nr ?

false true

— Condense at TL
Mchf/Mcdf

Hfs -> Acon

A-Acon<Con.limit?

false true

CI
Hfs -> Aci

A-Aci<Con.limit?

false true

TL=TL/10
TL<TLmin

false | true

_@0 @CS[O@ Report
Save data

false true

End C Go to j_

Fig 20. The flowchart for the method of large scale ab initio hyperfine structure
calculations.

This procedure is repeated until the change of the A factor due to condensing is below the
limit Con.nimIT. The script stops if TL is below a certain value TLumin. RUNNER creates
a report file that summarizes the calculation and saves all new data into a directory. If

more groups have to be calculated, it starts over adding the next group.

For Vanadium, the group limit was set to 0.2% on the experimental value. The
configuration state function space had to be condensed in the multiconfiguration Dirac-
Fock case. The initial truncation value was 0.0001 with an allowed minimal value of
0.000001. The truncation limit was set to 1%. The script can be used to perform similar

calculations by adjusting the input files CasepaTa, CsF nisT and the file Groups .



Conclusion

1. The approach based on the combination of the angular momentum theory, on
a generalized graphical approach, on the second quantization in coupled tensorial
form, on the quasispin space and on the use of fully reduced coefficients of fractional
parentage allows one to find the general irreducible tensorial form of the hyperfine
interaction operator as well as the matrix elements of the above-mentioned oper-
ator, diagonal and off-diagonal with respect to electronic configurations included,

thus accounting for the correlation effects in a general case.

2. The atomic application development systems Racau and Jucys are now sufficiently
developed to create specialized packages for atomic structure calculations (in this

thesis the hyperfine structure) based on symbolic programming.

3. The developed method to calculate the hyperfine structure from the multiconfig-
uration atomic state function make a detailed hyperfine structure calculation for
complex many-electron atoms possible. The proposed approach allows one to de-
tect the convergence, the influence of defined correlation groups and thus to make

well defined approximations for the configuration state function space.

4. The dependency of the A factor on the correlation groups is similar in the multi-
configuration Hartree-Fock and Dirac-Fock approximation in the calculations for
Vanadium. The 3s and 4s correlation groups strongly polarize these orbitals, their
net effect, however, compensates. The valence correlations are captured after the
third layer. Core-valence correlations and core-core correlations with two different

layers are unimportant.

5. For Vanadium, both the multiconfiguration Hartree-Fock approximation and the
Dirac-Fock approximation lead to good agreement with the experimental results
only if the correlations leading to the contact contribution of the core electrons

are included after sufficient other correlations have been accounted for.

6. The script created that handles the in- and output between the ATSP or GRASP
modules. The calculations as described for Vanadium are thereby automated. The

script can be used for any other atom or ion.



Outlook

The thesis shows that with the multiconfiguration approach calculation of the hyper-
fine structure for complex atoms and ions can be carried out with an accuracy that is
comparable to the semiempirical approach. The influence of core correlation groups has
to be studied further. It would be interesting to study if maybe this can be done in
combination with the perturbational approach. Parts of the underlying techniques are
made available in the form of the symbolic programming environment of Hrs and might
contribute to further developments of the theory of complex many-electron atoms, the

theory of hyperfine structure included.
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Santrauka

Atomy ir spektriniy liniju hipersmulkioji struktiira (hss) yra salygojama saveikos en-
ergijos tarp branduolio statiniy magnetinio ir elektrinio lauky ir elektrono apvalkalo
magnetiniy ir elektriniy lauky. To suskilimo dydis yra proporcingas vadinamajam A
daugikliui, ji Siek tiek patikslinant atsizvelgus i B parametra. Tolimesni patikslinimai,
i8skyrus specialius atvejus, yra dar mazesni ir i juos retai atsizvelgiama.

Siuolaikiniai eksperimentiniai metodai jgalina matuoti praktiskai bet kurio atomo ir
jono spektriniy linijy suskilima, jskaitant ekstremalius jonizacijos laipsnius. Detalios
spektriniy linijy sandaros Zinojimas esminiai padeda interpretuoti ir analizuoti aukstos
skiriamosios gebos spektrus. Turint tikslines A ir B parametry vertes, galima efek-
tyviai interpretuoti linijuy formas, identifikuoti §uolius tarp smulkiosios struktiiros linijy
sudétinguose spektruose, kontroliuoti spektro linijy identifikavima.

Disertacija sudaryta i§ penkiy skyriy. Pirmajame pateikta trumpa hipersmulkiosios
struktiiros tyrimuy istoriné apzvalga. Remiantis egzistuojanéiomis teorijomis antrajame
skyriuje i§vestos hipersmulkiosios struktiiros operatoriy matriciniy elementy, iSrai§kos.
Tre€iajame skyriuje apraSytos kompiuterinés programos, jgalinancios teoriSkai tirti §ias
saveikas remiantis ankstesniajame skyriuje gautomis bendromis formulémis. Ketvir-
tajame skyriuje naujasis algoritmas pritaikytas vanadZio atomo pagrindinés biisenos
hipersmulkiajai strukttirai tirti naudojant tiek daugiakonfigiiracinius Hartrio ir Foko,
tiek ir Dirako-Foko artutinumus. Paskutiniajame skyriuje pateikiamos i§vados bei
trumpai formuluojamos tyrimuy, perspektyvos.

Disertacijoje pateikta hipersmulkiyjy saveiky teorinio tyrimo metodika, atsiZvelgiant
] naujus pasiekimus integravimo sukininiy, ir kampiniy atzvilgiu srityje, yra gautos ben-
drosios A ir B parametry iSraiSkos, tinkanéios bet kuriam atomui, turiné¢iam bet kurj
atviry elektrony sluoksniy skai€iy. Metodika remiasi judesio kiekio momento teorijos,
universalaus grafinio vaizdavimo, antrinio kvantavimo suri§tame tenzoriniame pavidale,
kvazisukinio bei pilnai redukuoty, kilminiy koeficienty deriniu. Ji jgalino vesti univer-
salias neredukuotinio hipersmulkiosios struktiiros saveikos operatoriaus ir jo matriciniy
elementy iSraiSkas. Pastarieji apraSo tiek diagonalinius, tiek ir nediagonalinius kon-
figiracijuy atzvilgiu matricinius elementus, tuo atveriant galimybe atsizvelgti i kore-
liacinius efektus (zitir. formules (2.22), (2.23), (2.24) ir (2.50)).

Remiantis i§vestomis formulémis paraSytos universalios kompiuterineés programos

hipersmulkiajai struktiirai skai¢iuoti tiek naudojant daugiakonfigiiracinj Hartrio ir Foko



artutinuma, tiek ir pusiauempiriskai. Buvo naudojama simbolinio programavimo MAPLE
kalba, jigalinant lengvai pritaikyti §ia metodika analogi§koms fizikinéms problemoms.
Esancios Racan ir Jucys atomo struktiiros elektroninés duomeny bazés buvo i§pléstos
i viendaleliy operatoriy matriciniy elementy integravima sukiniy ir judesio kiekio mo-
mentu erdvése. Sios isplétotos elektroninés duomeny bazés buvo panaudotos progra-
muoti paketa HFs, kuris jgalina operuoti su hipersmulkiuju saveiky iSraiSkomis bei rasti
ju skaitines vertes. Programa buvo i§bandyta pusiauempiri§kai analizuojant pirmujy
devyniy niobio lygmeny hipersmulkiaja struktiira. Ji taip pat buvo instaliuota Kaselio
universiteto Fizikos skyriuje (Vokietija) .

Nauja integravimo sukiniy ir judesio kiekio momenty erdvése metodika buvo jdiegta
Daugiakonfigiiracinio Hartrio ir Foko atominiy struktiiry pakete ATsp hipersmulkio-
sioms sgveikoms nagrinéti. Nauja nepublikuoto MCHF atomy struktiiros paketo ver-
sija, kuri remiasi dinaminiu atminties iSdéstymu, iSsklaidyty matricy metodais ir nauja
kampuy, biblioteka, buvo jdiegta Vilniaus pedagoginio universiteto BENDROSIOS FIZIKOS
KATEDROS spietiuje glaudziai bendradarbiaujant su C. F. Fischer (NIST, JAV). Taip pat
ten buvo instaliuotas daugiakonfigiiraciniy Dirako ir Foko skai¢iavimuy, paketas Grasp.

Programos ir esantieji kompiuteriy pajégumaijgalina atlikti teorinius tyrimus atsizvel-
giant | priemaiSiniy konfigiiracijy suformuotas jvairiy koreliaciniy efekty grupes bei
ju kompensavimasi. Naudojant §ia programine jranga galima jvertinti ty grupiy
konvergavima ir ju jtaka hipersmulkiajai struktiirai. Tuo biidu galima suformuluoti
pataisiniy konfigiiracijy parinkimo rekomendacijas, jvertinti skai¢iavimy paklaidas bei
gauti detalig informacija apie koreliacinius efektus.

Keturiy pagrindinés vanadzio biisenos lygmeny hipersmulkiosios struktiiros (3d> gF
4s% 28 4F], ] =3/2,5/2,7/2ir ] = 9/2) tyrimai naudojant daugiakonfigliraciniy Hartrio
ir Foko bei Dirako ir Foko artutinumus iliustruoja iSplétotos metodikos ir paraSyty
programuy, tinkamumag ir efektyvuma.

VanadZiui abu minétieji artutinumai jgalina pasiekti gera atitikima eksperimentini-
ams rezultatams tik tuomet, kai atsiZvelgiama ne tik j pakankamai daug priemaiSiniy
konfigiiraciju, bet taip pat ir priimamos démesin koreliacijos, salygojan¢ios nenulinj
kontaktiniy sgveiky indélj.

Disertacijos rezultatai buvo publikuoti S§e§iuose moksliniuose straipsniuose bei aprobuo-

ti penkiose nacionalinése ir tarptautinése konferencijose.

"http:/ /www.physik.uni-kassel.de/fritzsche /programs.html
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