VILNIAUS UNIVERSITETO TEORINĖS FIZIKOS IR ASTRONOMIJOS INSTITUTAS

Rytis Juršėnas

Algebrinis daugiadalelės trikdžių teorijos plėtojimas teorinėje atomo spektroskopijoje

Daktaro disertacijos santrauka

Fiziniai mokslai, fizika (02P) Matematinė ir bendroji teorinė fizika, klasikinė mechanika, kvantinė mechanika, reliatyvizmas, gravitacija, statistinė fizika, termodinamika (P190) Disertacija rengta Vilniaus universiteto Teorinės fizikos ir astronomijos institute 2006-2010 metais.

Mokslinis vadovas:

Dr. Gintaras Merkelis (Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, 02P: fiziniai mokslai, fizika; P190: matematinė ir bendroji teorinė fizika, klasikinė mechanika, kvantinė mechanika, reliatyvizmas, gravitacija, statistinė fizika, termodinamika)

Disertacija ginama Vilniaus universiteto Fizikos mokslo krypties taryboje, Teorinės fizikos ir astronomijos institute, A. Goštauto 12, LT-01108, Vilnius, Lietuva.

Pirmininkas:

Nariai:

Oponentai:

INSTITUTE OF THEORETICAL PHYSICS AND ASTRONOMY OF VILNIUS UNIVERSITY

Rytis Juršėnas

Algebraic development of many-body perturbation theory in theoretical atomic spectroscopy

Summary of Doctoral Dissertation

Physical Sciences, Physics (02P) Mathematical and general theoretical physics, classical mechanics, quantum mechanics, relativity, gravitation, statistical physics, thermodynamics (P190) The thesis was prepared at Institute of Theoretical Physics and Astronomy of Vilnius University in 2006-2010.

Scientific supervisor:

Dr. Gintaras Merkelis (Institute of Theoretical Physics and Astronomy of Vilnius University, 02P: Physical Sciences, Physics; P190: mathematical and general theoretical physics, classical mechanics, quantum mechanics, relativity, gravitation, statistical physics, thermodynamics)

The doctoral dissertation is defended at the Vilnius University Doctoral Dissertation Committee in Physical Sciences, at the Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108, Vilnius, Lithuania.

Chairman:

Members:

Opponents:

Turinys

1	Įvadas										6
1.1	Pagrindiniai darbo tikslai	•					•				8
1.2	Pagrindiniai uždaviniai										8
1.3	Darbo naujumas	•									9
1.4	Ginamieji teiginiai	•									9
1.5	Disertacijos sandara	•									9
1.6	Disertanto mokslinių darbų sąrašas	•									10
1.7	Tezės, pristatytos nacionalinėse ir užsienio konferencijose	•					•				10
2	Funkcijų erdvės skaidymas ir bazės transformacijos savybės	•					•				11
2.1	Koordinačių transformacijos	•									11
2.2	Funkcijų ant $S^2 \times S^2$ integralai	•					•				12
2.3	Neredukuotini tenzoriniai operatoriai	•					•				12
2.4	Sistemos su kintamu dalelių skaičiumi	•					•				14
2.5	Efektiniai operatoriai	•	•	•	•	•	•	•	•		17
3	Neredukuotini tenzoriniai operatoriai atomo spektroskopijoje	•	•	•	•	•	•	•	•		19
3.1	Redukavimo schemų klasifikacija	•	•							•	19
3.2	Perstatymai	•	•		•		•			•	22
3.3	Trielektronis operatorius	•	•	•	•	•	•	•	•		25
4	Metodų taikymai trečios eilės trikdžių teorijoje	•					•				28
5	Pagrindiniai rezultatai ir išvados										33
6	Summary										34
Liter	ratūra										35

1 **Įvadas**

Teorinėje atomo spektroskopijoje nagrinėjami elektronų reliatyvistiniai ir koreliaciniai efektai, atominis lygiškumo pažeidimas, elektronų ir atomų ar jonų susidūrimai bei daugelis kitų atomo fizikoje nagrinėjamų reiškinių yra pakankamai tiksliai aprašomi pasinaudojant neredukuotinų tenzorinių operatorių formalizmu. Šio metodo efektyvumą sąlygoja atomo simetrijos savybės, kuriomis remiantis neredukuotini tenzoriniai operatoriai yra konstruojami. Fizikų teoretikų tarpe pastarasis formalizmas plačiai paplito dėl gerai išvystyto grupių neredukuotinų įvaizdžių matematinio aparato, kadangi abstrakčių transformacijos grupių savybės vektorinėje erdvėje atspindimos būtent grupės įvaizdžių pagalba. Tokiu būdu, fundamentali sąsaja tarp abstrakčių Hilberto erdvės operatorių ir matuojamų dydžių yra perteikiama bitiesinių funkcionalų pagalba. Fizikoje šie funkcionalai yra postuluojami turintys teigiamą arba lygią nuliui skaliarinę sandaugą Euklidinėje erdvėje ir dažniausiai vadinami operatorių matriciniais elementais duotoje bazėje.

Fizikiniai procesai ir įvairūs spektroskopiniai dydžiai, kaip antai, elektrono šuolio tikimybė, energijos lygmens plotis, būsenos gyvavimo trukmė, sąveika tarp elektronų ir daugelis kitų yra vienareikšmiškai aprašomi atitinkamų sąveikos ar procesą apibūdinančių operatorių matriciniais elementais pasirinktoje bazėje. Iki šių dienų tiksliausiai mikroskopinius dydžius atvaizduoja atomo sluoksninis modelis, kurį pasiūlė N. Boras [1]. Šiame modelyje atomo elektronų būsenos charakterizuojamos neneigiamais skaičiais, kurie, savo ruožtu, formuoja kvantinių skaičių, apibūdinančių lokalinės sistemos Hamiltonianą, aibę. Matematiniu požiūriu šie skaičiai žymi tam tikros transformacijos grupės neredukuotinus įvaizdžius, jeigu grupės elementai komutuoja su sistemos Hamiltonianu. Paprasčiausias ir geriausiai žinomas yra taip vadinamas centrinio lauko Hamiltonianas, invariantinis atspindžio ir sukimo trimatėje Euklido erdvėje \mathbf{R}^3 atžvilgiu. Šiuo atveju centrinio lauko Hamiltoniano tikrinės funkcijos yra charakterizuojamos konfigūracijos lygiškumu Π ir SO(3)–neredukuotinu įvaizdžiu L, dar žinomu kaip judesio kiekio momentas. Kadangi O(3) grupės elementai yra sudaryti iš atspindžio ir SO(3)matricu sandaugos, tai centrinio lauko Hamiltonianas vra invariantiškas O(3) transformaciju atžvilgiu. Iš kitos pusės, SU(2) yra dengiančioji SO(3) grupė, todėl centrinio lauko Hamiltoniano tikrinės funkcijos taip pat gali būti charatkerizuojamos SU(2)-neredukuotinu įvaizdžiu J, fizikoje dar vadinamu pilnu judesio kiekio momentu. Kvantinė judesio kiekio momento teorija pirmą kartą buvo suformuluota E. U. Condon, G. H. Shortley darbe [2] ir vėliau žymiai labiau išplėtota E. Wigner, G. Racah [3–6], A. P. Jucio ir kt. [7–9] darbuose. Nepaisant tiksliai ir aiškiai suformuluotų neredukuotinų įvaizdžių vidinių ir išorinių sandaugų redukavimo taisyklių, jų taikymas plačiai diskutuojamas iki šių dienų [10–14], ir daugelis problemų, susijusių su redukavimo schemos parinkimu yra neišsprestos ir šiandien. Tai ypač aktualu daugialelektronėms sistemoms, kuomet siekiama kaip galima labiau sumažinti laiko sąnaudas, reikalingas atominiuose skaičiavimuose.

Stacionaraus atomo Hamiltoniano tikrinė funkcija yra konstruojama už centrinio lauko artinio ribų, ir tai yra pagrindinė atomo fizikos problema, suteikianti galimybę pasireikšti patiems įvairiausiems matematiniams modeliams, kadangi tikslios funkcijos nežinomos. Matematiniu požiūriu Hamiltoniano tikrinės funkcijos formuoja tam tikrą tiesinę erdvę. Jeigu Hamiltoniano spektrinis pavidalas yra diskretinis, tuomet tikrinės funkcijos formuoja separabilia Hilberto erdvę; priešingu atveju erdvė yra neseparabili. Paprastai atomo Hamiltoniano tikrinės funkcijos yra konstruojamos formuojant centrinio lauko Hamiltoniano tikrinių funkcijų tiesines kombinacijas. Tai sąlygoja skirtingas taip vadinamo Hartree–Fock artinio, paremto energijos funkcionalo varijavimu vienelektronės funkcijos atžvilgiu, versijas. Šalia daugelio metodo teikiamų privalumų ir išplėtotos technikos, pagrindinė artinio taikyma sunkinanti išdava yra labai dideli reikalingų konfigūracijų skaičiai ir labai aukštos eilės energijos matricos [15-17]. Kadangi daugiakonfigūracinė funkcija yra konfigūracinių funkcijų superpozicija, tai Hartree-Fock artinys yra ribojamas pasirinktos vienos daugiadalelės Hilberto erdvės. Priešingai šiam modeliui, teorinėje fizikoje plačiai taikomas kitas metodas, leidžiantis konstruoti atomo Hamiltoniano tikrinę funkciją. Pastarasis artinys, dar žinomas kaip daugiadalelė atomo trikdžių teorija, leidžia operuoti su skirtingu daugiadaleliu Hilberto erdviu skaičiumi, t.y., bendru atveju atomo trikdžiu teorija suteikia galimybę dirbti Foko erdvėje, o tai sąlygoja tam tikrus esminius privalumus lyginant su varijaciniu metodu. Vienas jų – galimybė vienu metu įskaityti skirtingo jonizacijos laipsnio

atomo Hamiltoniano charakteristikas.

Daugiadalelė trikdžių teorija (TT) taikoma ne tik atomo fizikoje. Dėka tokių autorių, kaip H. Kelly, D. Mukherjee, I. Lindgren ir kt. [18-27], pagrindinė teorijos idėja, kaip ir daugelis kitų, buvo performuluota ją pasisavinant iš šiuolaikinės branduolio teorijos kūrėjų K. A. Brueckner, J. Goldstone [28–30] darbu. TT artinyje daugiadalelio Hamiltoniano tikrinė funkcija generuojama eksponentinio ansatz'o, kuris veikia į Hilberto erdvės vienetinį vektorių arba, kitaip, tikrąjį vakuumą, pagalba. Taikymuose eksponentinis ansatz'as išreiškiamas per taip vadinamą banginės funkcijos operatorių, kuris veikia į modelinę funkciją arba, kitaip, fizikinį vakuumą. Būtent tokia ansatz'o formuluotė plačiai paplitusi šių dienų autorių darbuose [31-35]. Atomo uždaru elektronu sluoksniu atveju modelinė funkcija yra tiesiog Sleiterio (Slater) determinantas. Tuo tarpu modelinės funkcijos konstravimas atomo atvirų sluoksnių atvejų yra nepalyginamai sudėtingesnis uždavinys, kuris, beje, bendru atveju neišsprestas iki šiol. Tradiciškai pasirinkta daugiadalelė Hilberto erdvė yra suskaidoma į du poerdvius. Vieną jų formuoja konfigūracinės centrinio lauko Hamiltoniano funkcijos, kitą - funkcijos, kurių nėra pirmajame poerdvyje. Tokiu būdu, pirmasis poerdvis vadinamas modeline, o antrasis – ortogonalia erdve [36]. Be to, pagrindinė priežastis, kodėl reikia skaidyti Hilberto erdvę į jos poerdvius yra ta, kad atvirų sluoksnių atomo energijos lygmenys yra išsigime ir pilna centrinio lauko Hamiltoniano funkciju aibė nėra žinoma.

Esminis TT privalumas yra tas, kad atomo Hamiltoniano tikrinės vertės arba energijos lygmenys randami nežinant Hamiltoniano tikrinių funkcijų. Sprendinių, t.y., tikrinių verčių skaičius vra lygus modelinės erdvės dimensijai. TT artinyje uždavinys surasti atomo Hamiltoniano tikrines vertes yra performuluojamas į uždavinį išspresti tam tikro efektinio Hamiltoniano, veikiančio sukonstruotoje modelinėje erdvėje, tikrinių verčių lygtį, kur tikrinės funkcijos yra modelinės funkcijos. Efektinio Hamiltoniano pavidalas yra nulemtas banginės funkcijos savybiu. Žinomi taip vadinami Hilberto erdvės ir Foko erdvės artiniai, salygojantys skirtingas banginės funkcijos, o, tuo pačiu, ir efektinio Hamiltoniano formuluotes. Hilberto erdvės artinyje modelinė erdvė formuojama iš to paties elektronų skaičiaus ir vienodo lygiškumo konfigūracinių funkcijų. Šiuo atveju banginės funkcijos operatorius yra apspręstas vienos daugiadalelės Hilberto erdvės atomo Hamiltoniano tikrinių verčių lygties sprendiniais. Vadinasi, pastarasis artinys operatorių apibrėžtumo tam tikroje erdvėje požiūriu yra analogiškas daugiakonfigūraciniam Hartree–Fock metodui. Gi Foko erdvės artinyje banginės funkcijos operatorius yra vienodas visose daugiadalelėse Hilberto erdvėse, formuojamose iš skirtingo valentinių elektronų skaičiaus konfigūracinių funkcijų. Šiame artinyje operatoriams apibrėžti ypač patogus yra antrinio kvantavimo formalizmas, kadangi elektronų atsiradimo ir išnykimo operatoriai kaip tik ir yra Foko erdvės operatoriai. Antrinio kvantavimo pritaikymas trikdžių teorijoje lemia dviejų iš esmės skirtingų TT versijų kilme, tačiau pagrindinė idėja lieka tokia pati, t.y., daugiadalelės sistemos Hamiltonianas yra centrinio lauko Hamiltoniano ir tam tikro trikdį apibūdinančio operatoriaus suma. Suprantama, pagrindinės problemos yra susijusios su trikdžiu. Skirtingose TT versijose trikdis aprašomas skirtingai. Šiomis dienomis populiariausios ir plačiausiai naudojamos yra Rayleigh-Schrödinger ir klasterinio skleidimo (angl. coupled-cluster) arba CC teorijos. Abi jos formuluojamos antrinio kvantavimo atvaizdavime, kuomet atsiradimo ir išnykimo operatorių sandauga užrašoma normaline forma. To pasekoje, trikdžių eilutė generuojama Viko (Wick) teoremos [37] pagalba. Iteraciniame Rayleigh-Schrödinger artinyje Viko teoremos išdavoje sugeneruotų narių skaičius smarkiai didėja didėjant trikdžio eilei. Dėl šios priežasties teorija praktiškai taikoma tik fiksuotos eilės trikdžiams ivertinti [33, 34, 38]. CC artinyje eksponentinis ansatz'as yra skleidžiamas begaline Teiloro eilute, ir pilna sistemos banginė funkcija yra išreiškiama n-elektronių (n = 0, 1, 2, ...) funkcijų suma. Praktiniuose taikymuose, akivaizdu, skleidimo narių suma taip pat pasirenkama baigtinė. Dėl tokios trikdžio eilutės narių gausos, mūsų dienomis pakankamai gerai išvystytos kompiuterinės algebros sistemos tampa ypatingai vertingos. Daugelis autorių naudoja skirtingus programinius paketus [39-41], dažniausiai atitinkančius jų atskirus poreikius, tačiau vieningo visuotinai naudojamo paketo taip pat kol kas nėra.

Dar viena esminė problema, būdinga trikdžių teorijoje, yra sugeneruotų narių aprobavimas. Siekiant vėliau atlikti atominius skaičiavimus, kurie atsižvelgtų, pavyzdžiui, į tam tikros eilės pataisas, kiekvienas atskiras TT skleidimo narys arba operatorius turi būti apdorotas, t.y., paruoštas efektyviam energijos pataisų skaičiavimui. Čia susiduriama su daugiaelektronių operatorių matricinių elementų skaičiavimo ypatumais. Matematiškai kiekvienas n-elektronis Foko erdvės operatorius yra apribojamas į redukavimo grupės neredukuotinus poerdvius, kuriuose veikia atitinkami neredukuotini tenzoriniai operatoriai. Teorinėje atomo spektroskopijoje neredukuotinų tenzorinių operatorių metodas buvo pasiūlytas B. Judd'o ir kt. [42-44, 70] ir vėliau išplėtotas J. Kaniausko, Z. Rudziko ir kt. [46-51] darbuose. Daugeliu atvejų autoriai atsižvelgia tik į savosios energijos, vienelektronius ir dvielektronius (n = 0, 1, 2) sužadinimus. Tai dažniausiai grindžiama dėl šių priežasčių. Pirma, tokių sužadinimų įnašas į energijos pataisas yra didžiausias. Antra, aukštesnės eilės (n > 2) sužadinimų įskaitymas vra nepalyginamai sudėtingesnis matematinis uždavinys, reikalaujantis atskiros tokio pobūdžio operatorių analizės. Pavyzdžiui, C. Bunge [52] darbe, skirtame atominio berilio banginių funkcijų analizei, buvo parodyta, kad dvigubų sužadinimų inašas į koreliacinę energiją sudaro apie 95%, kai tuo tarpu trigubi sužadinimai tesudarė apytikriai 1%. Iš kitos pusės, šiuolaikinėje atomo spektroskopijoje matavimai, skirti, pavyzdžiui, atominio lygiškumo pažeidimo paieškoms [53], hipersmulkosios struktūros radiacinėms pataisoms šarminiuose metaluose įskaitymui [54], atliekami su paklaida, mažesne nei 0.1%. Kaip parodė S. Porsev'as ir kt. [71], toks tikslumas trikdžių teorijos metodais pasiekiamas įskaitant būtent trigubus sužadinimus. Pastarasis teorinis darbas ir keletas kitų, paremtų TT formalizmu, akivaizdžiai motyvuoja išplėtoti n-elektronių efektinių operatorių metodą, kurio taikymo perspektyvos nekelia abejonių.

1.1 Pagrindiniai darbo tikslai

1. Sukurti bendrus neredukuotinų tenzorinių operatorių, charakterizuojančių tiek fizikines, tiek ir efektines sąveikas, nagrinėjamas atomo atvirų sluoksnių trikdžių teorijoje, tenzorinių sandaugų tyrimo metodus ir formas.

2. Sukurti simbolinio programavimo paketą, kuris leistų atlikti sudėtingus matematinius veiksmus panaudojant šiuolaikinės teorinės atomo spektroskopijos metodus.

3. Sukurto simbolinio programavimo paketo pagalba sugeneruoti atomo trikdžių teorijos skleidimo narius Foko erdvės atvaizdavime, didelį dėmesį skiriant modelinės erdvės formavimui ir fiksuotos trikdžio eilės sugeneruotų narių kampiniam redukavimui. Tuo pačiu, paruošti redukavimo schemą, kuri tiktų bet kokios eilės skleidimo narių tyrimui ir būtų lengvai pritaikoma klasterinio skleidimo (CC) artinyje.

1.2 Pagrindiniai uždaviniai

1. Surasti dėsningumus, charakteringus operatoriams, veikiantiems įvairiuose Foko erdvės poerdviuose. Nustatyti bendras operatorių elgseną sąlygojančias išvadas, išplaukiančias iš sąlygos, kad begalinės dimensijos daugiadalelės Hilberto erdvės atomo Hamiltoniano tikrinės vertės sudaro aibę, kuri turi poaibį, sudarytą iš baigtinės dimensijos Hilberto erdvės poerdvio atomo Hamiltoniano tikrinių verčių.

2. Suklasifikuoti antisimetrinius tenzorius, apibrėžtus bet kokio ilgio Foko erdvės operatorių eilute. Nustatyti sąsajas tarp tenzorių, suredukuotų visomis galimomis neredukuotinų įvaizdžių Kronekerio sandaugomis; atskiru atveju, momentų jungimo schemomis.

3. Sugeneruoti antros eilės banginės funkcijos operatoriaus ir trečios eilės efektinio Hamiltoniano, apibrėžto tam tikrame baigtinės dimensijos poerdvyje, narius. Išplėtoti daugiadalelių efektinių matricinių elementų metodą, kurio pagalba galima nesunkiai pakeisti tam tikrus redukavimo grupės invariantus priklausomai nuo nagrinėjamo uždavinio, bet paliekant nepakitusią skleidimo narių tenzorinę sandarą.

1.3 Darbo naujumas

1. Kaip alternatyva tradicinei tenzorinių operatorių matricinių elementų skaičiavimo technikai funkcijų bazėje ant S^2 , sukurta metodika skaičiuoti matricinius elementus SU(2)-neredukuotinų matricinių įvaizdžių bazėje. Technika yra grindžiama sukonstruotų SO(3)-neredukuotinų tenzorinių operatorių savybėmis.

2. Surastas toks begalinės dimensijos daugiadalelės Hilberto erdvės poerdvis, kad tik daugiausia 8 Hilberto erdvės n-elektronių operatorių tipai—vienelektronių orbitalių (valentinių, kamieninių, sužadintų) galimo išsidėstymo atžvilgiu—iš 9^n galimų generuoja operatorius duotame poerdvyje, kurių įnašas trikdžio skleidimo eilutėje nelygus nuliui.

3. Sukurtas efektyvus metodas, kuris leidžia suklasifikuoti bet kokio ilgio Foko erdvės tenzorius pagal jų redukavimo grupės įvaizdžius. To pasekoje, sudėtingų tenzorinių operatorių matricinių elementų skaičiavimas yra nesunkiai įgyvendinamas kompiuterinės algebros pagalba.

4. Sukurta visiškai kitokia efektinio Hamiltoniano skleidimo narių kampinio redukavimo metodika, nei buvo naudojama trikdžių teorijoje iki šiol. Pagrindiniai privalumai yra: (i) galimybė keisti elektronų sužadinimo amplitudes priklausomai nuo konkretaus uždavinio – tenzorinė skleidimo narių struktūra nekinta; (ii) galimybė charakterizuoti tam tikrą skleidimo narių (diagramų) aibę viena tenzorine forma. Tokiu būdu, sudėtinga ir varginanti užduotis atskirai apdoroti kiekvieną sugeneruotą narį (diagramą) yra eliminuota.

1.4 Ginamieji teiginiai

1. Egzistuoja tokios funkcijos ant $S^2 \times S^2$, kad jų paviršiniai integralai srityje S^2 sudaro pilną SO(3)-neredukuotino tenzorinio operatoriaus komponenčių aibę.

2. Egzistuoja toks begalinės dimensijos daugiadalelės Hilberto erdvės poerdvis, kuriame nelygūs nuliui efektinio Hamiltoniano skleidimo nariai yra generuojami daugiausia 8 tipų nelektroniais banginės funkcijos operatoriais.

3. Pakankama sąlyga vienareikšmiškai suklasifikuoti antisimetrinius tenzorius, apibrėžtus bet kokio ilgio Foko erdvės operatorių eilute, yra tenkinama panaudojant S_{ℓ} -neredukuotinus įvaizdžius ir daugiamačius kortežus (arba keitinius); papildoma sąlyga, leidžianti lengviau nustatyti sąryšius tarp skirtingų tenzorinių operatorių, yra tenkinama panaudojant komutuojančias diagramas.

4. Atomo spektroskopijos uždaviniams, daugiadalelės Hilberto erdvės apribojimas į redukavimo grupės SU(2) poerdvius suteikia galimybę aprašyti tam tikrą skleidimo narių skaičių vienatine tenzorine struktūra taip, kad elektronų sužadinimo amplitudės (arba sąveikas charakterizuojantys matriciniai elementai) gali būti lengvai pakeistos priklausomai nuo konkretaus nagrinėjamo uždavinio, bet tenzorinė sandara išlieka nepakitusi.

1.5 Disertacijos sandara

Disertacija, kurios apimtis yra 101 puslapis, parašyta anglų kalba. Disertaciją sudaro 4 skyriai, rezultatai ir išvados, 4 priedai. Kiekvieno skyriaus, pradedant nuo antrojo, pabaigoje pateikta trumpa santrauka ir išvados, išplaukiančios iš gautų rezultatų. Pirmą skyrių sudaro įvadinė dalis, kurioje išdėstyta problematika, susijusi su darbe nagrinėjamais klausimas, pagrindiniai darbo tikslai, uždaviniai, mokslinis naujumas, ginamieji teiginiai, disertanto mokslinių darbų sąrašas. Antras skyrius yra skirtas neredukuotinų tenzorinių operatorių transformacijos savybėms tirti ir įvairių Hilberto erdvės savybių, charakteringų trikdžių teorijos taikymuose, nagrinėjimui. Trečiame skyriuje plėtojami antisimetrinių tenzorių redukavimo bei jų klasifikavimo metodai. Ketvirtas skyrius skirtas trečios eilės trikdžių teorijos plėtojimui, remiantis ankstesniuose skyriuose suformuluotais bendrais principais ir sukurtais tyrimo metodais. Prieduose surašytos transformacijos koeficientų ir antros eilės banginės funkcijos operatoriaus SU(2)–invariantų išraiškos, pateikta išsami trielektronio efektinio operatoriaus, veikiančio tarp atomo 2, 3, 4, 5, 6 elektronų sluoksnių klasifikacija bei trumpai aprašytas sukurto simbolinio programavimo paketo *NCoperators* veikimo principas. Disertacijoje pateikta 40 lentelių ir 9 paveikslėliai.

1.6 Disertanto mokslinių darbų sąrašas

- 1. R. Juršėnas and G. Merkelis, *Coupling schemes for two-particle operator used in atomic calculations*, Lithuanian J. Phys. **47**, no. 3, 255 (2007)
- R. Juršėnas, G. Merkelis, Coupled tensorial form for atomic relativistic two-particle operator given in second quantization representation, Cent. Eur. J. Phys. 8, no. 3, 480 (2010)
- 3. R. Juršėnas and G. Merkelis, *Coupled tensorial forms of the second-order effective Hamiltonian for open-subshell atoms in jj-coupling*, At. Data Nucl. Data Tables (2010), doi:10.1016/j.adt.2010.08.001
- 4. R. Juršėnas and G. Merkelis, *Application of symbolic programming for atomic many-body theory*, Materials Physics and Mechanics **9**, no. 1, 42 (2010)
- 5. R. Juršėnas, G. Merkelis, *The transformation of irreducible tensor operators under spherical functions*, Int. J. Theor. Phys. **49**, no. 9, 2230 (2010)
- 6. R. Juršėnas, G. Merkelis, *Irreducible tensor form of three-particle operator for open-shell atoms*, Cent. Eur. J. Phys. (2010), doi: 10.2478/s11534-010-0082-0
- 7. R. Juršėnas and G. Merkelis, *Development of algebraic techniques for the atomic openshell MBPT (3)*, to appear in J. Math. Phys. (2010)

1.7 Tezės, pristatytos nacionalinėse ir užsienio konferencijose

- R. Juršėnas, G. Merkelis, *Coupling schemes for two-particle operator used in atomic calculations*, 37th Lithuanian National Physics Conference, Vilnius, 2007, Abstracts, p. 219
- 2. R. Juršėnas, *Coupled tensorial forms of atomic two-particle operator*, 40th EGAS Conference, Graz, 2008, Abstracts, p. 45
- 3. R. Juršėnas, G. Merkelis, *Coupled tensorial forms of the second-order effective Hamiltonian for open-subshell atoms in jj-coupling*, 38th Lithuanian National Physics Conference, Vilnius, 2009, p. 229
- 4. R. Juršėnas, G. Merkelis, *Symbolic programming applications for atomic many-body theory*, 13th International Workshop on New Approaches to High Tech: Nano Design, Technology, Computer Simulations, Vilnius, 2009, Abstracts, p. 22
- 5. R. Juršėnas, G. Merkelis, *The MBPT study of electron correlation effects in open-shell atoms using symbolic programming language Mathematica*, 41st EGAS Conference, Gdansk, 2009, Abstracts, p. 102
- 6. R. Juršėnas and G. Merkelis, *Algebraic exploration of the third-order MBPT*, Conference on Computational Physics, Trondheim, 2010, Abstracts, p. 213
- 7. R. Juršėnas, G. Merkelis, *The transformation of irreducible tensor operators under the spherical functions*, ECAMP10, Salamanca, 2010, Abstracts, p. 87
- 8. R. Juršėnas, G. Merkelis, *The generation and analysis of expansion terms in the atomic stationary perturbation theory*, ICAMDATA 7, Vilnius, 2010, Abstracts, p. 86

2 Funkcijų erdvės skaidymas ir bazės transformacijos savybės

Šiame skyriuje nagrinėjami keletas dviejų pagrindinių kvantinėje mechanikoje naudojamų atvaizdavimų—pirminio ir antrinio kvantavimo—taikymo daugiadalelėms sistemoms ypatumų. Pirminio kvantavimo atvaizdavime dėmesys skiriamas bazės transformacijos savybėms. Antrinio kvantavimo atvaizdavime nagrinėjamos daugiadalelės sistemos su kintamu dalelių skaičiumi. Ypatingas dėmesys skiriamas tokių sistemų funkcinių erdvių savybėms.

Esminiai rezultatai: (i) surastì SO(3)-neredukuotini tenzoriniai operatoriai; (ii) sukurtas algoritmas daugiaelektroniams kampiniams integralams skaičiuoti; (iii) pasiūlytas apibendrintos Blocho lygties pavidalas Foko erdvės atvaizdavime; (iv) įrodyta teorema, apibrėžianti nelygius nuliui begalinės dimensijos daugiadalelės Hilberto erdvės baigtinės dimensijos poerdvio operatorius.

2.1 Koordinačių transformacijos

Tegul duotas atvaizdis $\Omega: S^2 \times S^2 \longrightarrow SO(3)$, realizuojamas Euklidinėje erdvėje \mathbb{R}^3 pagal sąryšį $\hat{r}_2 = D(3,2)\hat{r}_1$, kur $\hat{r}_i = \mathbf{r}_i/r_i = (\sin \theta_i \cos \varphi_i \sin \theta_i \sin \varphi_i \cos \theta_i)^{\mathrm{T}}$. Trečios eilės matrica $D(3,2) \in SO(3)$ yra išreikšta Eulerio kampais $\Omega \equiv (\Phi, \Theta, \Psi)$ [56, p. 84, Eqs. (7.24)-(7.25)]. Darbe [57] buvo įrodyta, kad duotas atvaizdis egzistuoja, kai

$$\Phi = \varphi_2 + \alpha \frac{\pi}{2}, \quad \Theta = \beta(\theta_1 - \gamma \theta_2) + 2\pi n, \quad \Psi = -\varphi_1 + \delta \frac{\pi}{2} + 2\pi n', \quad (2.1)$$

Lentelė 1. SU(2)–neredukuotino matricinio įvaizdžio, parametrizuoto $S^2 \times S^2$ koordinatėmis, charakteringieji parametrai

Atvaizdis			α	β	γ	δ	n	Atvaizdis		α	β	γ	δ	n
Ω_1^{\pm}	Ω_1^+	Ω_{11}^+	+	+	+	_	0	Ω_2^{\pm}	Ω_2^+	+	+	_	+	0
		Ω_{12}^+	—	+	+	+								
	Ω_1^-	Ω_{11}^{-}	+	—	+	—			Ω_2^-	—	—	—	—	1
		Ω_{12}^{-}	_	_	+	+								

kur $n, n' \in \mathbb{Z}^+$. Galimos parametrų $\alpha, \beta, \gamma, \delta, n$ vertės pateiktos lentelėje 1, kai tuo tarpu n' priklauso nuo φ_1 ir δ , kadangi $\Psi \in [0, 2\pi]$. Remiantis gautais sprendiniais (2.1), SU(2)– neredukuotinas matricinis įvaizdis arba Vignerio (Wigner) *D*–funkcija [9,58,59]

$$D_{qq'}^{k}(\Omega) = e^{i(q\Phi + q'\Psi)} \overline{P_{qq'}^{k}(\cos\Theta)},$$

$$P_{qq'}^{k}(z) = (-1)^{q-q'} a(k, q, q') \left(\frac{1-z}{1+z}\right)^{\frac{q-q'}{2}} \left(\frac{1+z}{2}\right)^{k}$$

$$\times \sum_{p=\max(0,q-q')}^{\min(k-q',k+q)} b_{p}(k, q, q') \left(\frac{1-z}{1+z}\right)^{p},$$

$$a(k, q, q') \stackrel{\text{def}}{=} i^{q'-q} \sqrt{(k+q)!(k-q)!(k+q')!(k-q')!},$$

$$b_{p}(k, q, q') \stackrel{\text{def}}{=} \frac{(-1)^{p}}{p!(p+q'-q)!(k+q-p)!(k-q'-p)!}$$

$$eikšta \text{ per } \widehat{x}_{1}, \widehat{x}_{2} \in S^{2}, \ \widehat{x}_{i} \equiv (\theta_{i}, \varphi_{i}).$$

igyja pavidalą, išreikštą per $\hat{x}_1, \hat{x}_2 \in S^2, \hat{x}_i \equiv (\hat{\theta}_i, \varphi_i),$

$$(n, n'; \alpha, \beta, \gamma, \delta | \hat{x}_1, \hat{x}_2)_{qq'}^k = i^{\alpha q + \delta q'} (-1)^{2(nk+n'q')} \beta^{q'-q} a(k, q, q') e^{i(q\varphi_2 - q'\varphi_1)} \{ \cos \left[\frac{1}{2} (\theta_1 - \gamma \theta_2) \right] \}^{2k} \times \sum_p b_p(k, q, q') \{ \tan \left[\frac{1}{2} (\theta_1 - \gamma \theta_2) \right] \}^{2p+q'-q}.$$

$$(2.2)$$

Iš lentelės 1 ir (2.2) lygties matyti, kad pilnam *D*-funkcijos aprašymui pakanka dviejų funkciju ant $S^2 \times S^2$ (parametras $\gamma = +1$), t.y., jeigu $(0, n'; +, \pm, +, -|\widehat{x}_1, \widehat{x}_2)_{qq'}^k \equiv {}^{\pm}\xi_{qq'}^k(\widehat{x}_1, \widehat{x}_2)$, tuomet ${}^{\pm}\xi_{qq'}^k(\widehat{x}_1, \widehat{x}_2) = D_{qq'}^k(\Omega)$ ant $S^2 \times S_{\pm}^2$ ir $S_{\pm}^2 \times S_{-}^2 = S^2$. Čia $S_{\pm}^2 \stackrel{\text{def}}{=} \mathcal{L}^2(\Omega_{11}^+) \times \mathcal{L}^2(\Omega_{12}^-)$,

$$\mathcal{L}^{2}(\Omega_{11}^{+}) \stackrel{\text{def}}{=} \{ \varphi_{2} \in [0, \pi]; \theta_{2} \in [0, \theta_{1}], n' = 1, 2 \}, \\ \mathcal{L}^{2}(\Omega_{12}^{-}) \stackrel{\text{def}}{=} \{ \varphi_{2} \in [\pi, 2\pi]; \theta_{2} \in [\theta_{1}, \pi], n' = 0, 1 \}$$

 $\text{ ir } S^2_- \stackrel{\text{\tiny def}}{=} \ \mathcal{L}^2(\Omega^-_{11}) \times \mathcal{L}^2(\Omega^+_{12}),$

$$\mathcal{L}^{2}(\Omega_{11}^{-}) \stackrel{\text{def}}{=} \{ \varphi_{2} \in [0,\pi]; \theta_{2} \in [\theta_{1},\pi], n'=1,2 \}, \\ \mathcal{L}^{2}(\Omega_{12}^{+}) \stackrel{\text{def}}{=} \{ \varphi_{2} \in [\pi,2\pi]; \theta_{2} \in [0,\theta_{1}], n'=0,1 \}.$$

Akivaizdu, kad funkcijų ${}^{\pm}\xi^k_{qq'}(\hat{x}_1, \hat{x}_2)$ sandaugos redukuojamos kaip SU(2)–neredukuotinų matricinių įvaizdžių, t.y.,

$${}^{\pm}\xi^{k_1}_{q_1q'_1}(\widehat{x}_1,\widehat{x}_2) {}^{\pm}\xi^{k_2}_{q_2q'_2}(\widehat{x}_1,\widehat{x}_2) = \sum_k {}^{\pm}\xi^{k}_{qq'}(\widehat{x}_1,\widehat{x}_2)\langle k_1q_1k_2q_2|kq\rangle\langle k_1q'_1k_2q'_2|kq'\rangle,$$

kur $\langle k_1q_1k_2q_2|kq\rangle$ arba $\begin{bmatrix} k_1 & k_2 & k \\ q_1 & q_2 & q \end{bmatrix}$ žymi grupės SU(2) neredukuotinų įvaizdžių Kronekerio sandaugos $k_1 \times k_2$ Clebsch–Gordan (CG) koeficientą.

2.2 Funkcijų ant $S^2 \times S^2$ integralai

Nagrinėjame atveji, kai $k \equiv l \in \mathbb{Z}^+$ ir $q \equiv \mu$, $q' \equiv \nu$. Tikslas yra suskaičiuoti funkcijos $\eta_{\mu\nu}^l(\widehat{x}_1, \widehat{x}_2)$, kur $\eta_{\mu\nu}^l \in \{{}^+\xi_{\mu\nu}^l, {}^-\xi_{\mu\nu}^l\}$ priklauso nuo $\widehat{x}_1, \widehat{x}_2 \in S^2$ reikšmių, integralą

$$\mathcal{S}_{\mu\nu}^{l}(\widehat{x}_{1}) \stackrel{\text{\tiny def}}{=} \int_{S^{2}} \mathrm{d}\widehat{x}_{2} \ \eta_{\mu\nu}^{l}(\widehat{x}_{1},\widehat{x}_{2}), \quad \forall \widehat{x}_{1} \in S^{2}.$$

Pagal lentelę 1,

$$\mathcal{S}_{\mu\nu}^{l}(\widehat{x}_{1}) = \int_{S_{+}^{2}} \mathrm{d}\widehat{x}_{2} \, {}^{+}\xi_{\mu\nu}^{l}(\widehat{x}_{1},\widehat{x}_{2}) + \int_{S_{-}^{2}} \mathrm{d}\widehat{x}_{2} \, {}^{-}\xi_{\mu\nu}^{l}(\widehat{x}_{1},\widehat{x}_{2})$$

ir

$$\mathcal{S}_{\mu\nu}^{l}(\widehat{x}_{1}) = \delta(\mu, 0) \mathcal{S}_{\nu}^{l}(\widehat{x}_{1}), \quad \mathcal{S}_{\nu}^{l}(\widehat{x}_{1}) \stackrel{\text{def}}{=} \mathcal{S}_{0\nu}^{l}(\widehat{x}_{1})$$

kur

$$\mathcal{S}_{\nu}^{l}(\widehat{x}_{1}) = 2\pi l! \mathrm{e}^{-\mathrm{i}\nu\varphi_{1}} \{ (l+\nu)!(l-\nu)! \}^{1/2} \sum_{p} \frac{(-1)^{p} I_{p}(l,\nu;\theta_{1})}{p!(p+\nu)!(l-p)!(l-\nu-p)!}.$$
 (2.3)

Funkcija $I_p(l, \nu; \theta_1)$ apibrėžiama, kaip integralas,

$$I_p(l,\nu;\theta_1) \stackrel{\text{\tiny def}}{=} \int_0^{\pi} \mathrm{d}\theta_2 \,\sin\theta_2 \,\left(\cos\frac{\theta_1-\theta_2}{2}\right)^{2l} \left(\tan\frac{\theta_1-\theta_2}{2}\right)^{2p+\nu},$$

kuris gali būti išreikštas kaip

$$I_{p}(l,\nu;\theta_{1}) = \{K_{2p+\nu+1}(l;\theta_{1};0) + K_{2p+\nu+3}(l;\theta_{1};\pi) - K_{2p+\nu+1}(l;\theta_{1};\pi) - K_{2p+\nu+3}(l;\theta_{1};0)\} \sin \theta_{1} + 2\{K_{2p+\nu+2}(l;\theta_{1};\pi) - K_{2p+\nu+2}(l;\theta_{1};0)\} \cos \theta_{1},$$

$$K_{s}(l;\theta_{1};z) \stackrel{\text{def}}{=} 2s^{-1} \tan^{s}\left(\frac{\theta_{1}-z}{2}\right) {}_{2}F_{1}\left(\frac{s}{2},l+2;\frac{s}{2}+1;-\tan^{2}\left(\frac{\theta_{1}-z}{2}\right)\right).$$

2.3 Neredukuotini tenzoriniai operatoriai

Tegul SO(3)–neredukuotino tenzorinio operatoriaus $T^l(\widehat{x})$ komponentės $T^l_\mu(\widehat{x})$ transformuojasi pagal tokį sąryšį

$$T^{l}_{\mu}(\widehat{x}_{2}) = \sum_{\rho=-l}^{l} D^{l}_{\mu\rho}(\Omega) T^{l}_{\rho}(\widehat{x}_{1}).$$
(2.4)

Tada funkcijos $S^l_{\nu}(\hat{x})$ sudaro pilną SO(3)–neredukuotino tenzorinio operatoriaus $S^l(\hat{x})$ komponenčių aibę.

Iš tikro, turint omenyje, kad $\eta_{\mu\rho}^{l}(\hat{x}_{1},\hat{x}_{2}) = D_{\mu\rho}^{l}(\Omega) \ \forall \hat{x}_{1}, \hat{x}_{2} \in S^{2}$, integruojame abi lygties (2.4) puses pagal \hat{x}_{2} ,

$$\int_{S^2} \mathrm{d}\widehat{x}_2 \ T^l_\mu(\widehat{x}_2) = \delta(\mu, 0) \sum_{\rho=-l}^l \mathcal{S}^l_\rho(\widehat{x}_1) T^l_\rho(\widehat{x}_1).$$

Kairė pastarosios išraiškos pusė nepriklauso nuo \hat{x}_1 , vadinasi, visiems $\hat{x}_1, \hat{x}_2 \in S^2$, galioja lygybė

$$\sum_{\rho=-l}^{l} \mathcal{S}_{\rho}^{l}(\widehat{x}_{1}) T_{\rho}^{l}(\widehat{x}_{1}) = \sum_{\rho=-l}^{l} \mathcal{S}_{\rho}^{l}(\widehat{x}_{2}) T_{\rho}^{l}(\widehat{x}_{2}).$$

Komponentei $T^l_{\rho}(\hat{x}_2)$ pritaikome lygtį (2.4) dar kartą. Tada

$$\sum_{\rho=-l}^{l} T^{l}_{\rho}(\widehat{x}_{1}) \left\{ \mathcal{S}^{l}_{\rho}(\widehat{x}_{1}) - \sum_{\nu=-l}^{l} D^{l}_{\nu\rho}(\Omega) \mathcal{S}^{l}_{\nu}(\widehat{x}_{2}) \right\} = 0.$$

Kadangi T^l nepriklauso nuo S^l , tai

$$\mathcal{S}^{l}_{\rho}(\widehat{x}_{1}) = \sum_{\nu=-l}^{l} D^{l}_{\nu\rho}(\Omega) \mathcal{S}^{l}_{\nu}(\widehat{x}_{2}), \qquad (2.5)$$

kas ir įrodo, kad S^l transformuojasi kaip SO(3)–neredukuotinas tenzorinis operatorius. Vadinasi, operatorių S^{l_1} ir S^{l_2} tenzorinė sandauga yra redukuojama

$$\mathcal{S}^{l_1}_{\mu}\mathcal{S}^{l_2}_{\nu} = \sum_l [\mathcal{S}^{l_1} \times \mathcal{S}^{l_2}]^l_{\rho} \langle l_1 \mu l_2 \nu | l \rho \rangle,$$

kur neredukuotinas tenzorinis operatorius $[S^{l_1} \times S^{l_2}]^l$ transformuojasi pagal (2.5).

Lentelė 2. SO(3)–neredukuotino tenzorinio operatoriaus S^k submatriciniai elementai funkcijų bazėje ant SO(3)/SO(2)

l	l'	k	$(4\pi)^{-1}[l\ \mathcal{S}^k\ l']$	l	l'	k	$(4\pi)^{-1}[l\ \mathcal{S}^k\ l']$	l	l'	k	$(4\pi)^{-1}[l\ \mathcal{S}^k\ l']$
0	0	0	1	2	4	2	$\sqrt{rac{2}{5\cdot7}}$	1	5	4	$-\frac{1}{27\sqrt{5}}$
1	1	0	3	1	3	4	$-\frac{2}{5\cdot 27}$	2	4	4	$-rac{2}{27}\sqrt{rac{5}{7\cdot 11}}$
1	1	2	$\frac{1}{5}\sqrt{\frac{2}{5}}$	2	2	2	$\frac{1}{3}\sqrt{\frac{2}{7}}$	3	5	2	$\frac{1}{3}\sqrt{\frac{2\cdot7}{3\cdot5}}$
1	3	2	$\frac{1}{5}\sqrt{\frac{3}{5}}$	3	3	0	7	4	6	2	$\frac{3}{\sqrt{5 \cdot 11}}$

Keletas S^k submatricinių elementų funkcijų, literatūroje dar žinomų kaip sferinės harmonikos, $Y^l_{\mu}(\theta,\varphi) = i^l \sqrt{(2l+1)/(4\pi)} D^l_{\mu 0}(\varphi + \pi/2, \theta, 0)$ bazėje pateikta lentelėje 2.

Pavyzdys Šiame paragrafe pateikiamas vienas iš daugelio neredukuotinų tenzorinių operatorių S^l taikymo pavyzdžių. Tegul turime dvielektronę banginę funkciją [60, lygtis (47)]

$$|n_1 l_1 n_2 l_2 \Pi_{12} LSM\rangle = \sum_{\mu=-L}^{L} g_{\mu} (2S+1L|r_1, r_2) D_{M\mu}^L(\Omega), \quad \Pi_{12} = (-1)^{l_1+l_2}, \quad S = 0, 1.$$

Tuomet kuloninės (Coulomb) sąveikos $1/r_{12}$ submatricinis elementas yra

$$[n_{\alpha}l_{\alpha}n_{\beta}l_{\beta}\Pi_{\alpha\beta}L_{1}S_{1}\|1/r_{12}\|n_{\bar{\mu}}l_{\bar{\mu}}n_{\bar{\nu}}l_{\bar{\nu}}\Pi_{\bar{\mu}\bar{\nu}}L_{2}S_{2}] = \frac{4\pi}{[S_{1}]^{1/2}[L_{1}]}\delta(\Pi_{\alpha\beta},\Pi_{\bar{\mu}\bar{\nu}})\delta(L_{1},L_{2})\delta(S_{1},S_{2})$$

$$\times \sum_{k \in 2\mathbb{Z}^+} (-1)^k [k]^{-1} [k \| \mathcal{S}^k \| k] \sum_{q=-k}^k \langle k 0 k q | k q \rangle \sum_{\varkappa = -L_1}^{L_1} F_{\varkappa}^k (2^{S_1 + 1} L_1).$$

kur $[x] \equiv 2x + 1$, ir radialinis integralas

$$F_{\varkappa}^{k} (^{2S_{1}+1}L_{1}) \stackrel{\text{def}}{=} \iint_{\mathbb{R}^{+}} \mathrm{d}r_{1} \mathrm{d}r_{2} r_{1}^{2} r_{2}^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} |g_{\varkappa}(^{2S_{1}+1}L_{1}|r_{1},r_{2})|^{2}$$

2.4 Sistemos su kintamu dalelių skaičiumi

Pagrindinis tikslas yra sukonstruoti modelinę erdvę. Tegul turime Foko erdvės [25,61] Hamiltonianą

$$\widehat{H} = \widehat{H}_0 + \widehat{V}, \quad \widehat{H}_0 = \sum_{\alpha_1} \widehat{O}_1(\alpha \alpha) \varepsilon_{\alpha_1}, \quad \widehat{V} = \sum_{n=0}^J \widehat{V}_n, \quad \widehat{V}_n = F_n[v], \quad (2.6)$$

$$F_n[v] \stackrel{\text{def}}{=} \sum_{I_n(\alpha\bar{\beta})} \widehat{O}_n(\alpha\bar{\beta}) v_n(\alpha\bar{\beta}), \qquad (2.7)$$

$$\widehat{O}_n(\alpha\bar{\beta}) \stackrel{\text{def}}{=} :a_{\alpha_1}a_{\alpha_2}\dots a_{\alpha_{n-1}}a_{\alpha_n}a^{\dagger}_{\bar{\beta}_n}a^{\dagger}_{\bar{\beta}_{n-1}}\dots a^{\dagger}_{\bar{\beta}_2}a^{\dagger}_{\bar{\beta}_1}; \quad \widehat{O}_0(\alpha\bar{\beta}) = 1,$$

$$(2.8)$$

 $v_{n}(\alpha\bar{\beta}) \stackrel{\text{def}}{=} v_{\alpha_{1}\alpha_{2}...\alpha_{n-1}\alpha_{n}\bar{\beta}_{1}\bar{\beta}_{2}...\bar{\beta}_{n-1}\bar{\beta}_{n}} = \langle \alpha_{1}\alpha_{2}...\alpha_{n-1}\alpha_{n}|h(n)|\bar{\beta}_{1}\bar{\beta}_{2}...\bar{\beta}_{n-1}\bar{\beta}_{n}\rangle, \quad (2.9)$ kur $I_{n}(\alpha\bar{\beta}) = \{\alpha_{1},\alpha_{2},...,\alpha_{n-1},\alpha_{n},\bar{\beta}_{1},\bar{\beta}_{2},...,\bar{\beta}_{n-1},\bar{\beta}_{n}\}$ žymi skaičių $\alpha_{i},\bar{\beta}_{j}$ $\forall i, j = 1, 2, ..., n,$ pagal kuriuos sumuojama, rinkinį.

Tarkime, kad egzistuoja Hamiltoniano \widehat{H} tikrinių funkcijų begalinė aibė $X \equiv \{|\Psi_i\rangle\}_{i=1}^{\infty}$. Išskirkime baigtinį poaibį $Y \equiv \{|\Psi_j\rangle\}_{j=1}^d \subset X$ ($d < \infty$). Šio poaibio elementus galima rasti iš dalies (tam tikru tikslumu). Tam tikslui konstruojame poaibį $\widetilde{Y} \equiv \{|\Phi_k\rangle\}_{k=1}^d \subset \widetilde{X} \equiv \{|\Phi_p\rangle\}_{p=1}^{\infty}$, kurio elementai yra centrinio lauko Hamiltoniano \widehat{H}_0 tikrinės funkcijos. Reikalaujame, kad funkcijos $|\Phi_k\rangle$ tenkintų tokias sąlygas:

- (a) konfigūracijos lygiškumas $\Pi_k \equiv \Pi^{\widetilde{Y}}$ yra pastovus dydis visiems k = 1, 2, ..., d, visoms N_k -elektronėms funkcijoms $|\Phi_k\rangle \equiv |\Phi_k^{\widetilde{Y}}\rangle \equiv |\Gamma_k \Pi^{\widetilde{Y}} \Lambda_k M_k\rangle$. Čia Γ_k žymi papildomus kvantinius skaičius (jei tokių reikia);
- (b) Hamiltoniano \hat{H}_0 tikrinės funkcijos $|\Phi_k^{\tilde{Y}}\rangle$ sudarytos iš dviejų tipų elektronų sluoksnių:
 - (1) pilnai užpildytų elektronų sluoksnių $l_{kt}^{4l_{kt}+2}$, kurie apibrėžia kamienines (c) arba valentines (v) vienelektrones orbitales; kamieninės orbitalės egzistuoja visose funkcijas $|\Phi_k^{\tilde{Y}}\rangle$ sudarančiose konfigūracijose, kurių skaičius $t < u_k^c$, kur u_k^c žymi pilną funkcijos $|\Phi_k^{\tilde{Y}}\rangle$ konfiguracijų su uždarais sluoksniais skaičių; valentinės orbitalės egzistuoja kai kuriose funkcijose $|\Phi_k^{\tilde{Y}}\rangle$;
 - (2) dalinai užpildytų elektronų sluoksnių $l_{kz}^{N_{kz}}$, kurie apibrėžia valentines (v) vienelektrones orbitales, kur tokių konfigūracijų skaičius $z \leq u_k^o$, o u_k^o žymi pilną funkcijos $|\Phi_k^{\tilde{Y}}\rangle$ konfiguracijų su dalinai užpildytais sluoksniais skaičių;
- (c) poaibį \tilde{Y} sudaro funkcijos $|\Phi_k^{\tilde{Y}}\rangle$, gautos valentines orbitales išdėstant visais įmanomais būdais.
- Iš \tilde{Y} apibrėžimo seka keletas svarbių išvadų.
- 1. Funkcijos $|\Phi_k^{\widetilde{Y}}\rangle$ elektronų skaičius N_k yra lygus

$$N_k = N_k^c + N_k^o, \quad N_k^c = \sum_{t=1}^{u_k^c} N_{l_{kt}} = 2\left(u_k^c + 2\sum_{t=1}^{u_k^c} l_{kt}\right), \quad N_k^o = \sum_{z=1}^{u_k^o} N_{kz},$$

kur N_k^c ir N_k^o žymi elektronų užpildas uždaruose ir atviruose sluoksniuose.

2. Poaibis \widetilde{Y} yra suskaidytas į keletą poaibių \widetilde{Y}_n , kur

$$\widetilde{Y} = \bigcup_{n=1}^{A} \widetilde{Y}_n, \quad \widetilde{Y}_n \stackrel{\text{def}}{=} \{ |\Phi_{k_n}^{\widetilde{Y}}\rangle \}_{k_n = d_{n-1}+1}^{d_n}, \quad d_0 = 0, \quad d_A = d.$$

Poaibius \widetilde{Y}_n sudaro \mathcal{N}_n -elektronės funkcijos $|\Phi_{k_n}^{\widetilde{Y}}\rangle$, kur

$$\mathcal{N}_n \equiv N_{d_{n-1}+1} = N_{d_{n-1}+2} = \ldots = N_{d_n}$$

ir $\mathcal{N}_1 \neq \mathcal{N}_2 \neq \ldots \neq \mathcal{N}_A$. Tai reiškia, kad Hamiltonianas \hat{H}_0 turi tikrines funkcijas $|\Phi_{k_n}^{\tilde{Y}}\rangle$ visiems $n = 1, 2, \ldots, A$, kai tuo tarpu įprastinio Hilberto erdvės centrinio lauko Hamiltoniano tikrinių verčių lygtis egzistuoja fiksuotam \mathcal{N}_n . Tegul tai bus $\mathcal{N}_{\tilde{n}} = N$.

3. Aukščiau pateikti punktai (a), (c) sąlygoja, kad poaibis $\widetilde{Z} \equiv \widetilde{X} \setminus \widetilde{Y} = \{|\Theta_l\rangle\}_{l=1}^{\infty}$, suformuotas iš funkcijų $|\Theta_l\rangle \equiv |\Phi_{d+l}\rangle$, yra ortogonalus poaibiui \widetilde{Y} , t.y., $\widetilde{Y} \cap \widetilde{Z} = \emptyset$. Vienelektronės orbitalės, sudarančios konfigūracijas funkcijose $|\Theta_l\rangle$, bus vadinamos sužadintomis (e) orbitalėmis. Tariame, kad šių orbitalių poaibiųi \widetilde{Y} priklausančiose funkcijose nėra.

Palyginimui, punktai 1, 3 savo idėja sutampa su tais, kuriuos pateikė I. Lindgren'as [31, 199 psl.], naudodamasis tradicine Hilberto erdvės samprata. Tuo tarpu antrasis punktas praplečia pastarąjį atvaizdavimą ir pritaiko jį sistemoms su kintamu dalelių skaičiumi.

Sekančiu žingsniu logiška apsibrėžti erdves, kurias formuoja atitinkamų aibių funkcijos (vektoriai). Tam tikslui įvedame skaliarinę daugybą $\langle \cdot, \cdot \rangle_{\mathcal{H}_n} \equiv \langle \cdot | \cdot \rangle_{\mathcal{H}_n} \colon \widetilde{X}_n \times \widetilde{X}_n \longrightarrow \mathbb{R}^+$, kuri apibrėžia vektorių $|\Phi_{p_n}\rangle \in \widetilde{X}_n \subset \widetilde{X}$ skaliarinę sandaugą $\langle \Phi_{p_n} | \Phi_{q_n} \rangle_{\mathcal{H}_n} = \delta_{pq}$ begalinės dimensijos \mathcal{N}_n -elektronėje (separabilioje) Hilberto erdvėje \mathcal{H}_n , t.y., tariame, kad egzistuoja vektorius $|\Psi_{j_n}\rangle \in Y_n$, parametras $\epsilon > 0$ ir sveikas neneigiamas skaičius I_{ϵ} toks, kad

$$\left\| |\Psi_{j_n}\rangle - \sum_{p=1}^M c_{p_n}(j) |\Phi_{p_n}\rangle \right\|_{\mathcal{H}_n} < \epsilon \quad \forall M > I_\epsilon, \quad \forall c_{p_n}(j) \in \mathbb{R}$$

Atskiru atveju, kuomet $M \to \infty$, funkcijos $|\Psi_{j_n}\rangle$ yra Hamiltoniano \hat{H} tikrinės funkcijos. Čia $\| \|_{\mathcal{H}_n}$ žymi normą erdvėje \mathcal{H}_n . Kitaip tariant, centrinio lauko Hamiltoniano tikrinių funkcijų tiesinės kombinacijos yra konverguojančios į atomo Hamiltoniano tikrines funkcijas. Reikia atkreipti dėmesį (kas, be kita ko, ir taip savaime suprantama) į tai, kad \mathcal{N}_n -elektronės funkcijos $|\Phi_{p_n}\rangle \in \widetilde{X}_n$ yra nebūtinai vienodo lygiškumo, kai tuo tarpu \mathcal{N}_n -elektronės konfigūracinės funkcijos $|\Phi_{k_n}\rangle \in \widetilde{Y}_n \subset \widetilde{X}_n$ yra to paties lygiškumo $\Pi^{\widetilde{Y}}$ (punktas (a)). Tačiau praktiniuose taikymuose, akivaizdu, geriau parinkti funkcijas $|\Phi_{p_n}\rangle$, kurios yra to paties lygiškumo, kaip ir $|\Phi_{k_n}\rangle$, t.y., $|\Phi_{p_n}\rangle = |\Phi_{p_n}^{\widetilde{Y}}\rangle$. Tokiu būdu, konstruojame \mathcal{N}_n -elektronės Hilberto erdvės \mathcal{H}_n poerdvį

$$\mathcal{P}_{n} \stackrel{\text{def}}{=} \left\{ |\Phi_{k_{n}}^{\widetilde{Y}}\rangle : \langle \Phi_{k_{n}}^{\widetilde{Y}} | \Phi_{k_{n}'}^{\widetilde{Y}} \rangle_{\mathcal{H}_{n}} = \delta_{\Gamma_{k_{n}}\Gamma_{k_{n}'}} \delta_{\Lambda_{k_{n}}\Lambda_{k_{n}'}} \delta_{M_{k_{n}}M_{k_{n}'}} \equiv \delta_{k_{n}k_{n}'}, \\ \forall k_{n}, k_{n}' = d_{n-1} + 1, d_{n-1} + 2, \dots, d_{n} \right\},$$

kurio dimensija dim $\mathcal{P}_n = d_n - d_{n-1}$. Atskiru atveju, kai $n = \tilde{n}$ (punktas 2), $\mathcal{P}_{\tilde{n}} \equiv \mathcal{P}$ yra *N*-elektronės Hilberto erdvės $\mathcal{H}_{\tilde{n}} \equiv \mathcal{H}$ poerdvis, kurio dimensija dim $\mathcal{P} = d_{\tilde{n}} - d_{\tilde{n}-1} \equiv D$.

Pagal trečią punktą, funkcijos $|\Theta_{l_n}\rangle \in \widetilde{Z}_n \subset \widetilde{Z}$ formuoja \mathcal{H}_n poerdvį $\mathcal{Q}_n \stackrel{\text{def}}{=} \mathcal{H}_n \ominus \mathcal{P}_n$, kuris yra ortogonalus \mathcal{P} , t.y.,

 $\langle \Theta_{l_n} | \Phi_{k_n}^{\widetilde{Y}} \rangle_{\mathcal{H}_n} = 0, \quad \forall l = 1, 2, \dots, \infty, \quad \forall k = 1, 2, \dots, d, \quad \forall n = 1, 2, \dots, A.$ Atskiru atveju, $\mathcal{Q}_{\widetilde{n}} \equiv \mathcal{Q}$. Analogiškai galima apsibrėžti ir erdves, kurių funkcijos (vektoriai) yra skirtingo elektronų skaičiaus. Pavyzdžiui, funkcijos $|\Phi_k^{\widetilde{Y}}\rangle \in \widetilde{Y}$ sudaro erdvę

$$\mathcal{W} \stackrel{\text{def}}{=} \left\{ |\Phi_{k}^{\widetilde{Y}}\rangle : \langle \Phi_{k}^{\widetilde{Y}} | \Phi_{k'}^{\widetilde{Y}} \rangle_{\mathcal{F}} = \sum_{n=1}^{A} \langle \Phi_{k_{n}}^{\widetilde{Y}} | \Phi_{k'_{n}}^{\widetilde{Y}} \rangle_{\mathcal{H}_{n}} = \delta_{\Gamma_{k}\Gamma_{k'}} \delta_{\Lambda_{k}\Lambda_{k'}} \delta_{M_{k}M_{k'}} \equiv \delta_{kk'} \right.$$
$$\forall k, k' = 1, 2, \dots, d \right\} = \bigoplus_{n=1}^{A} \mathcal{P}_{n} \subset \mathcal{F} \stackrel{\text{def}}{=} \bigoplus_{n=1}^{A} \mathcal{H}_{n} \subset \mathfrak{F},$$

kur \mathfrak{F} yra Foko erdvė. Tada funkcijos $|\Theta_l\rangle \in \widetilde{Z}$ sudaro poerdvį $\mathcal{U} \stackrel{\text{def}}{=} \mathcal{F} \ominus \mathcal{W}$, kuris yra ortogonalus \mathcal{W} . Tegul aibė Y yra suskaidoma į poaibius $Y_n \stackrel{\text{def}}{=} \{|\Psi_{j_n}\rangle\}_{j_n=d_{n-1}+1}^{d_n}$. Kaip ir anksčiau, funkcijos $|\Psi_j\rangle \in Y$ sudaro Foko erdvės \mathfrak{F} , susiaurintos iki \mathcal{F} , Hamiltoniano \widehat{H} tikrinių funkcijų aibę. Tuomet schematiškai sąryšius galima pavaizduoti taip

Tikslas yra susieti aibės Y elementus su \widehat{H}_0 tikrinėmis funkcijomis. Tai atliekama turint omenyje, kad \mathcal{P}_n yra \mathcal{H}_n poerdvis ir, atitinkamai, \mathcal{W} yra \mathcal{F} poerdvis. Kaip pagalbinę, bet ne ką mažiau svarbią priemonę, apsibrėžiame vienetinį Hilberto erdvės operatorių $\widehat{\mathbf{1}}_n : \mathcal{H}_n \longrightarrow \mathcal{H}_n$,

$$\widehat{\mathbf{1}}_n = \sum_{p_n=1}^{\infty} |\Phi_{p_n}\rangle \langle \Phi_{p_n}|, \quad |\Phi_{p_n}\rangle \in \widetilde{X}_n.$$

Tada galima užrašyti, kad bet kokiam $n \leq A$,

$$\widehat{\mathbf{1}}_{n}|\Psi_{j_{n}}\rangle = |\Psi_{j_{n}}\rangle = |\Phi_{j_{n}}^{\mathcal{P}}\rangle + \widehat{Q}_{n}|\Psi_{j_{n}}\rangle, \quad |\Phi_{j_{n}}^{\mathcal{P}}\rangle \stackrel{\text{def}}{=} \widehat{P}_{n}|\Psi_{j_{n}}\rangle, \tag{2.10}$$

$$\widehat{P}_{n} \stackrel{\text{\tiny def}}{=} \sum_{k_{n}=d_{n-1}+1}^{a_{n}} |\Phi_{k_{n}}^{\widetilde{Y}}\rangle \langle \Phi_{k_{n}}^{\widetilde{Y}}|, \quad \widehat{Q}_{n} \stackrel{\text{\tiny def}}{=} \sum_{l_{n}=1}^{\infty} |\Theta_{l_{n}}\rangle \langle \Theta_{l_{n}}|, \quad \widehat{P}_{n} + \widehat{Q}_{n} = \widehat{\mathbf{1}}_{n}.$$
(2.11)

Tegul egzistuoja operatorius $\widehat{\Omega}: \mathcal{P}_n \longrightarrow \mathcal{H}_n$ toks, kad $\widehat{\Omega}(n)\widehat{P}_n = \widehat{\mathbf{1}}_n$. Tuomet

$$|\Psi_{j_n}\rangle = \widehat{\Omega}(n) |\Phi_{j_n}^{\mathcal{P}}\rangle$$

Operatorius $\widehat{\Omega}(n)$, «jungiantis» erdves \mathcal{P}_n ir \mathcal{Q}_n , yra vadinamas Hilberto erdvės \mathcal{H}_n banginės funkcijos operatoriumi [31, 202 psl., lygtis (9.66)]. Funkcijos $|\Phi_{j_n}^{\mathcal{P}}\rangle$ yra vadinamos modelinėmis funkcijomis. I. Lindgren'as [22, 31] įrodė, kad banginės funkcijos operatorius $\widehat{\Omega}(\widetilde{n}) \equiv \widehat{\Omega}$ yra randamas sprendžiant taip vadinamą apibendrintąją Blocho lygtį

$$[\widehat{\Omega}, H_0]\widehat{P} = V\widehat{\Omega}\widehat{P} - \widehat{\Omega}\widehat{P}V\widehat{\Omega}\widehat{P}, \qquad (2.12)$$

kur H_0 yra centrinio lauko Hamiltonianas Hilberto erdvės atvaizdavime. Ši lygtis nesunkiai gaunama kombinuojant H_0 ir H tikrinių verčių lygtis ir atsižvelgiant į tai, kad $[H_0, \hat{P}] = 0$, kur $\hat{P} \equiv \hat{P}_{\tilde{n}}$ (analogiškai, $\hat{Q}_{\tilde{n}} \equiv \hat{Q}$). Čia H yra N-elektronio atomo Hamiltonianas. Reikia atkreipti dėmesį į tai, kad H turi tikrines funkcijas fiksuotam $\mathcal{N}_{\tilde{n}} \equiv N$, kai tuo tarpu \hat{H} turi tikrines funkcijas visiems \mathcal{N}_n . Šiuo atveju performuluojame Blocho lygtį į tokį pavidalą

$$[\widehat{S},\widehat{H}_0]\widehat{\mathscr{P}} = \widehat{V}\widehat{S}\widehat{\mathscr{P}} - \widehat{S}\widehat{\mathscr{P}}\widehat{V}\widehat{S}\widehat{\mathscr{P}}, \quad [\widehat{H}_0,\widehat{\mathscr{P}}] = 0,$$

kur operatorius $\widehat{S} \colon \mathcal{W} \longrightarrow \mathcal{F}$,

$$\widehat{S\mathscr{P}} = \sum_{n=1}^{A} \widehat{\Omega}(n) \widehat{P}_n = \widehat{\mathbf{1}}, \quad |\Phi_j^{\mathcal{P}}\rangle \stackrel{\text{\tiny def}}{=} \widehat{\mathscr{P}} |\Psi_j\rangle = \sum_{n=1}^{A} \widehat{P}_n |\Psi_{j_n}\rangle,$$

«jungiantis» erdves \mathcal{W} ir \mathcal{U} , vaidina analogišką vaidmenį bet kokiam \mathcal{N}_n , kaip ir $\widehat{\Omega}$ – fiksuotam N.

2.5 Efektiniai operatoriai

Pagrindinis efektinių operatorių privalumas – galimybė dirbti begalinės dimensijos N–elektronės Hilberto erdvės \mathcal{H} baigtiniame poerdvyje \mathcal{P} , išlaikant nepakitusius judėjimo integralus; šiuo atveju – energijas, kurių lygmenų skaičius lygus poerdvio \mathcal{P} dimensijai D. Tai galima perteikti tokia iliustracija

kur efektinis operatorius \mathcal{H} , dažnai dar vadinamas efektiniu Hamiltonianu arba efektiniu sąveikos operatoriumi, išreiškiamas kaip

$$\widehat{\mathscr{H}} = \widehat{P}\widehat{H}\widehat{P} + \widehat{W}, \quad \widehat{W} \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} \widehat{P}(\widehat{V}_1 + \widehat{V}_2)\widehat{\Omega}_n\widehat{P}.$$
(2.13)

Čia V_m (m = 1, 2) žymi trikdžio \widehat{V} *m*-elektrones dalis; $\widehat{\Omega}_n$ yra *n*-elektronė banginės funkcijos operatoriaus $\widehat{\Omega}$ dalis, gauta $\widehat{\Omega}$ skleidžiant Teiloro eilute, kur pirmasis narys yra $\widehat{\mathbf{1}}_{\widetilde{n}}$.

Kaip matyti iš lygčių (2.12), (2.13), nagrinėjimo objektą sudaro dviejų tipų Hilberto erdvės operatoriai: $\hat{P}\hat{O}_n(\alpha\bar{\beta})\hat{P}$ ir $\hat{Q}\hat{O}_n(\alpha\bar{\beta})\hat{P}$ (žr. (2.8)). Norint nustatyti jų elgseną priklausomai nuo vienelektronių orbitalių rinkinio $I_n(\alpha\bar{\beta})$, performuluojame praeito skyriaus punktus (b)(1)-(2), (c), 3 matematiškai vaizdesniu pavidalu

(A) $a_{c}\widehat{P} = 0$, (C) $a_{v}\widehat{P} \neq 0$, (B) $a_{\bar{e}}^{\dagger}\widehat{P} = 0$, (D) $a_{\bar{v}}^{\dagger}\widehat{P} \neq 0$.

Kaip jau minėta, punktai (A)-(B) sutampa su darbe [31, 288 psl., lygtis (13.3)] pateiktomis formuluotėmis. Savo ruožtu, punktai (C)-(D), esantys tiesioginė praeito skyriaus punkto (c) išdava, yra ypač reikšmingi, kadangi apsprendžia pasirinkto poerdvio baigtinumą. Iš to seka tokia lema (be įrodymo).

2.5.1 Lema. Jei $\widehat{O}_n(\alpha\overline{\beta})$ yra Foko erdvės operatorius ir \widehat{P} , \widehat{Q} yra begalinės dimensijos N-elektronės Hilberto erdvės \mathcal{H} projekciniai operatoriai, tuomet bet kokiems neneigiamiems sveikiems skaičiams $n \leq N$ galioja tokie sąryšiai:

- i) $\widehat{P}\widehat{O}_n(\alpha\overline{\beta})\widehat{P}\neq 0$ jeigu ir tik jeigu $\alpha,\beta=v$;
- ii) $\widehat{Q}\widehat{O}_n(\alpha\overline{\beta})\widehat{P} \neq 0$ jeigu ir tik jeigu $\alpha = v, e$ ir $\beta = v, c$;
- iii) $\widehat{Q}\widehat{O}_n(v\overline{v})\widehat{P} = 0$ jeigu ir tik jeigu $\sum_{i=1}^n (l_{v_i} + l_{\overline{v}_i}) \in 2\mathbb{Z}^+$.

Viena pagrindinių iš lemos (punktas iii)) išplaukiančių išvadų – banginės funkcijos operatoriaus $\widehat{\Omega}$ *n*–elektronės dalies $\widehat{\Omega}_n$ narių su lygiu nuliui energijos vardikliu eliminavimas. Tokiu būdu išsprendžiama trikdžio eilutės narių divergavimo problema. Šie *n*–elektroniai nariai (operatoriai) išreiškiami kaip

$$\widehat{\Omega}_n = \sum_{I_n(\alpha\bar{\beta})} \widehat{Q} \widehat{O}_n(\alpha\bar{\beta}) \widehat{P} \omega_n(\alpha\bar{\beta}), \quad \omega_n(\alpha\bar{\beta}) \stackrel{\text{\tiny def}}{=} \frac{v_n^{eff}(\alpha\bar{\beta})}{\mathscr{D}_n(\alpha\bar{\beta})}, \quad \mathscr{D}_n(\alpha\bar{\beta}) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^n (\varepsilon_{\bar{\beta}_i} - \varepsilon_{\alpha_i}).$$
(2.14)

Dabar jau galima pilnai apsibrėžti modelinę erdvę: begalinės dimensijos N-elektronės Hilberto erdvės \mathcal{H} poerdvis \mathcal{P} , kurio dimensija $D < \infty$, yra formuojamas iš centrinio lauko Hamiltoniano \hat{H}_0 vienodo lygiškumo $\Pi^{\tilde{Y}}$ konfigūracinių funkcijų $|\Phi_{k_{\tilde{n}}}^{\tilde{Y}}\rangle$ aibės $\tilde{Y}_{\tilde{n}}$, funkcijas $|\Phi_{k_{\tilde{n}}}^{\tilde{Y}}\rangle$ konstruojant visais įmanomais būdais išdėsčius vienelektrones valentines orbitales. Papildomai tariama, kad turi galioti lygiškumo išsilaikymą apibrėžianti taisyklė (Lema 2.5.1, punktas iii)).

Kaip seka iš lemos punkto i), modelinės erdvės operatoriaus \mathscr{H} vienelektronės orbitalės gali būti tik valentinio tipo. Be to, \mathscr{H} turi būti užrašytas normaline forma. Kadangi $\widehat{P}\widehat{H}\widehat{P}$ jau «normalizuotas» (žr. lygtis (2.6), (2.13)), tai belieka pertvarkyti \widehat{W} . Taikome Viko teoremą [37, lygtis (8)]. Tada $\widehat{W} = :\widehat{W}: +\sum_{\xi} :\{\widehat{W}\}_{\xi}:$, kur ξ rodo jungčių skaičių tarp Foko erdvės operatorių a_{α_i} ir $a_{\overline{\beta}_j}^{\dagger}$ arba, tiksliau, tarp *m*-elektronės trikdžio \widehat{V} (m = 1, 2) ir *n*-elektronės banginės funkcijos operatoriaus $\widehat{\Omega}$ ($n \in \mathbb{Z}^+$) dalių, kurios, savo ruožtu, atitinka *m*-elektronį ir *n*-elektronį operatorius su atitinkamai išsidėsčiusiomis vienelektronėmis orbitalėmis $\alpha_i, \overline{\beta}_j$. Akivaizdu, kad $1 \leq \xi \leq \min(2m, 2n)$. Pagal lemą, $:\widehat{W}:= 0$. Vadinasi, operatoriaus \widehat{W} normalinė forma yra

$$\widehat{W} = \sum_{n=1}^{\infty} \sum_{m=1}^{2} \sum_{\xi=1}^{\min(2m,2n)} : \{\widehat{P}\widehat{V}_m\widehat{\Omega}_n\widehat{P}\}_{\xi}:.$$
(2.15)

2.5.2 Teorema. Modelinės erdvės \mathcal{P} efektinio Hamiltoniano \mathscr{H} nelygūs nuliui skleidimo nariai yra generuojami daugiausia aštuonių tipų banginės funkcijos operatoriaus $\widehat{\Omega}$ *n*–elektroniais nariais vienelektronių orbitalių rinkinio $I_n(\alpha\overline{\beta})$ atžvilgiu.

Teorema pateikiama be įrodymo, kurio didžioji dalis remiasi Lema 2.5.1. Iš teoremos seka, kad, pavyzdžiui, jei n = 1, 2, 3, 4, t.y., jei atsižvelgiame į vienelektronius, dvielektronius, trielektronius ir keturelektronius sužadinimus, tuomet

kur

$$\begin{split} \sum_{I_{2}^{(4,5,8)}}' &\equiv \sum_{I_{2}^{(4)}} \delta_{\alpha e} \delta_{\beta v} + \sum_{I_{2}^{(5)}} \delta_{\alpha v} \delta_{\beta c} + \sum_{I_{2}^{(8)}} \delta_{\alpha e} \delta_{\beta c}, \\ \sum_{I_{x}^{(a,b)}}' &\equiv \sum_{I_{x}^{(a)}} \delta_{\beta v} + \sum_{I_{x}^{(b)}} \delta_{\beta c}, \quad \text{jei } x = 2, a = 1, b = 6 \text{ arba } x = 3, 4, a = 2, b = 5 \\ \sum_{I_{x}^{(a,b)}}' &\equiv \sum_{I_{x}^{(a)}} \delta_{\alpha v} + \sum_{I_{x}^{(b)}} \delta_{\alpha e}, \quad \text{jei } x = 2, a = 2, b = 7 \text{ arba } x = 4, a = 1, b = 4, \\ \sum_{I_{x}^{(1,4)}}' &\equiv \sum_{I_{3}^{(1)}} \delta_{\alpha v} \delta_{\mu e} + \sum_{I_{3}^{(4)}} \delta_{\alpha e} \delta_{\mu v}, \\ \sum_{I_{3}^{(1,4)}}' &\equiv \sum_{I_{3}^{(1)}} \delta_{\alpha v} \delta_{\beta v} \delta_{\mu e} + \sum_{I_{3}^{(4)}} \delta_{\alpha v} \delta_{\beta c} \delta_{\mu e} + \sum_{I_{3}^{(7)}} \delta_{\alpha e} \delta_{\beta v} \delta_{\mu v} + \sum_{I_{3}^{(8)}} \delta_{\alpha e} \delta_{\beta c} \delta_{\mu v}, \\ \sum_{I_{4}^{(3,6,7,8)}}' &\equiv \sum_{I_{3}^{(3)}} \delta_{\alpha v} \delta_{\beta v} \delta_{\mu e} + \sum_{I_{4}^{(6)}} \delta_{\alpha v} \delta_{\beta c} \delta_{\mu e} + \sum_{I_{3}^{(7)}} \delta_{\alpha e} \delta_{\beta v} \delta_{\mu v} + \sum_{I_{3}^{(8)}} \delta_{\alpha e} \delta_{\beta c} \delta_{\mu v}, \\ \sum_{I_{4}^{(3,6,7,8)}}' &\equiv \sum_{I_{4}^{(3)}} \delta_{\alpha v} \delta_{\beta v} + \sum_{I_{4}^{(6)}} \delta_{\alpha v} \delta_{\beta c} + \sum_{I_{4}^{(7)}} \delta_{\alpha e} \delta_{\beta v} + \sum_{I_{4}^{(8)}} \delta_{\alpha e} \delta_{\beta c}. \end{split}$$

Bendru atveju, kiekvienas *n*-elektronis operatorius $\hat{\Omega}_n$ turi 2n vienelektrones būsenas charakterizuojančius atsiradimo ir išnykimo operatorius. Savo ruožtu, kiekviena vienelektronė būsena gali būti trijų tipų: valentinė, kamieninė ir sužadinta (arba virtuali). Vadinasi, galimas tokių būsenų išsidėstymo skaičius yra $3^{2n} = 9^n$, tačiau, kaip seka iš teoremos, tik daugiausia 8 iš 9^n galimų išsidėstymų duoda nelygų nuliui įnašą į modelinės erdvės \mathcal{P} efektinio Hamiltoniano \mathscr{H} skleidimo narių skaičių. Akivaizdu, kad tai žymiai supaprastina tolimesnę trikdžių teorijos narių analizę.

3 Neredukuotini tenzoriniai operatoriai atomo spektroskopijoje

Skyriuje apžvelgiami antisimetrinių tenzorių \widehat{O}_n (žr. išraišką (2.8)) redukavimo schemų formavimo klausimai. Pasiūlyti bendri neredukuotinų tenzorinių operatorių aprašymo būdai tinka tiek fizikiniams, atomo teorijoje stebimas sąveikas apibūdinantiems operatoriams, tiek ir efektiniams, trikdžių teorijoje taikomiems operatoriams.

Pagrindinis rezultatas yra sukurtì tenzorinės erdvės $\mathcal{H}_{\ell} \equiv \mathcal{H}^{q_1} \times \mathcal{H}^{q_2} \times \ldots \times \mathcal{H}^{q_{\ell}}$ redukavimo į neredukuotinus poerdvius \mathcal{H}^q metodai, tinkantys bet kokiam ℓ . Algoritmo idėja paremta simetrijos grupės S_{ℓ} neredukuotinų bei perstatymo įvaizdžių taikymo galimybėmis, daugiamačių kortežų (arba keitinių) sąvoka (angl. tuples). Lankstesniam pritaikymui išplėtotas taip vadinamas komutuojančių diagramų metodas. Esminė metodo taikymo išvada – bet kokio ilgio tenzorių klasifikacija pagal jų redukavimo schemas, bei neredukuotinų įvaizdžių išsidėstymą. Sąryšiai tarp schemų nustatomi komutuojančių diagramų pagalba, o realizacija – pasinaudojant tradicine judesio kiekio momento teorija. Transformacijos koeficientai, siejantys skirtingas jungimo schemas gali būti randami A. P. Jucio ir kt. [7,9] išplėtota grafine technika arba, kas ir buvo padaryta, analiziškai, pasinaudojant simbolinio programavimo paketu *NCoperators* [62]. Metodo efektyvumas pasireiškia ne tik formaliu savo turiniu, bet ir realiu pritaikymu, o, jei norima, ir galimybe nesunkiai parašyti kompiuterinę programą. Kaip to įrodymas, pagal pateiktą metodą išsamiai išnagrinėtas atvejis, kai n = 3, kas trikdžių teorijos kontekste atitinka trielektronius efektinius operatorius.

3.1 Redukavimo schemų klasifikacija

Tyrimo objektas – ilgio ℓ antisimetrinis tenzorius

$$\widehat{\mathcal{O}}_{\ell} \stackrel{\text{def}}{=} a_{\beta_1}^{\alpha_1} a_{\beta_2}^{\alpha_2} \dots a_{\beta_{\ell}}^{\alpha_{\ell}}, \quad \alpha_k \equiv \frac{1}{2} \lambda_k, \quad \beta_k \equiv \frac{\pm 1}{2} \mu_k,$$

kur neredukuotini tenzoriniai operatoriai a^{α_k} tenkina antikomutacijos taisyklę

$$\left\{a_{\beta_k}^{\alpha_k}, a_{\beta_l}^{\alpha_l}\right\} = (-1)^{\alpha_k - \beta_k + 1} \delta(\alpha_k, \alpha_l) \delta(\beta_k, -\beta_l), \tag{3.1}$$

o $\lambda_k \equiv l_k^{1/2} LS$ -ryšyje (transformacijos grupė SO(3) × SU(2)) ir $\lambda_k \equiv j_k jj$ -ryšyje (grupė SU(2)). Iš čia seka, kad kai $\ell \in 2\mathbb{Z}^+$, tenzorius $\widehat{\mathcal{O}}_{\ell}$ atvaizduoja $\widehat{\mathcal{O}}_{\ell/2}$ tenzorinėje erdvėje \mathcal{H}_{ℓ} , jeigu $\sum_{k=1}^{\ell} \beta_k = \sum_{k=1}^{\ell} \mu_k$. Tariama, kad pastaroji sąlyga galioja visiems $\ell \in 2\mathbb{Z}^+$, t.y., kvazisukinio bazinių indeksų suma yra lygi nuliui ir, tokiu būdu, $\widehat{\mathcal{O}}_{\ell}$ matriciniai elementai yra diagonalūs elektronų skaičiaus atžvilgiu.

Tenzoriaus $\widehat{\mathcal{O}}_{\ell}$ redukavimo schemų klasifikacijai patogu įvesti ℓ -skaičiaus sąvoką, kur ℓ skaičius yra sveikas skaičius, sudarytas iš ℓ_2 skaitmenų, kurių reikšmės yra 1 ir 2. Išimtis yra atvejis $\ell = 2$, kuomet 2-skaičius yra lygus 11 (bet ne 2). Iš apibrėžimo seka, kad skaitmenų skaičius $\ell_2 = h_1 + h_2 = \ell - h_2$, kur h_1 ir h_2 žymi skaitmenų 1 ir 2 pasikartojimų skaičių. Pavyzdžiui, yra du 3-skaičiai: 12 ir 21. Šiuo atveju $h_1 = h_2 = 1$, $\ell_2 = 2$. Nesunku pastebėti, kad ℓ -skaičiai yra glaudžiai susiję su S $_{\ell}$ -neredukuotinais įvaizdžiais [λ],

kurių pavidalas yra $[2^{h_2}1^{h_1}]$. Jei $\ell = 3$, tai S₃-neredukuotini įvaizdžiai yra [3], [21], [1³]. Pagal pateiktą sąlygą tinka tik [21]. Jei $\ell = 4$, tai S₄-neredukuotini įvaizdžiai yra [4], [31], [2²], [21²], [1⁴]. Pagal apibrėžimą tinka [2²] ir [21²]. Kai $[\lambda] = [2^2]$, 4–skaičius yra 22, kai $[\lambda] = [21^2]$ 4–skaičiai yra 112, 121, 211. Taip galima tęsti ir toliau. Kiekvieną grupės įvaizdį $[\lambda] = [2^{h_2}1^{h_1}]$ atitinka ℓ -skaičiai, kurių iš viso yra $\ell_2!/(h_1!h_2!)$. Simetrijos grupės neredukuotinus įvaizdžius nesunku rasti lentelėse (žr., pvz., V. Vanago monografiją [63]). Savo ruožtu, kiekvieną simetrijos grupės neredukuotiną įvaizdį atitinka jo ciklišką struktūrą apibrėžianti grupės konjuguota klasė $(\alpha) = (1^{\alpha_1}2^{\alpha_2} \dots \ell^{\alpha_\ell}), \lambda_r = \sum_{s=r}^{\ell} \alpha_s$, kuriomis patogu klasifikuoti ℓ -skaičius. Tačiau, kaip matyti iš pavyzdžių, to nepakanka, kadangi viena klasė charakterizuoja keletą ℓ -skaičių. Norint vienareikšmiškai suklasifikuoti *l*-skaičius, o vėliau ir atitinkamas redukavimo schemas, įvedame ilgio ℓ_2 kortežo sąvoką. Pagal prasmę ℓ_2 -kortežas yra taisyklė, nustatanti bet kokių objektų, kurių skaičius yra ℓ_2 , tam tikrą išsidėstymo tvarką. Pavyzdžiui, darbe apie pletizmų taikymą grupių redukavimui [64, 2614 psl.], autoriai taisyklę, kad simetrijos grupės S_{ℓ} neredukuotinus ivaizdžius $[\lambda] = [\lambda_1 \lambda_2 \dots \lambda_{\ell_2}]$ charakterizuojantys skaidiniai (angl. partitions) tenk-ina sąlygą $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell_2}$, vadina ℓ_2 -kortežu. Mūsų atveju tie objektai yra skaičiai 1 ir 2. Tokiu būdu, pavyzdžiui, 3-skaičiai yra papildomai charakterizuojami 2-kortežais [[12]] ir [[21]]. Tokių kortežų skaičius, akivaizdu, yra lygus ℓ -skaičių skaičiui, todėl, aiškumo dėlei, juos patogu žymėti $\ell_2(\varkappa)$ -kortežais, kur $\varkappa = 1, 2, \ldots, \ell_2!/(h_1!h_2!)$. Tada 2(1)-kortežas yra [[12]], o 2(2)-kortežas yra [[21]].

Belieka nustatyti sąryšius tarp ℓ -skaičių, kurių ℓ skiriasi. Kaip vėliau išaiškės, tie sąryšiai kaip tik ir charakterizuoja redukavimo schemas (beje, vienareikšmiškai). Vardan aiškumo, išanalizuokime pavyzdį. Tegul turime S₄-neredukuotiną įvaizdį $[21^2] \equiv [211]$. Tuomet $h_1 = 2$, $h_2 = 1, \ell_2 = 3, \ell = 4$ ir atitinkamų 4-skaičių yra 3!/(2!1!) = 3, t.y., 112, 121, 211. Tegul pirmasis 4-skaičius 112 yra charakterizuojamas 3(1)-kortežu [[112]]. 4-skaičiuje 112 atliekame pakeitimą $2 \rightarrow 1$. Tam, kad atskirtume gautą vienetą nuo pirmųjų dviejų, pažymime jį 1'. Gavome skaičių 111', kurio skaitmenų suma yra 1+1+1'=3, t.y., atlikdami pakeitimą $2 \rightarrow 1'$, atlikome grupės apribojimą $S_4 \rightarrow S_3$. Ieškome S_3 -neredukuotinų įvaizdžių, tenkinančių minėtą sąlygą $[\lambda'] = [2^{h'_2} 1^{h'_1}]$, kur h'_1 ir h'_2 jau yra vieneto ir dvejeto pasikartojimai S₃-neredukuotiname įvaizdyje. Aukščiau buvo nustatyta, kad toks įvaizdis yra [21] su charakteringais kortežais [[12]] ir [[21]]. Dabar iš skaičiaus 111' formuojame 3-skaičius. Pirmasis, t.y., 12, gaunamas atliekant veiksmą $111' \rightarrow 1(1+1')$, o antrasis, t.y., 21, gaunamas atliekant veiksmą $111' \rightarrow (1+1)1'$. Paskutiniu žingsniu atliekame pakeitimą atgaline tvarka, t.y., $1' \rightarrow 2$. Tuomet gaunasi, kad pirmu atveju $112 \rightarrow 111' \rightarrow 12 \rightarrow 112$, o antruoju $-112 \rightarrow 111' \rightarrow 21 \rightarrow 22$. Kaip matyti, antra žingsnių seka netinka, kadangi iš 112 gauname 22. Lieka pirmas variantas, kurio žingsnių seką žymime simboliu $[[112]] \ltimes [[12]]$, kur \ltimes (angl. semijoin) rodo, kad kortežas [[112]] yra siejamas tik su kortežu [[12]]. Galiausiai, pažymime kiekvieną *i*-toje pozicijoje esantį skaičių 1 įvaizdžiu α_i , o atitinkamai 2 – įvaizdžiu $\alpha_{i i+1}$. Tada [[112]] \ltimes [[12]] įgyja redukavimo schemos prasmę. Iš tikro, turime, kad [[12]] atitinka $(\alpha_1, \alpha_2\alpha_3(\alpha_{23})\alpha)$, kur $\alpha \equiv \alpha_{123\dots\ell}$ visose schemose yra galutinis įvaizdis (arba tiesiog momentas), pagal kurį neredukuotinas tenzorinis operatorius, gautas suredukavus $\widehat{\mathcal{O}}_{\ell}$, transformuojasi. Tuo tarpu [[112]] \ltimes [[12]] atitinka $(\alpha_1, \alpha_2, \alpha_3 \alpha_4(\alpha_{34})(\alpha_{234})\alpha)$, t.y., \ltimes rodo, kad redukavimo schemoje $[[112]] \ltimes [[12]]$ yra tik tokio tipo suredukuoti Kronekerio sandaugų įvaizdžiai, kokio yra schemoje [[12]], arba – tik tokio pobūdžio jungimo tvarka, kokia yra ir schemoje [[12]].

Įsisavinus aukščiau pateiktą pavyzdį, tolimesnis schemų konstravimas jau yra tik technikos reikalas. Tokiu būdu, pradedant nuo S_3 charakterizuojančių kortežų (S_2 yra trivialus atvejis), galima sukonstruoti bet kokios eilės simetrijos grupę S_ℓ atitinkančias redukavimo schemas. Tai atlikti palengvina žemiau pateikiamas bendras algoritmas.

- I. Duotam $\ell \ge 2$, sukonstruojami ℓ -skaičiai, kurių iš viso yra $\ell_2!/(h_1!h_2!)$, $\ell_2 = h_1 + h_2$, o h_1 ir h_2 randami iš S $_\ell$ -neredukuotinų įvaizdžių, kurių pavidalas $[\lambda] = [2^{h_2}1^{h_1}]$. Atvejis $\ell = 2$ yra trivialus. Tuo atveju pasirenkamas antisimetrinis įvaizdis $[1^2]$. Visais kitais atvejais $h_1 \ge 0, h_2 > 0$.
- II. Jei $2 \leq \ell \leq 3$, tuomet kiekvienas iš ℓ -skaičiaus sudaryto ℓ_2 -kortežo $[[\ell]]$, charakterizuojamo struktūra $[2^{h_2}1^{h_1}]$, *i*-oje pozicijoje esantis skaičius 1 pažymimas įvaizdžiu α_i , o skaičius 2 – įvaizdžiu $\alpha_{i\,i+1}$, kur pastarasis gaunamas redukuojant Kronekerio sandaugą $\alpha_i \times \alpha_{i+1}$. Gautoje redukavimo schemoje prirašomas galutinis įvaizdis $\alpha \equiv \alpha_{12...\ell}$.
- III. Jei $\ell > 3$, tuomet atliekamas grupės apribojimas $S_{\ell} \rightarrow S_{\ell_2}$, realizuojamas pakeitimu $2 \rightarrow 1'$.
 - a) Jei ℓ₂ ≤ 3, tuomet iš gauto skaičiaus ℓ₂, kurio skaitmenų suma yra ℓ₂, konstruojame ℓ₂-skaičius atitinkančius ℓ'₂-kortežus [[ℓ₂]]. Juos surandame iš S_{ℓ₂}-neredukuotinų įvaizdžių, kurių pavidalas atitinka [λ'] = [2^{h'₂}1^{h'₁}]. Tuomet ℓ'₂ = h'₁ + h'₂. Atrenkame tuos ℓ₂-skaičius (jų iš viso yra ℓ'₂!/(h'₁!h'₂!)), iš kurių gauname ℓ-skaičius, atlikę atgaline tvarka pakeitimą 1' → 2. Suformuotos struktūros [[ℓ]] κ [[ℓ₂]] atitinka redukavimo schemas, jeigu, kaip ir anksčiau, ℓ-skaičiaus *i*-oje pozicijoje esančius skaičius 1 pažymime α_i, o skaičius 2 α_{i i+1}.
 - b) Jei $\ell_2 > 3$, tuomet kartojame grupės apribojimo procedūrą: $S_{\ell_2} \to S_{\ell'_2}$ (punktas a)). Jei $\ell'_2 > 3$, tuomet vėl atliekame apribojimą $S_{\ell'_2} \to S_{\ell''_2}$ (punktas a)) ir t.t., kol $\ell''_2 \leq 3$. Suformuotos struktūros $[[\ell]] \ltimes [[\ell_2]] \ltimes [[\ell'_2]] \ltimes \ldots \ltimes [[\ell''_2]]$ ir bus redukavimo schemos.

Lentelė.	<i>3.</i> \mathcal{O}_{2-5} redukavimo	schemos	<i>L</i>	.entelë	4. \mathcal{O}_6 redukavimo s	chemos
(α)	Kortežai	Schema	(0	$\alpha)$	Kortežai	Schema
(2^1)	[[2]]	$\mathscr{T}_1^{[1^2]}$	(3	B^2	$[[222]]\ltimes \mathscr{T}_{2,1}^{[21]}$	$\mathscr{T}_{1,2}^{[2^3]}$
$(1^1 2^1)$	[[12]] [[21]]	$\mathscr{T}_{1}^{[21]} \\ \mathscr{T}_{2}^{[21]}$	(2^1)	(4^1)	$ [[2211]] \ltimes \mathscr{T}_{1,2,3}^{[21^2]} \\ [[1221]] \ltimes \mathscr{T}_{1}^{[2^2]} $	$\mathscr{T}_{1,2,3}^{[2^{2}1^{2}]} \\ \mathscr{T}_{4}^{[2^{2}1^{2}]}$
(2^2)	[[22]]	$\mathscr{T}_1^{[2^2]}$			$[[1221]] \ltimes \mathscr{T}_{1-4}^{[21^2]}$ $[[1122]] \ltimes \mathscr{T}_{2,3,4}^{[21^2]}$	$\begin{array}{c}\mathcal{T}_{5-8}^{[2^21^2]}\\ \mathcal{T}_{9,10,11}^{[2^21^2]}\end{array}$
(1^13^1)	$\begin{array}{l} [[211]] \ltimes \mathscr{T}_{2}^{[21]} \\ [[121]] \ltimes \mathscr{T}_{2,1}^{[21]} \\ [[112]] \ltimes \mathscr{T}_{1}^{[21]} \end{array}$	$\begin{array}{c} \mathcal{T}_{1}^{[21^{2}]} \\ \mathcal{T}_{2,3}^{[21^{2}]} \\ \mathcal{T}_{4}^{[21^{2}]} \end{array}$			$ \begin{array}{c} [[2121]] \ltimes \mathcal{T}_{1}^{[2^{2}]} \\ [[2121]] \ltimes \mathcal{T}_{1-4}^{[21^{2}]} \\ [[2112]] \ltimes \mathcal{T}_{1}^{[2^{2}]} \\ [[2112]] \ltimes \mathcal{T}_{1}^{[2^{2}]} \end{array} $	$\begin{array}{c} \mathcal{T}_{12}^{[2^21^2]} \\ \mathcal{T}_{12}^{[2^21^2]} \\ \mathcal{T}_{13-16}^{[2^21^2]} \\ \mathcal{T}_{17}^{[2^21^2]} \\ \end{array}$
(2^13^1)	$ [[221]] \ltimes \mathscr{T}_{2,1}^{[21]} [[122]] \ltimes \mathscr{T}_{1,2}^{[21]} [[212]] \ltimes \mathscr{T}_{2,1}^{[21]} $	$\mathcal{T}^{[2^21]}_{1,2} \ \mathcal{T}^{[2^21]}_{3,4} \ \mathcal{T}^{[2^21]}_{c}$			$\begin{array}{c} [[2112]] \ltimes \mathscr{T}_{1,4}^{[2^{-1}]} \\ [[1212]] \ltimes \mathscr{T}_{1}^{[2^{2}]} \\ [[1212]] \ltimes \mathscr{T}_{1-4}^{[21^{2}]} \end{array}$	$ \begin{array}{c} \mathcal{T}_{18,19} \\ \mathcal{T}_{20} \\ \mathcal{T}_{21-24} \end{array} \\ \end{array} $
$(1^1 4^1)$	$ [[2111]] \ltimes \mathscr{T}_{1}^{[21^{2}]} [[1211]] \ltimes \mathscr{T}_{1,3,2}^{[21^{2}]} [[1121]] \ltimes \mathscr{T}_{2,3,3}^{[21^{2}]} [[1121]] \ltimes \mathscr{T}_{2,2,3}^{[21^{2}]} $	$\mathcal{T}_{1}^{[21^{3}]}$ $\mathcal{T}_{2,3,4}^{[21^{3}]}$ $\mathcal{T}_{5,6,7}^{[21^{3}]}$ $\mathcal{T}_{21^{3}]}^{[21^{3}]}$	$(1^1$	(5^1)	$ \begin{array}{c} [[21111]] \ltimes \mathcal{T}_{1}^{[21^{3}]} \\ [[12111]] \ltimes \mathcal{T}_{1-4}^{[21^{3}]} \\ [[11211]] \ltimes \mathcal{T}_{2-7}^{[21^{3}]} \\ [[11121]] \ltimes \mathcal{T}_{5-8}^{[21^{3}]} \\ [[111121]] \ltimes \mathcal{T}_{5-8}^{[21^{3}]} \end{array} $	$\begin{array}{c} \mathcal{T}_{1}^{[21^{4}]} \\ \mathcal{T}_{2-5}^{[21^{4}]} \\ \mathcal{T}_{6-11}^{[21^{4}]} \\ \mathcal{T}_{12-15}^{[21^{4}]} \\ \mathcal{T}_{12-15}^{[21^{4}]} \end{array}$

Kiekvieną gautą redukavimo schemą $[[\ell]] \ltimes [[\ell_2]] \ltimes [[\ell'_2]] \ltimes \ldots \ltimes [[\ell''_2]]$ patogu pažymėti simboliu $\mathscr{T}^{[\lambda]}_{\varkappa}$, kur $[\lambda]$ rodo S_{ℓ}-neredukuotiną įvaizdį, charakteringą duotai schemai, o \varkappa yra laisvai pasirenkamas skaičius, numeruojantis tokių schemų skaičių (lentelės 3-4).

Lentele	<u>ė 5. Sch</u>	emos, at	titinkanči	os A_0, A	$_{1}, A_{2}$
$A_p^{\ a} \setminus \ell$	2	3	4	5	6
A_0 A_1	$\mathscr{T}_1^{[1^2]} \ \mathscr{T}_1^{[1^2]}$	$\mathcal{T}_{2}^{[21]} \ \mathcal{T}_{2}^{[21]}$	$\mathscr{T}_1^{[21^2]} \ \mathscr{T}_1^{[2^2]}$	$\mathscr{T}_{1}^{[21^{3}]} \\ \mathscr{T}_{2}^{[2^{2}1]}$	$\mathscr{T}_{1}^{[21^{4}]} \\ \mathscr{T}_{3}^{[2^{2}1^{2}]}$
A_2	_	_	$\mathscr{T}_1^{[2^2]}$	$\mathscr{T}_1^{[2^21]}$	$\mathscr{T}_1^{[2^3]}$

^a [7, skyriai 5-21, lygtis (21.12)]

Lentelėje 5 pateiktos tenzoriaus \hat{O}_{ℓ} redukavimo schemos, atitinkančios schemas A_p , nagrinėtas A. P. Jucio ir kt. darbe [7].

Sąryšiai tarp schemų $\mathscr{T}_{\varkappa}^{[\lambda]}$ ir $\mathscr{T}_{\varkappa'}^{[\lambda']}$ randami realizuojant atvaizdį $\tau_{\xi} \circ \tau_{\xi'}^{-1} \colon \mathscr{T}_{\varkappa'}^{[\lambda']} \longrightarrow \mathscr{T}_{\varkappa}^{[\lambda]}$,

$$\widehat{\mathcal{O}}^{\alpha}_{\beta}([\lambda]\varkappa) = \sum_{\alpha_{\eta \in \Upsilon_{\xi'} \setminus \Upsilon_{\xi}}} \mathscr{E}_{\xi\xi'} \ \widehat{\mathcal{O}}^{\alpha}_{\beta}([\lambda']\varkappa'), \tag{3.2}$$

kur neredukuotini tenzoriniai operatoriai $\widehat{\mathcal{O}}^{\alpha}_{\beta}([\lambda]\varkappa)$ ir $\widehat{\mathcal{O}}^{\alpha}_{\beta}([\lambda']\varkappa')$ yra gaunami suredukavus tenzorių $\widehat{\mathcal{O}}_{\ell}$ pagal atitinkamas redukavimo schemas $\mathscr{T}^{[\lambda]}_{\varkappa}$ ir $\mathscr{T}^{[\lambda']}_{\varkappa'}$. Transformacijos koeficientai $\mathscr{E}_{\xi\xi'} = \mathscr{E}_{\xi'\xi}$ apibrėžiami kaip

$$\mathscr{E}_{\xi\xi'} = \mathscr{E}_{\xi'\xi} \stackrel{\text{def}}{=} \sum_{\alpha_{\eta \in \mathcal{M}_{\xi\xi'}}} \epsilon_{\xi} \epsilon_{\xi'},$$

kur taip vadinami baziniai koeficientai ϵ_{ξ} realizuoja atvaizdį τ_{ξ} : $\mathscr{T}_{12}^{[2^21^2]} \longrightarrow \mathscr{T}_{\varkappa}^{[\lambda]}$, kuomet $\ell = 6$ (lentelė 4); tokių bazinių koeficientų yra $\xi = 1, 2, \ldots, 42$. Čia jų išraiškos nepateikiamos. Paminėtina, kad pastarieji koeficientai išreiškiami per 3nj-simbolius.

3.2 Perstatymai

Aukščiau pademonstruotos tenzoriaus \hat{O}_{ℓ} redukavimo schemų klasifikacijos nepakanka, kadangi dar reikia turėti omenyje, jog redukavimo schemose neredukuotini įvaizdžiai nebūtinai turi būti išsidėstę eilės tvarka $\alpha_1, \alpha_2, \ldots, \alpha_i, \ldots, \alpha_j, \ldots, \alpha_{\ell}$. Galimas atvejis, kuomet, pavyzdžiui, α_i ir α_j yra sukeisti vietomis toje pačioje arba skirtingose schemose. Todėl tikslas yra nustatyti, kaip tokios schemos siejasi viena su kita. Kuomet $\ell \leq 5$, tokius sąryšius (nors ir, toli gražu, ne visus) galima rasti darbe [7]. Todėl šiame skyriuje nagrinėjame atvejį $\ell = 6$. Kadangi žemiau pateiktas metodas glaudžiai siejasi su praeitame skyriuje apibrėžtais baziniais koeficientais, tai, akivaizdu, tokios pačios idėjos vedini, sąryšius tarp schemų galime nustatyti ir bet kokiam ℓ , jei turime prieš tai susikonstravę atitinkamus koeficientus ϵ_{ξ} .

Pirmiausia apsibrėžiame simetrijos grupės S₆ perstatymo (redukuotinus) įvaizdžius, arba, kitaip, operatorius $\hat{\pi}$, kur $\hat{\pi}\alpha_i = \alpha_{\pi(i)}$ ir $\pi \in S_6$. Iškart pastebime, kad bendru atveju galimas toks atvejis, jog $\alpha_i = \alpha_j$, nors $i \neq j$. Tokios situacijos detaliau bus aptariamos šiek tiek vėliau. Nepaisant to, čia nagrinėjami metodai tinka ir tokiais atvejais.

Nors S₆ grupę sudaro iš viso 6! įmanomi elementai (perstatymai) π , tačiau žinome, jog kiekvieną π galima išreikšti dviciklių perstatymų arba, tiesiog, transpozicijų (ij) sandauga. Mūsų atveju tokių transpozicijų yra $\ell(\ell - 1)/2 = 15$,

Vadinasi, pakanka išnagrinėti koeficientus $\mathcal{E}_{\xi'\xi}^{ij}$, kurie sieja schemas $(\widehat{\pi}_{ij}\mathscr{T})^{[\lambda]}_{\varkappa}$ ir $\mathscr{T}_{\varkappa'}^{[\lambda']}$, besiskiriančias α_i ir α_j išsidėstymu. Visos kitos schemos siejamos tokių koeficientų sandaugų sumomis $\mathcal{E}_{\xi'\xi}^{\pi}$. Koeficientai $\mathcal{E}_{\xi'\xi}^{ij}$ realizuoja atvaizdį $\tau_{\xi} \circ p_{ij} \circ \tau_{\xi'}^{-1} \colon \mathscr{T}_{\varkappa'}^{[\lambda']} \longrightarrow (\widehat{\pi}_{ij}\mathscr{T})_{\varkappa}^{[\lambda]},$

$$\mathcal{E}_{\xi'\xi}^{ij} = \widehat{\pi}_{ij} \mathcal{E}_{\xi\xi'}^{ij} \stackrel{\text{def}}{=} \sum_{\alpha_{\eta \in \mathcal{N}_{\xi'\xi}}} \varepsilon_{ij} \epsilon_{\xi'} \epsilon_{(ij)(\xi)}, \quad \epsilon_{(ij)(\xi)} \stackrel{\text{def}}{=} \widehat{\pi}_{ij} \epsilon_{\xi},$$

kur atvaizdžio $p_{ij}: \mathscr{T}_{12}^{[2^21^2]} \longrightarrow (\widehat{\pi}_{ij}\mathscr{T})_{12}^{[2^21^2]}$ realizacija perteikiama taip vadinamais perstatymo arba perrišimo koeficientais ε_{ij} , t.y.,

$$\widehat{\pi}_{ij}\widehat{\mathcal{O}}^{\alpha}_{\beta}([2^21^2]12) = \sum_{\alpha_{\eta\in\Upsilon\backslash\widehat{\pi}_{ij}\Upsilon}} \varepsilon_{ij}\widehat{\mathcal{O}}^{\alpha}_{\beta}([2^21^2]12).$$
(3.3)

Kaip jau minėta, tokių perstatymo koeficientų yra 15. Taigi, uždavinys yra juos surasti.

Norint rasti ε_{ij} , prieš tai apsibrėžiame situaciją, kuomet neredukuotiną įvaizdį α_{ij} Kronekerio sandaugoje $\alpha_i \times \alpha_j$ veikiame perstatymo operatoriumi $\hat{\pi}_{ij}$. Šiuo atskiru, bet labai svarbiu atveju įvedame atvaizdį $p'_{ij}: \mathscr{T}^{[\lambda]}_{\varkappa} \longrightarrow (\widehat{\pi}_{ij}\mathscr{T})^{[\lambda]}_{\varkappa},$

$$\widehat{\pi}_{ij}\widehat{\mathcal{O}}([\lambda]\varkappa) = \varpi_{ij}\widehat{\mathcal{O}}([\lambda]\varkappa), \quad \varpi_{ij} \stackrel{\text{def}}{=} (-1)^{\alpha_i + \alpha_j + \alpha_{ij} + 1}, \tag{3.4}$$

kuris, akivaizdu, tinka tik tam tikriems $[\lambda]$, \varkappa , (ij). Nesunku parodyti, kuomet $\alpha_i = \alpha_j$, tada $\varpi_{ij} = 1$. Kaip bus matyti vėliau, tai labai svarbi fazinio daugiklio savybė nagrinėjant atvejus $\alpha_i = \alpha_j.$

Dabar jau galima nustatyti ε_{ij} koeficientus. Idėja yra tokia: reikia rasti tokią komutuojančią diagramą

$$(\widehat{\pi}_{ij}\mathscr{T})_{12}^{[2^{2}1^{2}]} \stackrel{\phi_{2s}}{\longleftarrow} E_{\varkappa_{2s}}^{[\lambda_{2s}]} \stackrel{\phi_{2s-1}}{\longleftarrow} D_{\varkappa_{2s-1}}^{[\lambda_{2s-1}]} \stackrel{\phi_{2s-2}}{\longleftarrow} \cdots \stackrel{\phi_{s+1}}{\longleftarrow} (\widehat{\pi}_{ij}C)_{\varkappa_{s+1}}^{[\lambda_{s+1}]}$$
(3.5)
$$\stackrel{p_{ij}}{\longrightarrow} \int_{12}^{p_{ij}} \stackrel{\phi_{1}}{\longrightarrow} A_{\varkappa_{2}}^{[\lambda_{2}]} \stackrel{\phi_{2}}{\longrightarrow} B_{\varkappa_{3}}^{[\lambda_{3}]} \stackrel{\phi_{3}}{\longrightarrow} \cdots \stackrel{\phi_{s}}{\longrightarrow} C_{\varkappa_{s+1}}^{[\lambda_{s+1}]}$$

kad, atliekant mažiausią žingsnių skaičių $\nu_s = 2s + 1$, atvaizdžių kompozicija būtų lygi

$$\phi_{2s} \circ \phi_{2s-1} \circ \ldots \circ \phi_{s+1} \circ p'_{ij} \circ \phi_s \circ \phi_{s-1} \circ \ldots \circ \phi_1 = p_{ij}.$$

$$(3.6)$$

Suprantama, kad žingsnių minimumo sąlyga reikalaujama dėl kiekvienos transformacijos metu atsirandančių tarpinių įvaizdžių, pagal kuriuos reikia sumuoti. Kitaip tariant, atliekant mažiausiai galimų žingsnių, reikia surasti tokį operatorių $\widehat{C}^{\alpha}([\lambda_{s+1}]\varkappa_{s+1})$, kad būtų realizuojama situacija, pateikta išraiškoje (3.4), o atgalinė žingsnių seka realizuojama jau savaime. Diagramoje (3.5) simboliai A, B, \ldots, E žymi redukavimo schemas, o atvaizdžiai ϕ_a , priklausantys nuo siejamų schemų, gali būti $\tau_{\xi}, \tau_{\xi}^{-1}$ arba p'_{kl} , kur $(kl) \neq (ij)$. Kaip pavyzdį, išanalizuokime situaciją j = i + 1. Kuomet i = 1 arba i = 4, turime atvejį,

atitinkantį išraišką (3.4), t.y., $\varepsilon_{12} = \varpi_{12}$, $\varepsilon_{45} = \varpi_{45}$, kadangi redukavimo schema (žr. lentelę 4)

$$\mathscr{T}_{12}^{[2^21^2]} = [[2121]] \ltimes [[22]] = (\alpha_1 \alpha_2(\alpha_{12})\alpha_3(\alpha_{123}), \alpha_4 \alpha_5(\alpha_{45})\alpha_6(\alpha_{456})\alpha). \tag{3.7}$$

Formaliai turime vieno žingsnio diagramą. Likusiais atvejais, mažiausią žingsnių skaičių (t.y., $\nu_1 = 3$) charakterizuojanti diagrama yra

Pagal atvaizdžio $\tau_{\xi}: \mathscr{T}_{12}^{[2^21^2]} \longrightarrow \mathscr{T}_{\varkappa}^{[\lambda]}$ apibrėžimą, pirmą žingsnį charakterizuojanti analizinė išraiška yra $\sum_{\alpha_{\eta \in \Upsilon \setminus \Upsilon_{\xi}}} \widehat{\mathcal{O}}^{\alpha}_{\beta}([2^21^2]12)$. Tuomet antrasis žingsnis išreiškiamas kaip (žr. lygtį (3.4)) $\sum_{\alpha_{\eta \in \Upsilon \setminus \Upsilon_{\xi}}} \varpi_{i\,i+1} \epsilon_{\xi} \widehat{\mathcal{O}}^{\alpha}_{\beta}([2^{2}1^{2}]12)$. Galiausiai paskutinį žingsnį atitinkanti išraiška yra

$$\widehat{\pi}_{i\,i+1}\widehat{\mathcal{O}}^{\alpha}_{\beta}([2^{2}1^{2}]12) = \sum_{\alpha_{\eta\in\mathcal{F}_{\varepsilon}\backslash\widehat{\pi}_{i\,i+1}\Upsilon}} \varpi_{i\,i+1}\epsilon_{\xi}\epsilon_{(i\,i+1)(\xi)}\widehat{\mathcal{O}}^{\alpha}_{\beta}([2^{2}1^{2}]12).$$

Pagal (3.6), sulyginame gautą formulę su (3.3). Tada

$$\varepsilon_{i\,i+1} = \sum_{\alpha_{\eta \in \mathcal{F}_{\xi} \setminus \Upsilon}} \varpi_{i\,i+1} \epsilon_{\xi} \epsilon_{(i\,i+1)(\xi)}, \quad i \neq 1, 4.$$

Taigi, gavome koeficientus $\varepsilon_{i\,i+1}$. Lygiai tokia pačia idėja remiantis, nustatomi ir kiti likę 10 koeficientų (čia nepateikiami). Reikia pastebėti, kad dažnu atveju surastos komutuojančios diagramos yra ne vienintelės. Svarbu, kad išliktų toks pats (mažiausias galimas) žingsnių skaičius. Pavyzdžiui, atliekant $\nu_5 = 11$ žingsnių, koeficientą ε_{25} galima nustatyti iš tokių skirtingų (jų galima rasti ir daugiau) atvaizdžių kompozicijų

$$\varepsilon_{25} = p'_{24} \circ \tau_6^{-1} \circ p'_{35} \circ \tau_6 \circ \tau_\xi^{-1} \circ p'_{25} \circ \tau_\xi \circ \tau_6^{-1} \circ p'_{23} \circ \tau_6 \circ p'_{45}$$

= $\tau_6^{-1} \circ p'_{35} \circ \tau_6 \circ p'_{24} \circ \tau_\xi^{-1} \circ p'_{25} \circ \tau_\xi \circ \tau_6^{-1} \circ p'_{45} \circ p'_{23} \circ \tau_6, \quad \xi \in \{1, 2, \dots, 5\}.$

Visos koeficientų ε_{ij} išraiškos gali būti rastos darbe [65], kuriame jos gautos nesinaudojant komutuojančių diagramų metodu. Tačiau komutuojančių diagramų algoritmo efektyvumas tampa akivaizdus, jeigu palyginsime koeficientų ε_{26} ir ε_{16} , išvestų nesinaudojant komutuojančų diagramų metodu ir atvirkščiai – juo naudojantis, išraiškas. Pirmu atveju buvo nustatyta, kad koeficientai ε_{26} ir ε_{16} randami atliekant, atitinkamai, $\nu_8 = 17$ ir $\nu_9 = 19$ žingsnių. Gi pasinaudojant vaizdžiu diagramų metodu, buvo pastebėta, kad tie patys koeficientai gali būti surasti atliekant $\nu_6 = 13$ ir $\nu_7 = 15$ žingsnių, kas akivaizdžiai sąlygoja mažesnį tarpinių sumų skaičių.

Galiausiai panagrinėkime atvejus, kuomet operatoriaus $\hat{\pi}_{ij}$ pagalba perstatomi įvaizdžiai $\alpha_i = \alpha_j, i \neq j$. Tokiu atveju atvaizdis $p_{ij}: \mathcal{T}_{12}^{[2^21^2]} \longrightarrow (\hat{\pi}_{ij}\mathcal{T})_{12}^{[2^21^2]}$ neegzistuoja, kadangi sąlyga $\alpha_i = \alpha_j$ reiškia nelygias nuliui Kronekerio deltas – atsiranda papildomi nariai (žr. lygtį (3.1)). Nepaisant to, egzistuoja teorema (čia pateikiama be įrodymo), leidžianti išspręsti tokio pobūdžio problemas.

3.2.1 Teorema. Tegul $\hat{\pi}$ yra simetrijos grupės S_{ℓ} perstatymo įvaizdis. Jeigu neredukuotinos tenzorinės erdvės \mathcal{H}^q operatorius $\widehat{\mathcal{O}}^{\alpha}([\lambda]\varkappa)$, suredukuotas pagal schemą $\mathcal{T}_{\varkappa}^{[\lambda]}$, savo vidinėje struktūroje turi vienodus neredukuotinus įvaizdžius α_s , $s = 1, 2, \ldots, t < \ell$, tuomet visada egzistuoja toks perstatymo įvaizdis $\hat{\pi}_{\min}$, atitinkantis mažiausio galimo ilgio ciklą arba mažiausio galimo ilgio ciklų sandaugą, kad lygybė

$$\mathcal{E}^{\pi}_{\xi'\xi} = \mathcal{E}^{\pi_{\min}}_{\xi'\xi} \tag{3.8}$$

yra tenkinama, nors atitinkamas atvaizdis $\tau_{\xi} \circ p_{\pi_{\min}} \circ \tau_{\xi'}^{-1} \colon \mathscr{T}_{\varkappa'}^{[\lambda']} \longrightarrow (\widehat{\pi}_{\min} \mathscr{T})_{\varkappa}^{[\lambda]}$ neegzistuoja.

Nesunku pastebėti, kad teorema taip pat leidžia sumažinti galimą tarpinių sumų skaičių. Teoremą iliustruojame pavyzdžiu. Tegul turime operatorius $\hat{\pi}_{132} \widehat{\mathcal{O}}^{\alpha}_{\beta}([21]2)$ ir $\hat{\pi}_{13} \widehat{\mathcal{O}}^{\alpha}_{\beta}([21]2)$. Be to, tegul $\alpha_1 = \alpha_2$. Pastebime, kad perstatymo $(132) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ atveju vienodos vertės įvaizdžiai nesukeičiami vietomis, kai tuo tarpu perstatymo $(13) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ atveju, α_1 sukeičiamas su α_2 . Pirmam operatoriui galioja lygybė

$$[W^{\alpha_{13}}(\lambda_{3}\lambda_{1}) \times a^{\alpha_{2}}]^{\alpha}_{\beta} = \sum_{\alpha_{12} \in 2\mathbb{Z}^{+}+1} C_{132}[W^{\alpha_{12}}(\lambda_{1}\lambda_{2}) \times a^{\alpha_{3}}]^{\alpha}_{\beta},$$

$$C_{132} \stackrel{\text{def}}{=} \sum_{\substack{\beta_{1}\beta_{2}\\\beta_{3}\beta_{13}\beta_{12}}} \langle \alpha_{3}\beta_{3}\alpha_{1}\beta_{1} | \alpha_{13}\beta_{13} \rangle \langle \alpha_{13}\beta_{13}\alpha_{2}\beta_{2} | \alpha\beta \rangle \langle \alpha_{1}\beta_{1}\alpha_{2}\beta_{2} | \alpha_{12}\beta_{12} \rangle$$

$$\times \langle \alpha_{12}\beta_{12}\alpha_{3}\beta_{3} | \alpha\beta \rangle, \qquad (3.9)$$

kur $W^{\alpha_{ij}}(\lambda_i\lambda_j) \stackrel{\text{def}}{=} [a^{\alpha_i} \times a^{\alpha_j}]^{\alpha_{ij}}$ ir $\alpha_{ij} = \alpha_{ji}$. Koeficientas C_{132} gali būti išreikštas per 6j-simbolius, tačiau nagrinėjamu atveju tai neaktualu. Antram operatoriui galiojanti lygybė yra

$$[W^{\alpha_{23}}(\lambda_{3}\lambda_{2}) \times a^{\alpha_{1}}]^{\alpha}_{\beta} = \sum_{\alpha_{12} \in 2\mathbb{Z}^{+}+1} C_{13}[W^{\alpha_{12}}(\lambda_{1}\lambda_{2}) \times a^{\alpha_{3}}]^{\alpha}_{\beta} + \delta(\alpha_{3},\alpha)\varpi_{13}\frac{[\alpha_{13}]^{1/2}}{[\alpha]^{1/2}}a^{\alpha}_{\beta},$$

$$C_{13} \stackrel{\text{def}}{=} -\sum_{\substack{\beta_{1}\beta_{2}\\\beta_{3}\beta_{13}\beta_{12}}} \langle \alpha_{3}\beta_{3}\alpha_{2}\beta_{2}|\alpha_{23}\beta_{23}\rangle \langle \alpha_{23}\beta_{23}\alpha_{1}\beta_{1}|\alpha\beta\rangle \langle \alpha_{1}\beta_{1}\alpha_{2}\beta_{2}|\alpha_{12}\beta_{12}\rangle$$

$$\times \langle \alpha_{12}\beta_{12}\alpha_{3}\beta_{3}|\alpha\beta\rangle.$$
(3.10)

Išraiškoje (3.10) trečias CG koeficientas $\langle \alpha_1\beta_1\alpha_2\beta_2|\alpha_{12}\beta_{12}\rangle = -\varpi_{12}\langle \alpha_2\beta_2\alpha_1\beta_1|\alpha_{12}\beta_{12}\rangle$. Bet $\alpha_1 = \alpha_2$, todėl $\varpi_{12} = 1$. Dabar koeficiento C_{13} išraiškos dešinėje pusėje sukeičiame vietomis $\alpha_1\beta_1$ su $\alpha_2\beta_2$. Tada, palyginę (3.9) su (3.10), gauname, kad $C_{132} = C_{13}$, kas ir yra Teoremos 3.2.1 teiginio (3.8) atskiras atvejis, kur šiame pavyzdyje $\hat{\pi} = \hat{\pi}_{132}$, o $\hat{\pi}_{\min} = \hat{\pi}_{13}$, kadangi (132) gali būti išreikštas mažiausio galimo ilgio ciklų (šiuo atveju, dviciklių) sandauga. Pavyzdžiui, viena iš galimybių yra (132) = (13)(23).

Gauta teorema turi dar vieną labai svarbią taikymo arba praktinę vertę, reikšmingai pasitarnaujančią daugiaelektronių operatorių, veikiančių tarp keletos elektronų sluoksnių, klasifikacijai. Tokio taikymo pavyzdys pateikiamas sekančiame skyriuje.

3.3 Trielektronis operatorius

Jei vienelektroniai ir dvielektroniai operatoriai, kuriais ypač dažnai operuojama atomo teorijoje, yra plačiai išnagrinėti visais įmanomais aspektais [11, 12, 46, 47, 49–51, 66–68], tai trielektronio (efektinio) operatoriaus atveju situacija yra žymiai keblesnė. Atomo ekvivalentinių elektronų klasifikacijos kontekste pirmieji reikšmingi poslinkiai šiuo klausimu buvo inicijuoti B. Judd'o ir kt. darbuose [43, 69, 70], tačiau trikdžių teorijos, paremtos efektinių operatorių formalizmu, kontekste tokių darbų skaičius yra žymiai mažesnis [71–73]. Be to, nei viename iš jų nepateikiama trielektronio operatoriaus, veikiančio tarp keletos valentinių elektronų sluoksnių, klasifikacija. (Tokio pobūdžio dvielektronių operatorių klasifikaciją galima rasti darbuose [11, 67, 68].) Šiame skyriuje kaip tik su tokia klasifikacija ir yra supažindinama.

Trielektronis operatorius yra tokio pavidalo (žr. lygtį (2.7) arba, detaliau, skyrių 2.5)

$$\widehat{L} \stackrel{\text{def}}{=} \sum_{I_3} a_{\alpha} a_{\beta} a_{\zeta} a_{\bar{\eta}}^{\dagger} a_{\bar{\nu}}^{\dagger} a_{\bar{\mu}}^{\dagger} \, \omega_{\alpha\beta\zeta\bar{\mu}\bar{\nu}\bar{\eta}}.$$
(3.11)

Kaip ir anksčiau, $\omega_{\alpha\beta\zeta\bar{\mu}\bar{\nu}\bar{\eta}}$ žymi trielektronį efektinį matricinį elementą. Jo išraiška tiesiogiai priklauso nuo nagrinėjamos sistemos, trikdžio \hat{V} atžvilgiu taikomo modelio (iteracinis ar CC) ir pan. (apie tai plačiau kitame skyriuje). Šiame etape dėmesys skiriamas tenzorinei \hat{L} struktūrai, kur \hat{L} skleidžiame neredukuotinų tenzorinių operatorių \hat{L}^{Λ} eilute. Redukavimo schema galima bet kuri iš lentelėje 4 pateiktų 42-jų. Kadangi visos jos lygiavertės, o sąryšiai tarp schemų randami surastų koeficientų $\mathscr{E}_{\xi\xi'}$ (lygtis (3.2)) pagalba, tai pasirenkame schemą $\mathscr{T}_{12}^{[2^21^2]}$ (lentelė 4 arba išraiška (3.7)). Tada $\hat{L}^{\Lambda} \equiv \hat{\mathcal{O}}^{\Lambda}([2^21^2]12)$. Klasifikacijai patogiau yra pereiti iš tenzorinės erdvės \mathcal{H}^{Λ} į $\mathcal{H}^q \equiv \mathcal{H}^Q \times \mathcal{H}^{\Lambda}$, t.y., neredukuotini įvaizdžiai Λ keičiami į $\alpha \equiv \kappa \Lambda$. Toks perėjimas realizuojamas lygybe

$$\begin{split} & \left[\lambda^{N}\Gamma\bar{\Lambda}\|\widehat{\mathcal{O}}^{\Lambda}([2^{2}1^{2}]12)\|\lambda^{N}\Gamma'\bar{\Lambda}'\right] = \frac{1}{2} \left[\lambda\Gamma Q\bar{\Lambda}|||\widehat{\mathcal{O}}^{0\Lambda}([2^{2}1^{2}]12)|||\lambda\Gamma'Q\bar{\Lambda}'\right] \\ & + \frac{1}{2} \langle Q'M_{Q}20|QM_{Q}\rangle \left[\lambda\Gamma Q\bar{\Lambda}|||\widehat{\mathcal{O}}^{2\Lambda}([2^{2}1^{2}]12)|||\lambda\Gamma'Q'\bar{\Lambda}'\right] \\ & + \frac{3}{2\sqrt{5}} \langle Q'M_{Q}10|QM_{Q}\rangle \left[\lambda\Gamma Q\bar{\Lambda}|||\widehat{\mathcal{O}}^{1\Lambda}([2^{2}1^{2}]12)|||\lambda\Gamma'Q'\bar{\Lambda}'\right] \\ & + \frac{1}{2\sqrt{5}} \langle Q'M_{Q}30|QM_{Q}\rangle \left[\lambda\Gamma Q\bar{\Lambda}|||\widehat{\mathcal{O}}^{3\Lambda}([2^{2}1^{2}]12)|||\lambda\Gamma'Q'\bar{\Lambda}'\right], \end{split}$$

kur, kaip ir visada, $\lambda \equiv l^{1/2} LS$ -ryšyje ir $\lambda \equiv j j j$ -ryšyje; QM_Q žymi kvazisukinio kvantinius skaičius (transformacijos grupė SU(2)), siejamus su vyresniškumo kvantiniu skaičiumi v (transformacijos grupė Sp(4l + 2)). Taigi, uždavinys yra suklasifikuoti neredukuotinus tenzorinius operatorius $\widehat{\mathcal{O}}^{\alpha}([2^21^2]12)$ pagal elektronų sluoksnių, kuriuose pastarasis veikia, skaičių; visi kiti operatoriai $\widehat{\mathcal{O}}^{\alpha}([\lambda]\varkappa)$ randami bazinių koeficientų ϵ_{ξ} pagalba.

Pirmiausia apsibrėžiame trijų tipų klases: motininę, dualiąją ir išvestinę. Duali klasė yra atskiras išvestinės klasės atvejis. Tariame, kad operatorių

 $\widehat{\mathcal{O}}^{\varsigma}([2^21^2]12) \equiv \widehat{T}^{\varsigma}(\lambda_i \lambda_j \lambda_k \lambda_l \lambda_n \lambda_a) \equiv \left[[W^{\varsigma_{ij}}(\lambda_i \lambda_j) \times a^{\varsigma_k}]^{\varsigma_{ijk}} \times [W^{\varsigma_{lp}}(\lambda_l \lambda_n) \times a^{\varsigma_q}]^{\varsigma_{lpq}} \right]^{\varsigma},$ suredukuotu pagal redukavimo schema

$$\mathscr{T}_{12}^{[2^21^2]} \equiv \langle ijklpq \rangle \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{l} \langle x \rangle, \quad \text{jei } i \leq j \leq k \leq l \leq p \leq q, \\ \langle x_{\pi} \rangle, \quad \text{kitais atvejais,} \end{array} \right.$$

aibė formuoja dimensijos d_{ℓ} motininę klasę $X_{\ell}(\Delta_1, \Delta_2, \dots, \Delta_{\ell}), \ell \leq 6$, jeigu iš $s = \{i, j, k\}$ ir $s' = \{l, p, q\}$ tos pačios reikšmės skaičių kartotinumų skirtumas Δ_x , x = i, j, k, l, p, q yra toks, kad

$$\sum_{x=1}^{\ell} \Delta_x = 0.$$

Pavyzdžiui, jei $s = \{i = 1, j = 1, k = 1\}, s' = \{l = 1, p = 1, q = 2\}$, tuomet $\Delta_1 = 1$ $3-2=1, \Delta_2=0-1=-1, \Delta_1+\Delta_2=0$, ir operatorius, suredukuotas pagal schemą (111112), priklauso klasei $X_2(+1, -1)$. Nesunku pastebėti, kad skaičiai $i, j, k, l, p, q \leq \ell$ žymi ekvivalentinių elektronų sluoksnius atome.

Dimensijos d_{ℓ} motininei klasei $X_{\ell}(\Delta_1, \Delta_2, \dots, \Delta_{\ell})$ duali klasė yra tokia dimensijos d_{ℓ} klasė, kad $X_{\ell}^*(\Delta_1, \Delta_2, \dots, \Delta_{\ell}) = X_{\ell}(-\Delta_1, -\Delta_2, \dots, -\Delta_{\ell})$. Iš pastarojo apibrėžimo seka, kad jei trielektronis operatorius \widehat{L} (žr. išraišką (3.11)) priklauso motininei klasei $X_{\ell}(\Delta_1, \Delta_2, \ldots, \Delta_{\ell})$, tuomet jam ermitiškai jungtinis operatorius \widehat{L}^{\dagger} priklauso klasei $X_{\ell}^{*}(\Delta_{1}, \Delta_{2}, \dots, \Delta_{\ell})$. Vadinasi, prisimenant, kad matriciniai elementai Hilberto erdvėje yra apibrėžiami kaip funkcionalai $\widetilde{X}_{\widetilde{n}} \times \widetilde{X}_{\widetilde{n}} \longrightarrow \mathbb{R}^+$, konstatuojame, kad $\langle \Psi_f | \widehat{L} | \Psi_i \rangle = \langle \Psi_i | \widehat{L}^\dagger | \Psi_f \rangle$. Tokiu būdu, trielektronių operatorių klasifikacija pagal trijų tipų klases vienareikšmiškai atliekama pasinaudojant tik motininės ir išvestinės klasės sąvokomis.

Detaliau panagrinėkime išvestines klases. Tam tikslui apsibrėžkime atvaizdį

$$p_{\pi}: \langle x \rangle \longrightarrow \langle x_{\pi} \rangle, \ \begin{pmatrix} i' \ j' \ k' \ l' \ p' \ q' \\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \end{pmatrix} \mapsto \begin{pmatrix} i' \ j' \ k' \ l' \ p' \ q' \\ \pi(1) \ \pi(2) \ \pi(3) \ \pi(4) \ \pi(5) \ \pi(6) \end{pmatrix} \equiv \begin{pmatrix} i \ j \ k \ l \ p \ q \\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \end{pmatrix},$$

lizuojama kaip

real mą r

$$\widehat{\pi}\widehat{T}^{\varsigma}(\lambda_{i'}\lambda_{j'}\lambda_{k'}\lambda_{l'}\lambda_{p'}\lambda_{q'}) = \widehat{T}^{\varsigma}(\lambda_i\lambda_j\lambda_k\lambda_l\lambda_p\lambda_q).$$
(3.12)

Pastebime, kad kai π yra transpozicija, pastaroji išraiška apibrėžiama lygybe (3.3).

3.3.1 Teorema. Jei operatoriai $\widehat{T}^{\varsigma}(\lambda_{i'}\lambda_{j'}\lambda_{k'}\lambda_{l'}\lambda_{p'}\lambda_{q'})$ ir $\widehat{T}^{\varsigma}(\lambda_{m'}\lambda_{n'}\lambda_{r'}\lambda_{s'}\lambda_{t'}\lambda_{u'})$ yra suredukuoti pagal schemas $\langle x \rangle$ ir $\langle y \rangle$, o operatorial $\widehat{T}^{\varsigma}(\lambda_i \lambda_j \lambda_k \lambda_l \lambda_p \lambda_q)$ ir $\widehat{T}^{\varsigma}(\lambda_m \lambda_n \lambda_r \lambda_s \lambda_t \lambda_u)$ yra suredukuoti pagal schemas $\langle x_{\pi} \rangle$ ir $\langle y_{\pi'} \rangle$ taip, kad tam tikram simetrijos grupės įvaizdžiui $\widehat{\Pi}$ galioja *lygybės* $\widehat{\Pi}\lambda_i = \lambda_m$, $\widehat{\Pi}\lambda_j = \lambda_n$, $\widehat{\Pi}\lambda_k = \lambda_r$, $\widehat{\Pi}\lambda_l = \lambda_s$, $\widehat{\Pi}\lambda_p = \lambda_t$, $\widehat{\Pi}\lambda_q = \lambda_u$, tada esamiems atvaizdžiams $p_{\pi} \colon \langle x \rangle \longrightarrow \langle x_{\pi} \rangle$ ir $p_{\pi'} \colon \langle y \rangle \longrightarrow \langle y_{\pi'} \rangle$ egzistuoja atitinkamas atvaizdis p_{π} toks, kad diagrama

$$\begin{array}{c} \langle y \rangle \xrightarrow{p_{\pi'}} \langle y_{\pi'} \rangle \\ p_{\pi} \\ \langle y_{\pi} \rangle \end{array}$$

$$(3.13)$$

yra komutuojanti, o simetrijos grupės S₆ perstatymo įvaizdis $\hat{\pi}$ tenkina sąlygą

$$\hat{\tilde{\pi}}\hat{T}^{\varsigma}(\lambda_{m'}\lambda_{n'}\lambda_{r'}\lambda_{s'}\lambda_{t'}\lambda_{u'}) = \hat{T}^{\varsigma}(\lambda_{\Pi(i')}\lambda_{\Pi(j')}\lambda_{\Pi(k')}\lambda_{\Pi(l')}\lambda_{\Pi(p')}\lambda_{\Pi(q')}).$$
(3.14)

(Teorema pateikiama be įrodymo.) Iš teoremos seka, kad lygtį (3.13) tenkinančių operatorių $\hat{\pi}$ yra ne vienas, tačiau visi tokie galimi operatoriai yra ekvivalentūs.

Pagrindinės iš teoremos išplaukiančios išvados yra:

- 1. Jei neredukuotinas tenzorinis operatorius $\widehat{T}^{\varsigma}(\lambda_i\lambda_j\lambda_k\lambda_l\lambda_p\lambda_q)$, suredukuotas pagal schemą $\langle x_{\pi} \rangle$, priklauso klasei $X_{\ell}(\Delta_1, \Delta_2, \dots, \Delta_{\ell})$ realizuojant atvaizdį $p_{\pi} \colon \langle x \rangle \longrightarrow \langle x_{\pi} \rangle$ (lygtis (3.12)), tuomet bet koks kitas pagal redukavimo schemą $\langle y_{\pi'} \rangle$ suredukuotas tenzorinis operatorius $\widehat{T}^{\varsigma}(\lambda_m\lambda_n\lambda_r\lambda_s\lambda_t\lambda_u)$ toks, kad $\widehat{T}^{\varsigma}(\lambda_m\lambda_n\lambda_r\lambda_s\lambda_t\lambda_u) = \widehat{\Pi}\widehat{T}^{\varsigma}(\lambda_i\lambda_j\lambda_k\lambda_l\lambda_p\lambda_q)$, priklauso klasei $X_{\ell}(\Delta'_1, \Delta'_2, \dots, \Delta'_{\ell})$ realizuojant atvaizdį $p_{\pi'} = p_{\widetilde{\pi}} \circ p_{\pi}$. Dimensijos d_{ℓ} klasė $X_{\ell}(\Delta'_1, \Delta'_2, \dots, \Delta'_{\ell})$ yra vadinama dimensijos d_{ℓ} motininės klasės $X_{\ell}(\Delta_1, \Delta_2, \dots, \Delta_{\ell})$ išvestine klase.
- 2. Lygtis (3.13) įgalina vienareikšmiškai suklasifikuoti operatorius pasinaudojant tik motininės klasės sąvoka; operatoriai, prklausantys išvestinėms klasėms, suklasifikuojami nustačius išvestines klases charakterizuojančius perstatymo įvaizdžius $\hat{\pi}$.

Natūralu, kad $\hat{\pi}'$ galima rasti ir tiesiogiai iš lygties

$$\widehat{\pi}'\widehat{T}^{\varsigma}(\lambda_{m'}\lambda_{n'}\lambda_{r'}\lambda_{s'}\lambda_{t'}\lambda_{u'}) = \widehat{T}^{\varsigma}(\lambda_m\lambda_n\lambda_r\lambda_s\lambda_t\lambda_u),$$

tačiau šiuo atveju sprendinių $\hat{\pi}'$ yra tiek, kiek yra skirtingų operatorių $\hat{T}^{\varsigma}(\lambda_m\lambda_n\lambda_r\lambda_s\lambda_t\lambda_u)$, priklausančių tai pačiai klasei – toks skaičius dažnai siekia kelias dešimtis. Gi Teoremos 3.3.1 pagalba pakanka nustatyti tokius sprendinius vienai kuriai nors klasei (ją ir vadiname motinine) priklausantiems operatoriams. Visiems kitiems išvestinei klasei priklausantiems operatoriams tokie sprendiniai randami lygties (3.13) pagalba. Tam tikslui reikalingi operatoriai $\hat{\pi}$. Bet tokių operatorių skaičius yra žymiai mažesnis negu klasės dimensija – jis lygus operatorių $\hat{T}^{\varsigma}(\lambda_{m'}\lambda_{n'}\lambda_{r'}\lambda_{s'}\lambda_{t'}\lambda_{u'})$ skaičiui (dažnu atveju tiesiog 1).

	Lentelė 6.	Klasė X_3 (+	-2, -1, -1):	$d_3 = 24$	
$\langle x_{\pi} \rangle$	π	$\langle x \rangle$	$\langle x_{\pi} \rangle$	π	$\langle x \rangle$
$\langle 111 \{ 123 \} \rangle$	θ	$\langle 111123 \rangle$	$\langle 113233 \rangle$	(34)	$\langle 112333 \rangle$
$\langle 112223 \rangle$	1_{6}	$\langle 112223 \rangle$	$\langle 113323 \rangle$	(35)	
$\langle 112232 \rangle$	(56)		$\langle 113332 \rangle$	(36)	
$\langle 112322 \rangle$	(46)		$\langle 131233 \rangle$	(243)	
$\langle 121223 \rangle$	(23)		$\langle 131323 \rangle$	(253)	
$\langle 121232 \rangle$	(23)(56)		$\langle 131332 \rangle$	(263)	
$\langle 121322 \rangle$	(23)(46)		$\langle 311233 \rangle$	(143)	
$\langle 211223 \rangle$	(13)		$\langle 311323 \rangle$	(153)	
$\langle 211232 \rangle$	(13)(56)		$\langle 311332 \rangle$	(163)	
$\langle 211322 \rangle$	(13)(46)				
	$X_3(-1,+2,-1)$:			$X_3(-1, -1, +2)$:	
$\langle x \rangle$	$ ilde{\pi}$	$\langle y angle$	$\langle x \rangle$	$ ilde{\pi}$	$\langle y angle$
$\langle 111123 \rangle$	(15)	$\langle 122223 \rangle$	$\langle 111123 \rangle$	(16)(25)	$\langle 123333 \rangle$
$\langle 112223 \rangle$	(14)(25)	$\langle 111223 \rangle$	$\langle 112223 \rangle$	(16)(25)	$\langle 122233 \rangle$
$\langle 112333 \rangle$	(13)	$\langle 122333 \rangle$	$\langle 112333 \rangle$	(16)(25)	$\langle 111233 \rangle$

Pailiustruokime pavyzdžiu. Tegul turime motininę klasę $X_3(+2, -1, -1)$, kurios dimensija $d_3 = 24$ (lentelė 6). Kaip matyti, šioje klasėje yra trys galimi operatoriai (taigi bus trys operatoriai $\hat{\pi}$) $\hat{T}^{\varsigma}(\lambda_{i'}\lambda_{j'}\lambda_{k'}\lambda_{l'}\lambda_{p'}\lambda_{q'})$ (žr. (3.12)), suredukuoti pagal tris galimas schemas $\langle x \rangle$: $\langle 111123 \rangle$, $\langle 112223 \rangle$, $\langle 112333 \rangle$. Visi kiti tai pačiai klasei $X_3(+2, -1, -1)$ priklausantys operatoriai $\hat{T}^{\varsigma}(\lambda_i\lambda_j\lambda_k\lambda_l\lambda_p\lambda_q)$ gaunami pagal (3.12). Lentelėje $\vartheta \in \{1_6, (56), (45), (456), (465), (46)\}$ atitinka kiekvieną schemą (ta pačia išsidėstymo tvarka) iš

 $\{\langle ijklpq \rangle, \langle ijklqp \rangle, \langle ijkplq \rangle, \langle ijkpql \rangle, \langle ijkqlp \rangle, \langle ijkqpl \rangle\},\$

trumpai pažymėtos simboliu $\langle ijk\{lpq\}\rangle$. Tegul turime $\widehat{T}^{\varsigma}(\lambda_i\lambda_j\lambda_k\lambda_l\lambda_p\lambda_q)$, suredukuotą pagal schemą $\langle x_{\pi}\rangle = \langle 211223\rangle$. Tada $\langle x\rangle = \langle 112223\rangle$ ir $\pi = (132)$, kadangi tos pačios reikšmės neredukuotini įvaizdžiai $\alpha_1 = \alpha_2 = \varsigma_1$ nesukeičiami. Bet pagal Teoremą 3.2.1, galimas pakeitimas $\pi = \pi_{\min} = (13)$. Sakykime, kad egzistuoja perstatymo operatorius $\widehat{\Pi} = \widehat{\Pi}_{12}$ (žr. Teoremą 3.3.1), realizuojantis perstatymą (12), t.y., pasirenkame išvestinę klasę $X_3(-1, +2, -1)$ (Δ_1 sukeičiamas su Δ_2) su atitinkamu neredukuotinu tenzoriniu operatoriumi $\widehat{T}^{\varsigma}(\lambda_{m'}\lambda_{n'}\lambda_{r'}\lambda_{s'}\lambda_{t'}\lambda_{u'})$, suredukuotu pagal schemą $\langle y \rangle = \langle 111223 \rangle$. Tada pagal (3.14),

$$\widehat{\tilde{\pi}}\widehat{T}^{\varsigma}(\lambda_1\lambda_1\lambda_1\lambda_2\lambda_2\lambda_3) = \widehat{T}^{\varsigma}(\lambda_2\lambda_2\lambda_1\lambda_1\lambda_1\lambda_3).$$

Iš čia $\hat{\pi} = (14253)$. Pagal Teoremą 3.2.1, pastarąjį perstatymą galima pakeisti mažiausio galimo ilgio ciklų sandauga $\hat{\pi} = \hat{\pi}_{\min} = (14)(25)$. Tuomet pagal (3.13), $\hat{\pi}' = \hat{\pi}\hat{\pi} = (25)(34)$, ir operatorius $\hat{T}^{\varsigma}(\lambda_m\lambda_n\lambda_r\lambda_s\lambda_t\lambda_u)$, priklausantis išvestinei klasei $X_3(-1, +2, -1)$, yra suredukuotas pagal schemą $\langle y_{\pi'} \rangle = \langle 122113 \rangle$. Iš kitos pusės

$$\widehat{\pi}'\widehat{T}^{\varsigma}(\lambda_1\lambda_1\lambda_1\lambda_2\lambda_2\lambda_3) = \widehat{T}^{\varsigma}(\lambda_1\lambda_2\lambda_2\lambda_1\lambda_1\lambda_3).$$

Iš čia $\hat{\pi}' = (24)(35) = (25)(34)$. Taigi, abiem atvejais rezultatas sutampa. Tačiau yra esminis skirtumas. Jei naudosimės pastaruoju metodu, tuomet reikės ieškoti $\hat{\pi}'$ visais 24 atvejais, kadangi klasės dimensija yra $d_3 = 24$. Tuo tarpu pasinaudojant Teorema 3.3.1, $\hat{\pi}' = (14)(25)\hat{\pi}$, kur visi $\hat{\pi}$, tinkantys ir kitoms išvestinėms klasėms (su sau charakteringais $\hat{\pi}$), yra pateikti lentelėje 6.

Tokio pobūdžio klasifikacija atliekama visiems $\ell = 2, 3, 4, 5, 6$ (čia nepateikiama). Paminėsime, kad dviejų sluoksnių atveju ($\ell = 2$) motininių klasių su dimensijomis $d_2 = 12, 15, 6, 1$ yra 4; kai $\ell = 3$, (motininių) klasių, kurių dimensijos $d_3 = 21, 24, 3, 45, 9$, skaičius yra 5; kai $\ell = 4$, iš viso penkių klasių dimensijos yra $d_4 = 72, 9, 6, 36, 18$; kai $\ell = 5$, klasių skaičius - 2, dimensijos $d_5 = 18, 36$; galiausiai, kai trielektronis operatorius veikia tarp šešių atomo ekvivalentinių elektronų sluoksnių, motininė klasė yra viena, su dimensija $d_6 = 36$.

4 Metodų taikymai trečios eilės trikdžių teorijoje

Ankstesniuose skyriuose apžvelgti bet kokio ilgio tenzorių ir jų neredukuotinų formų tam tikrose redukavimo grupėse tyrimo metodai tinka bet kokio tipo—bent jau atomo fizikoje aptinkamiems—operatoriams, tačiau pilna kompleksinio operatoriaus struktūra susideda ne tik iš tenzorinės dalies, bet ir sąveiką ar nagrinėjamą procesą charakterizuojančio daugiklio – matricinio elemento (žr. pvz., daugiklį $\omega_{\alpha\beta\zeta\mu\nu\eta}$ trielektronio operatoriaus atveju (3.11)). Todėl šiame skyriuje, kaip vienas iš pagrindinių taikymo pavyzdžių nagrinėjama trečios eilės TT, ir vienas pagrindinių tikslų yra nustatyti minėtus matricinius elementus pasirinktu tikslumu. Vienas esminių tokio tyrimo motyvų yra labai dideli aukštesnės eilės TT narių skaičiai, kuriuos reikia paruošti efektyviam energijų skaičiavimui. Todėl tinkamai paruošta išraiškų simbolinė forma žymiai supaprastintų tolimesnius atominius skaičiavimus. Kitas, ne ką mažiau svarbus, motyvas – tai galimybė (matematiškai pagrįstai) suformuluoti apibendrinančias išvadas, kuriomis remiantis TT modelių, taikomų atomo teorijoje, panaudojimas tampa vieno bendro metodo atskirais atvejais.

Pagrindiniai rezultatai yra: (i) naudojantis simbolinio programavimo paketu *NCoperators*, sugeneruoti antros eilės banginės funkcijos operatoriaus $\hat{\Omega}^{(2)}$ ir trečios eilės efektinio Hamiltoniano $\mathcal{H}^{(3)}$, veikiančio modelinėje erdvėje \mathcal{P} , nariai; (ii) pasiūlyta efektinio operatoriaus narių išraiškos forma, tinkanti ne tik iteracinio pobūdžio TT, bet ir klasterinio skleidimo (CC) modeliams. TT narių generacija ir apdorojimas atliekamas išskirtinai algebriniu būdu, nesinaudojant Goldstone'o diagramų atvaizdavimu (žr. palyginimui darbus [31–34, 38]). Tai sąlygoja tokius pagrindinius privalumus: (i) galimybė keisti elektronų sužadinimo amplitudes, kai tuo tarpu tenzorinė struktūra išlieka nepakitusi; (ii) galimybė charakterizuoti tam tikrą sugeneruotų narių skaičių viena ir ta pačia tenzorine forma. Kadangi į $\hat{\Omega}^{(2)}$ skleidimo narių sudėtį įeina daugiausiai keturelektroniai operatoriai, tai gautos išraiškos tinka maksimaliai keturelektronių sužadinimo amplitudžių tyrimui.

Trečios eilės efektinis Hamiltonianas (žr. lygtį (2.13)) lygus

$$\widehat{\mathscr{H}}^{(3)} = \sum_{I_{m+n-\xi}} \sum_{m=1}^{2} \sum_{n=1}^{4} \sum_{k=1}^{\min(2m,2n)} \widehat{h}_{mn;\xi}^{(3)}, \quad \widehat{h}_{mn;\xi}^{(3)} \stackrel{\text{def}}{=} :\{\widehat{P}\widehat{V}_{m}\widehat{\Omega}_{n}^{(2)}\widehat{P}\}_{\xi}:,$$

kur $\widehat{\Omega}^{(2)}$ nariai generuojami naudojantis apibendrinta Blocho lygtimi (2.12). $(m + n - \xi)$ -elektronį operatorių $\widehat{h}_{mn:\xi}^{(3)}$ skleidžiame SU(2)–neredukuotinų tenzorinių operatorių eilute

$$\widehat{h}_{mn;\xi}^{(3)} = \sum_{\Lambda} \sum_{M=-\Lambda}^{+\Lambda} \sum_{\Gamma} \widehat{O}_{M}^{\Lambda}([\lambda]\varkappa) \,\mathfrak{h}_{mn;\xi}^{(3)}(\Gamma\Lambda).$$
(4.1)

Nagrinėjame atvejus $m + n - \xi = 1, 2$. Kai $m + n - \xi = 1$ (Lema 2.5.1, lentelė 3),

$$\widehat{O}^{\Lambda}([\lambda]\varkappa) = \widehat{O}^{\Lambda}([1^2]1) \equiv W^{\Lambda}(\lambda_{\rm v}\widetilde{\lambda}_{\rm \bar{v}}), \qquad (4.2)$$

o kai $m + n - \xi = 2$,

$$\widehat{O}^{\Lambda}([\lambda]\varkappa) = \widehat{O}^{\Lambda}([2^2]1) \equiv -[W^{\Lambda_1}(\lambda_{\mathbf{v}}\lambda_{\mathbf{v}'}) \times W^{\Lambda_2}(\widetilde{\lambda}_{\bar{\mathbf{v}}}\widetilde{\lambda}_{\bar{\mathbf{v}}'})]^{\Lambda}.$$
(4.3)

Taigi, uždavinys yra sugeneruoti $\widehat{\Omega}^{(2)}$ narius, kurių pavidalas, kaip Teoremos 2.5.2 išdava, ieškomas naudojantis (2.16), ir surasti koeficientus $\mathfrak{h}_{mn;\xi}^{(3)}(\Gamma\Lambda)$. Suprantama, kad $\widehat{\Omega}^{(2)}$ narių generacija yra žymiai ilgiau užtrunkantis procesas, kuris, kaip jau pastebėta anksčiau, buvo atliktas kompiuterio pagalba. Pavyzdys iliustruotas Pav. 1.

Pav. 1. $\widehat{\Omega}^{(2)}$ narių generavimas: fragmentas

Sakykime, kad tie nariai jau sugeneruoti. Sekančiame etape narius grupuojame pagal sumavimo rinkinius $I_n(\alpha\bar{\beta})$ (Teorema 2.5.2). Kitaip tariant, ieškome efektinių matricinių elementų $\omega^{(2)}$ (lygtis (2.16)). Kiekvienam jų taikome Wigner–Eckart'o teoremą, ko pasekoje gauname matricinių elementų $\omega^{(2)}$ SU(2)–invariantus. Nepaisant didelio matricinių elementų skaičiaus, nustatyta, kad pakanka išnagrinėti tik 13 tokių SU(2)–invariantų – visi kiti gaunami iš pastarųjų dėka vienelektronio $v_{\alpha\bar{\beta}} \stackrel{\text{def}}{=} \langle \alpha | v_i | \bar{\beta} \rangle$ ir dvielektronio $g_{\alpha\beta\bar{\mu}\bar{\nu}} \stackrel{\text{def}}{=} \langle \alpha\beta | g_{12} | \bar{\mu}\bar{\nu} \rangle$ matricinių elementų simetrijos savybių vienelektronių orbitalių perstatymo atžvilgiu. Šios savybės gaunamos su sąlyga, kad vienelektroniai operatoriai v_i charakterizuoja tam tikrą išorinį trikdį. Tai gali būti, pavyzdžiui, elektrinis ar magnetinis laukas. Dvielektroniai operatoriai g_{12} atspindi sąveiką tarp atomo elektronų. Dažniausiai tai yra kuloninė sąveika su reliatyvistinėmis (Breito) pataisomis. Be to, dvielektroniams operatoriams dažnai yra patogu įvesti antisimetrinius matricinius elementus $\tilde{g}_{\alpha\beta\bar{\mu}\bar{\nu}} \stackrel{\text{def}}{=} g_{\alpha\beta\bar{\mu}\bar{\nu}} - g_{\alpha\beta\bar{\nu}\bar{\mu}}$. Taigi, pagal $\hat{\Omega}$ apibrėžimą, visos aukštesnės eilės sužadinimo amplitudės ω yra išreiškiamos (žr. lygtį (2.14)) $v_{\alpha\bar{\beta}}$ ir/arba $g_{\alpha\beta\bar{\mu}\bar{\nu}}$ sandaugomis su atitinkamais energijos daugikliais; tokių dauginių skaičius lygus ω eiliškumui. Vadinasi, $\omega^{(1)}$ turi po vieną dauginį, $\omega^{(2)}$ – po du ir t.t. Pavyzdžiui, iš Blocho lygties nesunku nustatyti, kad $\omega^{(1)}$ susideda iš vienelektronių $\omega_{\alpha\bar{\beta}}^{(1)}$ ir dvielektronių $\omega_{\alpha\beta\bar{\mu}\bar{\nu}}^{(1)}$ matricinių elementų, kurie, savo ruožtu, išreiškiami kaip

$$\omega_{\alpha\bar{\beta}}^{(1)} \stackrel{\text{def}}{=} \frac{v_{\alpha\bar{\beta}}}{\varepsilon_{\bar{\beta}} - \varepsilon_{\alpha}}, \quad \omega_{\alpha\beta\bar{\mu}\bar{\nu}}^{(1)} \stackrel{\text{def}}{=} \frac{g_{\alpha\beta\bar{\mu}\bar{\nu}}}{\varepsilon_{\bar{\mu}\bar{\nu}} - \varepsilon_{\alpha\beta}}, \quad \widetilde{\omega}_{\alpha\beta\bar{\mu}\bar{\nu}}^{(1)} \stackrel{\text{def}}{=} \omega_{\alpha\beta\bar{\mu}\bar{\nu}}^{(1)} - \omega_{\alpha\beta\bar{\nu}\bar{\mu}}^{(1)}$$

Tradiciniuose TT darbuose [31–34] tokia matricinių elementų ω struktūra yra perrašoma submatricinių elementų sandauga, pritaikius Wigner–Eckart'o teoremą. Taigi, kiek sugeneruota skirtingų narių, tiek tokių skirtingų struktūrų reikia suformuoti, o tai, akivaizdu, yra sudėtingas ir varginantis darbas dėl elementų ω gausos. Dėl šios priežasties yra kuriamos įvairios teorijos ir diagraminiai (Feynman, Goldstone, Brueckner) atvaizdavimai, nustatinėjamos įvairios diagramų simetrijos savybės (horizontalieji, vertikalieji atspindžiai) ir pan. Daugeliu atvejų tai efektyvu. Deja, tai neišsprendžia esminio klausimo – kaip eliminuoti varginantį darbą su tokia narių gausa, kadangi kiekvienas narys (diagrama) reikalauja savito priėjimo būdo (nesvarbu, kaip jį bepavaizduotume).

Šio darbo autoriaus nuomone, pastarasis klausimas yra išsprendžiamas (bent jau iš dalies), o sprendimo ištakos vėlgi remiasi į Teoremą 2.5.2. Tokiu atveju, pagrindinis uždavinys yra sugrupuoti sugeneruotus banginės funkcijos operatoriaus narius pagal vienelektronių orbitalių tipus (kamieninės, valentinės, sužadintos). Pavyzdys pateiktas išraiškoje (2.16), kur ω atlieka efektinio matricinio elemento vaidmenį. Be to, kiekvienas elementas ω yra išreiškiamas per SU(2)–invariantus Ω , kuriuos nustatyti irgi nėra sudėtinga. Kaip jau minėta, antros eilės banginės funkcijos operatoriaus atveju šie invariantai išreiškiami per bazinius SU(2)–invariantus, kurių yra 13. Pavyzdžiui, vienelektronis efektinis matricinis elementas $\omega_{\mu c}^{(2)} = \omega_{\mu c}^{(2)+} + \omega_{\mu c}^{(2)-}$, kur bendru atveju

$$\omega_{\alpha\bar{\beta}}^{(2)\pm} = (-1)^{t_1^{\pm}} \sum_{\Lambda} \langle \lambda_{\alpha} m_{\alpha} \lambda_{\bar{\beta}} - m_{\bar{\beta}} | \Lambda \pm M \rangle \Omega_{\alpha\bar{\beta}}^{(2)\pm}(\Lambda),$$

$$t_1^{+} \stackrel{\text{def}}{=} \lambda_{\bar{\beta}} + m_{\bar{\beta}}, \quad t_1^{-} \stackrel{\text{def}}{=} \lambda_{\alpha} + m_{\alpha},$$

o SU(2)–invariantai $\Omega_{\mu c}^{(2)\pm}$ išreiškiami kaip

$$\Omega_{\mu c}^{(2)+}(\Lambda)(\varepsilon_{c}-\varepsilon_{\mu}) = \delta_{\Lambda\tau}[\ddot{S}_{\mu c}(\tau_{1}\tau_{2}\tau) + \dot{S}_{\mu c}(\tau_{1}\tau_{2}\tau)] + \delta_{\Lambda\tau_{1}}[\ddot{S}_{\mu c}(\tau_{1}) + \dot{S}_{\mu c}(\tau_{1})] + \delta_{\Lambda\tau_{2}}[\ddot{S}'_{\mu c}(\tau_{2}) + \ddot{S}'_{\mu c}(\tau_{2})] + \delta_{\Lambda0}\widetilde{S}_{\mu c},$$

 $\Omega_{\mu c}^{(2)-}(\Lambda)(\varepsilon_{c}-\varepsilon_{\mu})=\delta_{\Lambda\tau}S_{c\mu}(\tau_{1}\tau_{2}\tau),$

kur $S_{\alpha\bar{\beta}}(\tau_1\tau_2\tau)$, $\tilde{S}_{\alpha\bar{\beta}}(\tau_1)$ ir $\tilde{S}'_{\alpha\bar{\beta}}(\tau_2)$ yra vieni iš bazinių (trylikos) SU(2)–invariantų. Čia τ_i žymi neredukuotinus įvaizdžius, pagal kuriuos transformuojasi suredukuoti vienelektroniai operatoriai, gauti iš v_i (taškai virš S rodo pagal kokio tipo vienelektrones orbitales sumuojama; čia detaliau į tokio pobūdžio subtilybės nesigilinsime). Vadinasi, vienelektronis efektinis matricinis elementas $\omega_{\mu c}^{(2)}$ ($\mu = v, e$) vienu metu charakterizuoja 30 diagramų (tildės virš S rodo tiesioginius ir pakaitinius narius). Panašiai yra konstruojami ir visi kiti $\omega^{(2)}$ n–elektroniai (kur n = 1, 2, 3, 4) efektiniai matriciniai elementai (čia nepateikiami). Paminėsime tik $\omega^{(2)\pm}$ elementų prasmę, atitinkančią diagraminį atvaizdavimą. Diagramos, charakterizuojamos elementais $\omega^{(2)-}$, yra: (i) atgalinės arba sulankstytos (angl. literatūroje žinomos, kaip backward arba folded); (ii) kai kurios diagramos, gautos jungiant kamieninės orbitales Viko eilutėje; (iii) diagramos, gautos atspindint elementus $\omega^{(2)+}$ atitinkančias diagramas horizontalios ašies atžvilgiu. Suradus visus banginės funkcijos operatoriaus $\widehat{\Omega}^{(2)}$ SU(2)–invariantus $\Omega^{(2)\pm}$, koeficientų $\mathfrak{h}_{mn;\xi}^{(3)}(\Gamma\Lambda)$ nustatymas yra palyginus nesudėtingas uždavinys. Pagal $\Omega^{(2)\pm}$ charakteristikas, koeficientai $\mathfrak{h}_{mn;\xi}^{(3)}(\Gamma\Lambda)$ taip pat suskaidomi į $\mathfrak{h}_{mn;\xi}^{(3)\pm}(\Gamma\Lambda)$. Pavyzdžiui, visi $\mathscr{H}^{(3)}$ vienelektronius skleidimo narius charakterizuojantys koeficientai pateikti lentelėje 7, kur koeficientai f ir z (\tilde{z}) yra proporcingi, atitinkamai, v_i ir g_{12} submatriciniams elementams, o $a(\lambda_1\lambda_2\lambda)$ yra fazinis daugiklis $(-1)^{\lambda_1+\lambda_2+\lambda}$.

	Lentelė 7. Efektinio Hamiltoniano $\mathscr{H}^{(3)}$ vienelektronių narių skleidimo koeficientai
$(mn\xi)$	$\mathfrak{h}_{mn;\xi}^{(3)+}(\Lambda)$
(111)	$ (-1)^{\lambda_{\rm v}-\lambda_{\rm \bar{v}}} [\tau_0]^{1/2} \sum_{\overline{\Lambda}} [\overline{\Lambda}]^{1/2} \langle \tau_0 m_0 \overline{\Lambda} \ \overline{M} \Lambda M \rangle \Big((-1)^{\Lambda} \sum_{\rm e} f(\tau_0 \lambda_{\rm v} \lambda_{\rm e}) \Omega_{\rm e\bar{v}}^{(2)+}(\overline{\Lambda}) \left\{ \begin{smallmatrix} \tau_0 & \overline{\Lambda} & \Lambda \\ \lambda_{\rm \bar{v}} & \lambda_{\rm v} & \lambda_{\rm e} \end{smallmatrix} \right\} $ $ - (-1)^{\overline{\Lambda}} \sum_{\rm c} f(\tau_0 \lambda_{\rm c} \lambda_{\rm \bar{v}}) \Omega_{\rm vc}^{(2)+}(\overline{\Lambda}) \left\{ \begin{smallmatrix} \tau_0 & \overline{\Lambda} & \Lambda \\ \lambda_{\rm v} & \lambda_{\rm \bar{v}} & \lambda_{\rm c} \end{smallmatrix} \right\} \Big) $
(212)	$2(-1)^{\lambda_{\rm v}-\lambda_{\bar{\rm v}}}\sum_{\alpha={\rm v},{\rm e}}\sum_{\rm c}(-1)^{\lambda_{\alpha'}-\lambda_{\rm c}}\sum_{u}\widetilde{z}(0\lambda_{\rm c}\lambda_{\rm v}\lambda_{\bar{\rm v}}\lambda_{\alpha'}uu)\Omega^{(2)+}_{\alpha'{\rm c}}(\Lambda)[u]^{1/2}\left\{ \begin{smallmatrix} \Lambda & \lambda_{\alpha'} & \lambda_{\rm c} \\ u & \lambda_{\rm v} & \lambda_{\bar{\rm v}} \end{smallmatrix} \right\}$
(122)	$ (-1)^{\Lambda} [\tau_0]^{1/2} \sum_{\Lambda_1 \Lambda_2 \overline{\Lambda}} (-1)^{\overline{\Lambda}} [\Lambda_1, \Lambda_2, \overline{\Lambda}]^{1/2} \langle \tau_0 m_0 \overline{\Lambda} \overline{M} \Lambda M \rangle \sum_{\mathbf{c}} \left(\sum_{\mathbf{v}'} (-1)^{\lambda_{\mathbf{c}} - \lambda_{\mathbf{v}'}} f(\tau_0 \lambda_{\mathbf{c}} \lambda_{\mathbf{v}'}) \right) \\ \times \widetilde{\Omega}^{(2)+}_{\mathbf{v}' \mathbf{v} \mathbf{c} \overline{\mathbf{v}}} (\Lambda_1 \Lambda_2 \overline{\Lambda}) \left\{ \begin{array}{l} \lambda_{\mathbf{v}} & \lambda_{\mathbf{v}} & \Lambda_1 \\ \lambda_{\mathbf{c}} & \lambda_{\overline{\mathbf{v}}} & \Lambda_2 \\ \tau_0 & \Lambda & \overline{\Lambda} \end{array} \right\} - \sum_{\mathbf{e}} a(\lambda_{\mathbf{e}} \lambda_{\overline{\mathbf{v}}} \Lambda_2) f(\tau_0 \lambda_{\mathbf{c}} \lambda_{\mathbf{e}}) \Omega^{(2)+}_{\mathbf{e} \mathbf{v} \overline{\mathbf{v}} \mathbf{c}} (\Lambda_1 \Lambda_2 \overline{\Lambda}) \left\{ \begin{array}{l} \lambda_{\mathbf{e}} & \lambda_{\mathbf{v}} & \Lambda_1 \\ \lambda_{\mathbf{c}} & \lambda_{\overline{\mathbf{v}}} & \Lambda_2 \\ \tau_0 & \Lambda & \overline{\Lambda} \end{array} \right\} \right) $
(223)	$\begin{split} & 2\sum_{\Lambda_{1}\Lambda_{2}}[\Lambda_{1}]^{1/2}\sum_{cc'}\left(a(\lambda_{v}\lambda_{\bar{v}}\Lambda)\sum_{v'}\widetilde{z}(0\lambda_{c}\lambda_{c'}\lambda_{v'}\lambda_{\bar{v}}\Lambda_{2}\Lambda_{2})\widetilde{\Omega}_{vv'cc'}^{(2)+}(\Lambda_{1}\Lambda_{2}\Lambda)\left\{^{\Lambda_{1}}_{\lambda_{\bar{v}}}\frac{\Lambda_{2}}{\lambda_{v}}\right\}\\ & -a(\Lambda_{1}\Lambda_{2}\Lambda)\sum_{e}\widetilde{z}(0\lambda_{c}\lambda_{c'}\lambda_{\bar{v}}\lambda_{e}\Lambda_{2}\Lambda_{2})\Omega_{evcc'}^{(2)+}(\Lambda_{1}\Lambda_{2}\Lambda)\left\{^{\Lambda_{1}}_{\lambda_{\bar{v}}}\frac{\Lambda_{2}}{\lambda_{v}}\frac{\Lambda_{1}}{\lambda_{e}}\right\}\right) + 2\sum_{\Lambda_{1}\Lambda_{2}}(-1)^{\Lambda_{1}}[\Lambda_{2}]^{1/2}\\ & \times\sum_{c}\left\{^{\Lambda_{1}}_{\lambda_{\bar{v}}}\frac{\Lambda_{2}}{\lambda_{v}}\right\}\left(a(\lambda_{v}\lambda_{\bar{v}}\Lambda)\sum_{\mu=v,e}(-1)^{\lambda_{\mu'}+\lambda_{\mu''}}\widetilde{z}(0\lambda_{v}\lambda_{c}\lambda_{\mu''}\lambda_{\mu'}\Lambda_{1}\Lambda_{1})\Omega_{\mu'\mu''c\bar{v}}^{(2)+}(\Lambda_{1}\Lambda_{2}\Lambda)\right.\\ & -a(\Lambda_{1}\Lambda_{2}\Lambda)\sum_{ev'}(-1)^{\lambda_{e}+\lambda_{v'}}\widetilde{z}(0\lambda_{c}\lambda_{v}\lambda_{v'}\lambda_{e}\Lambda_{1}\Lambda_{1})\Omega_{ev'\bar{v}c}^{(2)+}(\Lambda_{1}\Lambda_{2}\Lambda)\Big) \end{split}$
(234)	$ 2\sum_{cc'}\sum_{\mu=v,e}\sum_{\Lambda_2}a(\lambda_c\lambda_{c'}\Lambda_2)\Big(\widetilde{z}(0\lambda_c\lambda_{c'}\lambda_{v''}\lambda_{\mu'}\Lambda_2\Lambda_2)\Omega^{(2)+}_{vv''\mu'\bar{v}c'c}(\Lambda_2\Lambda_2\Lambda_0) \\ +\sum_{\Lambda_1\Lambda_3\overline{\Lambda}}(-1)^{\lambda_{\bar{v}}+\Lambda_3+\overline{M}}[\Lambda_1,\Lambda_3,\overline{\Lambda}]^{1/2}\langle\Lambda_3M_3\overline{\Lambda}\overline{M} \Lambda M\rangle((-1)^{\lambda_{v''}} \\ \times \widetilde{z}(0\lambda_c\lambda_{c'}\lambda_{\mu'}\lambda_{v''}\Lambda_2\Lambda_2)\Omega^{(2)+}_{v''\nu\mu'\bar{v}c'c}(\Lambda_1\Lambda_2\Lambda_3\overline{\Lambda})\left\{ \begin{smallmatrix} \Lambda_1 & \Lambda_2 & \overline{\Lambda} \\ \lambda_{v''} & \lambda_{v} & \lambda_{\mu'} \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} \Lambda_3 & \overline{\Lambda} & \Lambda \\ \lambda_{v} & \lambda_{\bar{v}} & \lambda_{\nu''} \end{smallmatrix} \right\} + a(\Lambda_1\Lambda_2\lambda_v) \\ \times \widetilde{z}(0\lambda_c\lambda_{c'}\lambda_{\mu''}\lambda_{\mu'}\Lambda_2\Lambda_2)\Omega^{(2)+}_{\mu''\mu'v\bar{v}c'c}(\Lambda_1\Lambda_2\Lambda_3\overline{\Lambda})\left\{ \begin{smallmatrix} \Lambda_1 & \Lambda_2 & \Lambda \\ \lambda_{\mu''} & \lambda_{v} & \lambda_{\mu'} \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} \Lambda_3 & \overline{\Lambda} & \Lambda \\ \lambda_{\nu} & \lambda_{\bar{v}} & \lambda_{\mu''} \end{smallmatrix} \right\} \Big) \Big) $

Koeficientai $\mathfrak{h}_{mn;\xi}^{(3)-}(\Lambda)$ yra gaunami iš $\mathfrak{h}_{mn;\xi}^{(3)+}(\Lambda)$, atliekant pakeitimus:

(a)
$$\Omega_{\alpha\bar{\beta}}^{(2)+}(\Lambda) \to (-1)^{\lambda_{\alpha}+\lambda_{\bar{\beta}}+M+1}\Omega_{\alpha\bar{\beta}}^{(2)-}(\Lambda)$$

(b) $\Omega_{\alpha\beta\bar{\mu}\bar{\nu}}^{(2)+}(\Lambda_{1}\Lambda_{2}\Lambda) \to (-1)^{\lambda_{\alpha}+\lambda_{\beta}+\lambda_{\bar{\mu}}+\lambda_{\bar{\nu}}+M}\Omega_{\alpha\beta\bar{\mu}\bar{\nu}}^{(2)-}(\Lambda_{1}\Lambda_{2}\Lambda)$
(c) $\Omega_{\alpha\beta\bar{\ell}\bar{\mu}\bar{\nu}\bar{\nu}}^{(2)+}(\Lambda_{1}\Lambda_{2}\Lambda_{3}\Lambda) \to (-1)^{\lambda_{\alpha}+\lambda_{\beta}+\lambda_{\zeta}+\lambda_{\bar{\mu}}+\lambda_{\bar{\nu}}+\lambda_{\bar{\eta}}+M+M_{3}+1}\Omega_{\alpha\beta\bar{\ell}\bar{\mu}\bar{\nu}\bar{\nu}}^{(2)-}(\Lambda_{1}\Lambda_{2}\Lambda_{3}\Lambda)$

Papildomai yra dar viena pakeitimo taisyklė: (d) kiekvienas bazinis indeksas (jei toks yra), išskyrus m_0 , koeficientų $\mathfrak{h}_{mn;\xi}^{(3)-}(\Lambda)$ išraiškose yra pakeičiamas į priešingo ženklo indeksą.

Kaip matyti iš lentelės 7, koeficientų $\mathfrak{h}_{mn;\xi}^{(3)\pm}(\Lambda)$ išraiškos yra patogios tuo, kad galima laisvai keisti SU(2)–invariantus $\Omega^{(2)\pm}$, priklausomai nuo pasirinkto TT modelio – likusi struktūra nekinta. Tokia koeficientų forma yra artima CC modeliui (žr. pvz., [71]), kuomet operuojama amplitudėmis ω_n , charakterizuojančiomis *n*–elektronius sužadinimus. Tokiu atveju *n*–elektroniai $\omega^{(2)\pm}$ elementai paprasčiausiai pakeičiami į *n*–elektronius elementus ω_n , t.y., $\Omega_{\alpha\beta\ldots\mu\bar{\nu}}^{(2)\pm}$ keičiamas į $\Omega_{\alpha\beta\ldots\mu\bar{\nu}}$. Kitas tokios formos privalumas yra tas, kad ($m + n - \xi$)–elektronių operatorių $\widehat{h}_{mn;\xi}^{(3)}$ matricinių elementų skaičiavimas yra tiesiog neredukuotinų tenzorinių operatorių (4.2)-(4.3) matricinių elementų skaičiavimas. Tokie matriciniai elementai skirtingose bazėse gali būti rasti [46, 48] darbuose. Reziumuojant šiame skyriuje apžvelgtą TT narių tyrimo metodą, bei jo teikiamus privalumus lyginant su diagraminiu atvaizdavimu, žemiau pateikiame, kiek iš viso trečios eilės efektinio Hamiltoniano $\mathcal{H}^{(3)}$ skleidimo (tiesioginių) narių buvo sugeneruota (lentelės 8-9) ir apipavidalinta (4.1) forma.

u	ele o. Elekin	no nanintoinan		neiekuoinų	nanų skaic
	$(mn\xi)$	d^+	\bar{d}^+	d^-	\bar{d}^-
	(111)	13	0	3	0
	(122)	37	0	18	0
	(212)	14	2	2	0
	(223)	67	34	29	2
	(234)	57	36	18	18
	Viso:	188	72	70	20

Lentelė 8. Efektinio Hamiltoniano $\widehat{\mathscr{H}}^{(3)}$ vienelektronių narių skaičius

Lentelė 9. Efektinio Hamiltoniano $\widehat{\mathscr{H}}^{(3)}$ dvielektronių narių skaičius

$(mn\xi)$	d^+	\bar{d}^+	d^-	\bar{d}^-
(121)	20	0	10	0
(211)	13	2	3	0
(222)	64	32	31	4
(132)	20	16	10	10
(233)	75	50	28	28
(244)	25	25	_	_
Viso:	217	125	82	42

Lentelėse d^{\pm} žymi tiesioginių narių, charakterizuojamų skleidimo koeficientais $\mathfrak{h}_{mn;\xi}^{(3)\pm}(\Lambda)$, skaičių, kai tuo tarpu \bar{d}^{\pm} žymi tiesioginių narių skaičių, neįskaitant galimų vienelektronių sąveikos operatorių v_i (t.y., neatsižvelgiant į išorinį poveikį). Kaip matyti, iš viso buvo sugeneruoti d =188 + 70 = 258, $\bar{d} = 72 + 20 = 92$ vienelektroniai ir d = 217 + 82 = 299, $\bar{d} = 125 + 42 = 167$ dvielektroniai nariai. Palyginimui, pavyzdžiui, Blundell ir kt. darbe [38] buvo suskaičiuotos 84 diagramos, duodančios įnašą į vienelektrones (angl. mono-valent) energijas, ir neatsižvelgiant į vienelektrones sąveikas v_i . Autorių gautų energijų $E_A^{(3)} - E_H^{(3)}$, $E_I^{(3)}$, $E_J^{(3)}$ ir $E_K^{(3)}$, $E_L^{(3)}$ išraiškos atitinka koeficientus $\mathfrak{h}_{22;3}^{(3)}$, $\mathfrak{h}_{23;4}^{(3)}$ ir $\mathfrak{h}_{21;2}^{(3)}$. Pavyzdžiui, $E_A^{(3)} = \sum_{ee'c} \tilde{g}_{vce'e} \omega_{ee'c\bar{v}}^{(2)}$ yra atpažįstama iš koeficiento $\mathfrak{h}_{22;3}^{(3)}$ vidinėje struktūroje esančio nario $\tilde{z}(0\lambda_v\lambda_c\lambda_{\mu''}\lambda_{\mu'}\Lambda_1\Lambda_1)\Omega_{\mu'\mu''c\bar{v}}^{(2)}(\Lambda_1\Lambda_2\Lambda)$ (lentelė 7). Kitame, pavyzdžiui, Ho ir kt. darbe [34] buvo suskaičiuota 218 dvielektronius narius charakterizuojančių diagramų, taip pat neatsižvelgiančių į vienelektrones sąveikas v_i . Tokių pavyzdžių galima rasti ir daugiau, tačiau dauguma autorių patys narių negeneruoja, o naudojasi minėtuose darbuose gautais rezultatais (žr. pvz., [33, 35]).

Galiausiai, verta paminėti, kad $\mathscr{H}^{(3)}$ skleidimo nariai taip pat apibūdina ir kitus *n*-elektronius operatorius, kur n = 0, 1, 2, ..., 5. Pavyzdžiui, [71] darbe autoriai, nagrinėdami trielektronius sužadinimus, didelį dėmesį skyrė operatoriams su charakteringais skleidimo koeficientais (pagal šiame skyriuje naudojamą klasifikaciją) $\mathfrak{h}_{22;1}^{(3)}$. Tokiu atveju, viso 30 tiesioginių narių (diagramų) yra charakterizuojamos koeficientu

$$\begin{split} \mathfrak{h}_{22;1}^{(3)+}(E_{1}\Lambda_{1}E_{2}\Lambda_{2}\Lambda) &= (-1)^{\lambda_{v''}+\lambda_{\bar{v}'}+\lambda_{\bar{v}''}+\Lambda_{2}+\Lambda}[\Lambda_{1},\Lambda_{2}]^{1/2} \sum_{\overline{\Lambda}_{1}} \left(\sum_{\overline{\Lambda}_{2}} a(\lambda_{v'}\lambda_{\bar{v}}\overline{\Lambda}_{2})[E_{1},E_{2},\overline{\Lambda}_{1}]^{1/2} \right) \\ &\times \sum_{cu} \widetilde{z}(0\lambda_{c}\lambda_{v}\lambda_{\bar{v}'}\lambda_{\bar{v}}uu)\Omega_{v'v''c\bar{v}''}^{(2)+}(\overline{\Lambda}_{1}\overline{\Lambda}_{2}\Lambda) \left\{ \begin{smallmatrix} \lambda_{v} & \overline{\Lambda}_{2} & \Lambda_{2} \\ \lambda_{\bar{v}''} & u & \lambda_{c} \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} \lambda_{v} & \lambda_{v} & \overline{\Lambda}_{2} \\ \lambda_{v''} & \Lambda_{1} \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} \lambda_{v} & \lambda_{v'} & E_{1} \\ \lambda_{v''} & \Lambda_{1} & \overline{\Lambda}_{1} \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} \lambda_{v} & \lambda_{v'} & E_{1} \\ \lambda_{\bar{v}} & \Lambda_{2} & u \end{smallmatrix} \right\} \\ &+ (-1)^{E_{1}+E_{2}} \sum_{e} \widetilde{z}(0\lambda_{v}\lambda_{v'}\lambda_{e}\lambda_{\bar{v}}E_{1}E_{1})\Omega_{ev''\bar{v}'\bar{v}'\bar{v}''}^{(2)+}(\overline{\Lambda}_{1}E_{2}\Lambda) \left\{ \begin{smallmatrix} \Lambda_{1} & \overline{\Lambda}_{1} & \lambda_{\bar{v}} \\ \lambda_{e} & E_{1} & \lambda_{v''} \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} \lambda_{1} & \Lambda_{2} & \Lambda \\ E_{2} & \overline{\Lambda}_{1} & \lambda_{\bar{v}} \end{smallmatrix} \right\} \right\}, \end{split}$$

ir atitinkamas operatorius $\widehat{O}^{\Lambda}([\lambda]\varkappa)$ yra suredukuotas pagal schemą $\mathscr{T}_{12}^{[2^21^2]}$ (žr. (3.7)).

5 Pagrindiniai rezultatai ir išvados

1. Surasti SO(3)-neredukuotini tenzoriniai operatoriai suteikė galimybę praplėsti tenzorinių operatorių matricinių elementų skaičiavimo techniką. To išdava yra: (i) galimybė išreikšti daugiaelektronius kampinius integralus suma vienelektronių integralų; (ii) galimybė skaičiuoti operatorių matricinius elementus SU(2)-neredukuotinų matricinių įvaizdžių bazėje.

2. Išplėtotas efektinių operatorių metodas. Remiantis Feshbach'o erdvių padalijimo metodu, sukonstruota modelinė erdvė. To pasekoje, nustatyta, kad tik daugiausia 8 Hilberto erdvės n-elektronių operatorių tipų skaičius iš 9^n galimų generuoja nelygius nuliui operatorius duotoje modelinėje erdvėje. Tai žymiai suprastina trikdžių teorijos skleidimo narių generavimą.

3. Sukurtas metodas suklasifikuoti bet kokio ilgio Foko erdvės tenzorius pagal jų redukavimo grupės įvaizdžius. Metodas grįstas simetrijos grupės neredukuotinais ivaizdžiais, daugiamačiais kortežais ir išplėtotu komutuojančių diagramų metodu, kuris leidžia nesudėtingai nustatyti sąryšius tarp tenzorinių operatorių, suredukuotų pagal skirtingas redukavimo schemas. Ypatingas dėmesys yra skirtas trielektronių operatorių, kurių indėlis į energijos pataisas daugeliu atveju yra reikšmingas, klasifikacijai. Pasinaudojant pasiūlyta operatorių klasifikacija, jų matricinių elementų skaičiavimo technika tampa efektyvi ir tinkama bet kokio tipo operatoriams, nepriklausomai nuo jų redukavimo schemos.

4. Pirmą kartą buvo suklasifikuotas Foko erdvės trielektronis operatorius, veikiantis į atomo 2, 3, 4, 5, 6 ekvivalentinių elektronų sluoksnius. Apribojus veikimo erdvę į neredukuotinus poerdvius, tenzoriniai operatoriai buvo suklasifikuoti pagal klases, charakterizuojamas elektronų skaičiumi sluoksnyje ir sluoksnių skaičiumi. To pasekoje, trielektronių operatorių, kuriais operuojama trikdžių teorijoje, identifikacija tampa vienareikšmiškai apibrėžta, kas sąlygoja efektyviai realizuojamą trielektronių sužadinimų įskaitymą trikdžio skleidimo eilutėje.

5. Sukurta savita efektinio Hamiltoniano skleidimo narių kampinio redukavimo metodika, kuri, lyginant su tradicine, t.y., diagramine teorijos formuluote, teikia tokius privalumus: (i) galimybė keisti elektronų sužadinimo amplitudes priklausomai nuo konkretaus uždavinio – tenzorinė skleidimo narių struktūra nekinta; (ii) galimybė charakterizuoti tam tikrą skleidimo narių (diagramų) aibę viena tenzorine forma. Toks redukavimo schemos parinkimas leidžia sudarytas išraiškas nesunkiai pritaikyti ir plačiai naudojamam klasterinio skleidimo (CC) artiniui. Be to, gautos išraiškos gali būti perkeltos i programinius paketus, atliekančius skaičiavimus, charakteringus atomams su keletu valentinių elektronų. Skleidimo nariai buvo suredukuoti ir užrašyti tenzorine forma pasinaudojus sukurtu simbolinio programavimo paketu *NCoperators*.

6 Summary

The dissertation «Algebraic development of many-body perturbation theory in theoretical atomic spectroscopy» was prepared at Institute of Theoretical Physics and Astronomy of Vilnius University during the period from 2006 to 2010. It contains 101 pages, 5 sections and 4 appendices. The main results described in the present dissertation have been published in journals of physical and mathematical sciences.

The principal goals of the thesis are subjected to general methods and forms of effective operators by the nowadays demands of theoretical application of many-body perturbation theory to atomic physics. The present theoretical research follows up step by step by systematic observation of various possibilities to restrict the Fock space operators to their irreducible subspaces and the classification of irreducible tensor operators which represent the physical as well as the effective interactions. To ground the results of the thesis, the symbolic preparation of obtained expressions is strictly proved mathematically. Most of the main results are listed in theorems. The expansion terms of studied perturbation theory have been generated and worked up utilising the symbolic computer algebra package *NCoperators*. This fact attends an avoidance of making any random errors to the least possible degree.

The first section represents an introductory subdivision of the present thesis. It contains a detailed inspection related to the subject under consideration, the listed main goals and tasks, the scientific novelty, the statements to be defended, the list of publications and abstracts. Three major theories of theoretical atomic spectroscopy are considered in order to note the similarities and differences of their application: the multi-configuration Hartree–Fock (MCHF) approach, the iterative Rayleigh–Schrödinger perturbation theory (RSPT) and the coupled-cluster (CC) approximation. The last two theories concern the reader for the greatest part.

In the second section of the thesis, the basis transformation properties and the partitioning of function space are discussed. The key results are the composed SO(3)-irreducible tensor operators, the developed technique based on coordinate transformations, the Fock space formulation of the generalised Bloch equation and the constructed finite-dimensional subspace of the infinite-dimensional many-electron Hilbert space. Obtained irreducible tensor operators make provision for the extended irreducible tensor operator techniques applied to atomic physics. The founded theorem built on properties of the constructed model space lays down the base for future tasks considered in the present work.

The third section discusses reduction schemes of totally antisymmetric tensors determined by the Fock space operator string of any length. The algorithm to classify these tensors has been suggested. For the first time, the classification of three-particle effective operator acting on function space of $2 \le \ell \le 6$ open-shells of atom has been carried out to completion. As a consequence, the task to calculate the three-particle operator matrix elements has been solved due to easily performed identification of operators by the classes they belong to.

The fourth section is an application to the third-order RSPT of general methods and principles developed in the previous sections. Two main tasks are solved: the generation of expansion terms and their angular reduction. The angular reduction has been performed in extremely different way than it has been done so far. Namely, the technique of many-particle effective matrix elements has been founded. As a result, a number of Goldstone diagrams are characterised by the sole tensor structure. By simply replacing constituted SU(2)-invariants of the second-order wave operator with the corresponding many-particle excitation amplitudes, the expressions of terms of the third-order effective Hamiltonian pertain to the terms of effective interaction operator studied in CC approach.

In the last section, the prime results obtained in the thesis are summarised. The main conclusions followed by the results are listed.

In Appendix A, the transformation coefficients that relate irreducible tensor operators associated to distinct angular reduction schemes of three-particle operator are listed. In Appendix B, the classification of three-particle operator acting on 2, 3, 4, 5, 6 shells of equivalent electrons of atom is performed in a convenient tabular form. The SU(2)-invariants of the second-order wave operator are listed in Appendix C. A brief overview to the properties of application of the package *NCoperators* is found in Appendix D.

Literatūra

- [1] N. Bohr, Philosophical Magazine 26, 1 (1913)
- [2] E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra, Cambridge, Cambridge Univ. Press (1935)
- [3] E. P. Wigner, "On the matrices which reduce the Kronecker products of representations of simply reducible groups", in Quantum Theory of Angular Momentum edited by L. C. Biedenharn and J. D. Louck, New York, Academic (1965)
- [4] G. Racah, Phys. Rev. 61, 186 (1942)
- [5] G. Racah, Phys. Rev. 62, 438 (1942)
- [6] G. Racah, Phys. Rev. 63, 367 (1943)
- [7] A. Jucys, Y. Levinson and V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum, Vilnius, 3rd ed. (Russ. Original, Gospolitnauchizdat, 1960)
- [8] A. P. Jucys, A. J. Savukynas, Mathematical Foundations of the Atomic Theory, Vilnius (1973) (in Russian)
- [9] A. P. Jucys and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics, Mokslas publishers, Vilnius (1977) (in Russian)
- [10] D. J. Newman and J. Wallis, J. Phys. A: Math. Gen. 9, no. 12, 2021 (1976)
- [11] G. Gaigalas, Z. Rudzikas and Ch. F. Fischer, J. Phys. B: At. Mol. Opt. Phys. 30, 3747 (1997)
- [12] G. Gaigalas, S. Fritzsche, I. P. Grant, Comput. Phys. Comm. 139, no. 3, 263 (2001)
- [13] G. Gaigalas and S. Fritzsche, Comput. Phys. Comm. 148, no. 3, 349 (2002)
- [14] S. Fritzsche, Comput. Phys. Comm. 180, no. 10, 2021 (2009)
- [15] Ch. F. Fischer, J. Phys. B: At. Mol. Phys. 3, no. 6, 779 (1970)
- [16] M. R. Godefroid, Ch. F. Fischer and P. Jönsson, Phys. Scr. 1996, T65, 70 (1996)
- [17] Ch. F. Fischer, A. Ynnerman, G. Gaigalas, Phys. Rev. A 51, no. 6, 4611 (1995)
- [18] H. P. Kelly, Phys. Rev. 131, 684 (1963)
- [19] H. P. Kelly, Phys. Rev. 134, A1450 (1964)
- [20] H. P. Kelly, Phys. Rev. 144, 39 (1966)
- [21] D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Mol. Phys. 30, 1861 (1975)
- [22] I. Lindgren, Int. J. Quant. Chem. S12, 33 (1978)
- [23] J. Morrison and S. Salomonson, Phys. Scr. 21, 343 (1980)
- [24] V. Kvasnička, Chem. Phys. Lett. **79**, no. 1, 89 (1981)
- [25] W. Kutzelnigg, Chem. Phys. Lett. 83, 156 (1981)
- [26] I. Lindgren, Phys. Rev. A **31**, no. 3, 1273 (1985)
- [27] D. Mukherjee, Chem. Phys. Lett. 125, no. 3, 207 (1986)

- [28] K. A. Brueckner, Phys. Rev. 97, no. 5, 1344 (1955)
- [29] K. A. Brueckner, Phys. Rev. 100, no. 1, 36 (1955)
- [30] J. Goldstone, J. Proc. R. Soc. Lond. A 239, 267 (1957)
- [31] I. Lindgren, J. Morrison, Atomic Many-Body Theory, Springer Series in Chemical Physics, Vol. 13 (1982)
- [32] S. A. Blundell, W. R. Johnson and J. Sapirstein, Phys. Rev. A 43, no. 7, 3407 (1991)
- [33] M. S. Safronova, W. R. Johnson and U. I. Safronova, Phys. Rev. A 53, no. 53, 4036 (1996)
- [34] H. C. Ho and W. R. Johnson et. al., Phys. Rev. A 74, 022510, 1 (2006)
- [35] A. Derevianko, J. Phys. B: At. Mol. Opt. Phys. 43, 074001, 1 (2010)
- [36] I. Lindgren and D. Mukherjee, Phys. Rep. 151, no. 2, 93 (1987)
- [37] G. C. Wick, Phys. Rev. 80, no. 2, 268 (1950)
- [38] S. A. Blundell, W. R. Johnson and J. Sapirstein, Phys. Rev. A 42, no. 7, 3751 (1990)
- [39] V. Dzuba, Comput. Phys. Comm. 180, no. 3, 392 (2009)
- [40] http://wolfweb.unr.edu/homepage/andrei/tap.html
- [41] Z. Csepes and J. Pipek, J. Comput. Phys. 77, no. 1, 1 (1988)
- [42] B. R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York (1963)
- [43] B. R. Judd, Second Quantization and Atomic Spectroscopy, Baltimore, MD: Johns Hopkins (1967)
- [44] B. R. Judd and R. C. Leavitt, J. Phys. B: At. Mol. Phys. 15, 1457 (1982)
- [45] R. C. Leavitt, J. Phys. B: At. Mol. Phys. 21, 2363 (1987)
- [46] Z. Rudzikas, J. Kaniauskas, Quasispin and Isospin in the Theory of Atom, Vilnius, Mokslas Publishers (1984) (in Russian)
- [47] J. M. Kaniauskas, V. Č. Šimonis and Z. B. Rudzikas, J. Phys. B: At. Mol. Phys. 20, 3267 (1987)
- [48] Z. Rudzikas, Theoretical Atomic Spectroscopy, Cambridge, Cambridge Univ. Press (1997)
- [49] G. Gaigalas, J. Kaniauskas et. al., Phys. Scr. 49, 135 (1994)
- [50] G. Merkelis, Phys. Scr. 61, 662 (2000)
- [51] G. Merkelis, Phys. Scr. 63, 289 (2001)
- [52] C. F. Bunge, At. Data Nucl. Data Tables 18, 293 (1976)
- [53] W. J. Marciano, J. L. Rosner, Phys. Rev. Lett. 65, 2963 (1990)
- [54] J. Sapirstein, K. T. Cheng, Phys. Rev. A 67, 022512 (2003)
- [55] S. G. Porsev, A. Derevianko, Phys. Rev. A 73, 012501 (2006)
- [56] V. V. Vanagas, Algebraic Foundation of the Microscopic Nuclear Theory, Moscow, Nauka (1988) (in Russian)

- [57] R. Juršėnas and G. Merkelis, Int. J. Theor. Phys. 49, no. 9, 2230 (2010)
- [58] E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, New York, Academic Press (1959)
- [59] N. J. Vilenkin, Special Functions and the Theory of Group Representations, 2nd ed., Moscow, Nauka (1991) (in Russian)
- [60] A. K. Bhatia, A. Temkin, Rev. Mod. Phys. 36, 1050 (1964)
- [61] W. Kutzelnigg, Int. J. Quant. Chem. 109, 3858 (2009)
- [62] R. Juršėnas and G. Merkelis, MPM e-journal 9, no. 1, 42 (2010)
- [63] V. Vanagas, Algebraic Methods in Nuclear Theory, Vilnius (1971) (in Russian)
- [64] B. Fauser et. al., Phys. Rev. A: Math. Gen. **39**, 2611 (2006)
- [65] R. Juršėnas, G. Merkelis, Cent. Eur. J. Phys. (2010), doi:10.2478/s11534-010-0082-0
- [66] G. Merkelis, Nucl. Instr. Meth. Phys. Research B 235, 184 (2005)
- [67] R. Juršėnas and G. Merkelis, Lithuanian J. Phys. 47, no. 3, 255 (2007)
- [68] R. Juršėnas, G. Merkelis, Cent. Eur. J. Phys. 8, no. 3, 480 (2010)
- [69] B. R. Judd, Phys. Rev. 141, 4 (1966)
- [70] R. C. Leavitt, J. Phys. B: At. Mol. Phys. 21, 2363 (1987)
- [71] S. G. Porsev, A. Derevianko, Phys. Rev. A 73, 012501 (2006)
- [72] J. Noga and R. J. Barllet, Chem. Phys. Lett. 134, no. 2, 126 (1987)
- [73] L. Meissner, P. Malinowski and J. Gryniakow, J. Phys. B: At. Mol. Phys. 37, 2387 (2004)

Trumpos žinios apie doktorantą

Vardas, pavardė:	Rytis Juršėnas
Gimimo data:	1982 02 23
Gimimo vieta:	Vilnius, Lietuva
Elektroninis paštas:	Rytis.Jursenas@tfai.vu.lt
Išsilavinimas:	
2000-2004	Vilniaus universitetas, Fizikos fakultetas, pagrindinių studijų fizikos programa, fizikos bakalauro kvalifikacinis laipsnis
2004-2006	Vilniaus universitetas, Fizikos fakultetas, teorinės fizikos ir astronomijos programa, fizikos magistro kvalifikacinis laipsnis
2006-2010	Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, doktorantūros studijos