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Abstract

We analyze the influence of the finite duration of the measurement on the quantum Zeno effect, using a simple model of the
measurement. It is shown that the influence of the finite duration of the measurement is unimportant when this duration is small
compared to the duration of the free evolution between the measuremeti®l Published by Elsevier Science B.V.
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1. Introduction Cook [5] suggested an experiment on the quantum
Zeno effect that was realized by Itano et al. [6]. In this

experiment a repeatedly measured two-level system

The quantum Zeno effect is a consequence of the yngergoing Rabi oscillations has been used. The

influence of the measurements on the evolution of a gytcome of this experiment has also been explained
guantum system. In quantum mechanics the short-time yithout the collapse hypothesis [7-9]. Recently, an
behavior of the non-decay probability of unstable par- experiment similar to Ref. [6] has been performed by
ticle is not exponential but quadratic [1]. This devi- pga|zer et al. [10]. The quantum Zeno and anti-Zeno
ation from the exponential decay has been observedeffects have been experimentally observed in Ref. [3].
experimentally [2,3]. In 1977, Mishra and Sudarshan | the analysis of the quantum Zeno effect the fi-

[4] showed that this behavior when combined with pite duration of the measurement becomes important.
the quantum theory of measurement, based on the asq, Ref. [11] a simple model that allows us to take
sumption of the collapse of the wave function, led jnto account the finite duration and finite accuracy

to a very surprising conclusion: frequent observations gf the measurement has been developed. However, in

slowed down the decay. They modeled the continuous Ref. [11] it has been analyzed the case when there are
observation of the system by a succession of the in- ng free evolution between the measurements. In this
stantaneous measurements with free evolution of the | etter we obtain the corrections to the jump probabil-
system between the measurements. ity due to the finite duration of the measurement with

the free evolution between the measurements.
We proceed as follows. In Section 2 we present the
 E-mail address: ruseckas@itpa.t (J. Ruseckas). model of the measurement. Section 3 is devoted to
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the derivation of the formula for the probability of the
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is t. After the measurement the density matrix of

jump into another level during the measurement of the the system isps(t + #p) = TrD{ﬁM (1, 10)(0s(f0) ®
frequently measured perturbed system. In Section 4 |q§)(cb|)U,\; (t,t0)}, WhereUwm (t, to) is the evolution

the evolution of the measured two-level system is

operator of the system and detector, obeying the equa-

analysed as an example of the application of our tion

model. Section 5 summarizes our findings.

2. Model of the measurements

We consider a system which consists of two parts.

PN ~ ~
ih=-Un(t,10) = H(t +10)Un (. 10) 3
with the initial conditionﬁM (0, 10) = 1. Further, for
simplicity we will neglect the Hamiltonian of the
detector (as in Ref. [11]). Then the evolution operator

The first part of the system has the discrete energy Uy obeys the equation

spectrum. The Hamiltonian of this part Ho. The

other part of the system is represented by Hamiltonian i — U (¢, to)

ﬁl. Hamiltonianﬁl commutes Withﬁo. In a partic-
ular case the second part may be absentﬁpmay

be zero. The operatd?(t) causes the jumps between
the different energy levels aoflp. Therefore, the full
Hamiltonian of the system equalsfﬁ; = ﬁo + ﬁl +
V(). An example of such a system is an atom with
the HamiltonianHo interacting with the electromag-
netic field, represented tﬁl.

We will measure in which eigenstate of the Hamil-
tonian Ho the system is. The measurement is per-
formed by coupling the system with the detector. The
full Hamiltonian of the system and the detector equals
to

H = Hs+ Hp + H, ()

where Hp is the Hamiltonian of the detector arid

=(A+r§)Ho+ Hi+V(t +10)Un(t, 10). (4

After the measurement the system is left for the
measurement-free evolution for tim€é — . The
density matrix becomess(T + to) = Us(T — 7,7 +
10)ps(t + 10)UL(T — 7,7 + 10)}, where U (t, 10) is
the evolution operator of the system only, obeying the
equation
0~ ~ ~
in=—Ur(t, 10) = Hs(t + 10)Ur(t, 0) (5)
with the initial conditionU(0, 1) = 1.

The measurements of the duratierwith a subse-
quent free evolution for the tim& — r are repeated
many times with the measurement peribd Such a
process was considered by the Mishra and Sudarshan

represents the interaction between the detector and thg4] and realized in the experiments [6].

system. We choose the operaﬁjrin the form

Hy = 14 Ho, &)
whereg is the operator acting in the Hilbert space of
the detector and the parameteatescribes the strength

of the interaction. This system—detector interaction is

considered by von Neumann [12] and in Refs. [11,13—

3. Jump probability

We will calculate the probability of the jump from
the initial to the final state during the measurement and
subsequent measurement-free evolution. The jumps

18]. In order to obtain a sensible measurement, the pa- 3¢ induced by the operatd?’r(t) that represents the

rameten. must be large. We require a continuous spec-
trum of operatog. For simplicity, we can consider the
guantityg as the coordinate of the detector.

The measurement begins at time momentAt
the beginning of the interaction with the detector,
the detector is in the pure stai@). The full den-
sity matrix of the system and detector &) =
os(to) ® |@)(®| where ps(f0) is the density ma-

trix of the system. The duration of the measurement Vi (z, 10) = U\ (1) V (1 + 1) U\ (1),

perturbation of the unperturbed Hamiltonidiy +
ﬁl. We will take into account the influence of the
operatorV by the perturbation method, assuming that
the durations of the measurementand of the free
evolutionT — t are small.

The operatoﬂ7(t) in the interaction picture during
the measurement is

(6)
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Whereﬁ,fﬂo) (¢) is the evolution operator of the system

and the detector (1) without the perturbatﬂ’én

fj,f/lo)(t) =exp<—i;—(ﬁo+ﬁ1+ﬁl)t>~ 7

The evolution operatoﬁM (z, o) in the second order
approximation equals to

T

/dt Vi (t, 10)

~ ~ 1
Ow (. 10) ~ U3 (v) <1+ =
0

1 T t ~ _
- ;/dtl/.dtz Wm (1, t0) Vm (22, 10) |-
0 0
8)

The operatofV(t) in the interaction picture during
the free evolution is

Ve, 10) = UL (1) V (t + 10 T2 (1), )

Wheref],:(o) (1) is the evolution operator of the system
without the perturbatiofv, i.e.,

ﬁF(O) (1) = exp(—’ii—(ﬁo + ﬁl)t>. (10)

The evolution operatoﬁp(t, fo) in the second order
approximation equals to

t
—~ —~ 1 ~
Ur(t. 10 ~ U2 (1) (1 +o / dr1 Ve(11. 10)
0

t

1
=/

t
dt1/dt2 Ve(11, to)VF(tz,to)>~
0o 0

(11)
We can_ choosAe the basjsa) common for the
operatorsHg and Hy,
ﬁo|na) = E,|na), (12)
Hi|na) = E1(n, a)|ne), (13)

wheren numbers are the eigenvalues of Hamiltonian
Hp anda represents the remaining quantum numbers.
The probability of the jump from the levela) to
the level| fay) is
Wioa — fa1)
=Tro{( foal UR(T — 1)U (7)(lie)(ier| @ | D) (P])

x ONT —o)0h @l fan)).  (14)
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In the second-order approximation we obtain the
expression for the jump probabilitW\ (ic — fo1).
The jump probability consists from three parts.

W(ia — far) = We(ia — fa1) + Wi — for)
+ Wintia = faa), (15)

whereWr is the probability of the jump during the free
evolution, Wy, is the probability of the jump during
the measurement artl; is an interference term. The
expressions for these probabilities are (see Refs. [11,
17] for the analogy of the derivation)

T7
0 0
X V(tl +10+ T)fal,iav(t2 + 10+ T)ioz,fotl

x eXplio fay.ia (11 — 12)),
Wmia — fa1)

1 T T
=ﬁ/dt1/‘dt2
0 0

X V(11 +10) fay,ia V(2 + 10)ia, for
x eXpio fay,ia (11 — 12)) F (Ao yi (11 — 12)), (17)

Wint(ioe = for1)
T T

2
=;Re/dt1/dt2
T

0
X V(tl + tO)fal,iaV(t2 + tO)ioz,fotl
x exXpio fayia (11 — 12)) F (Awif (r — 11)), (18)
where

We(ia — fa1)
T—1 T

dro

(16)

1
wfiZE(Ef_Ei)v (19)
Waio = 0Fi + Ex(f, otl)h— Eq(i, oc)’ (20)
F(x) = (@] exp(ixg)|®). 1)

The probability to remain for the system in the
initial statelia) is

W(ia)=1- Z Wi — fai).
fran

After N measurements the probability for the system
to survive in the initial state is equal t& (io)Y &

(22)
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exp(—RNT), whereR is the measurement-modified
decay rate

R:Z%W(i(x% fa1). (23)
fre
4. Example

As an example we will consider the evolution of the
measured two-level system. The system is forced by
the periodic of the frequency; perturbationV (¢)
which induces the jumps from one state to another.
Such a system was used in the experiment by Itano
et al. [6]. The Hamiltonian of this system is

H=Ho+ V@, (24)
where
~ h
Hp = 70)63, (25)
V() = (v64 + v*6_) coSwL1). (26)

Here o1, 02, o3 are Pauli matrices and. = %(01 +
io2). The Hamiltonianfy has two eigenfunction®)
and |1) with the eigenvalues-i% and %, respec-
tively.

Using Egs. (16), (17) and (18) for the jump from the
state|0) to the statél) we obtain

P Sirf(8A(T - 1))

WrO0—1)=— ISTE 27)

P o [

0
X expli Awr) (1— 5), (28)
T
2 T T
Wint(0— 1) = % Re/ dt1/dt2 explidw (i1 — 12))
0 T

X F(Aa)(tl — r)), (29)

where Aw = w — w is the detuning. Equation (28)
has been obtained in Ref. [11].

Whena is large, the functiorF varies rapidly and
we can approximate expressions (28) and (29) as

T |u?

0= D= 200

(30)
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|v]?
B2 2AwAw

where A = A/C, C is the width of the functionF,
defined by the equation (see Ref. [11])

Wint(0— 1) =

sin(Aw(T — 1)), (31)

1 o
C=3 / F(x)dx (32)
—00
If T > 1t andAwT « 1 then we obtain
T pPRT 1
WO—1) = 72 27 5\ 20 7). (33)

From Eq. (33) we see that the jump probability
for the non-ideal measurement consists of two terms.
The first term equals to the jump probability when
the measurement is instantaneous, the second term
represents the correction due to the finite duration of
the measurement. In Ref. [11] it has been shown that
the duration of the measurement can be estimated as

> b
~ Aw
From Eq. (33) we see that the correction term is small,

since the duration of the measuremenis almost
compensated by the termiAw.

(34)

5. Conclusion

The quantum Zeno effect is often analysed using the
succession of the instantaneous measurements with
free evolution of the measured system between the
measurements. We analyze here the measurements
with finite duration, instead. We apply the model of
the measurement, developed in Ref. [11]. The equa-
tions for the jump probability (15)—(18) are obtained.
Applying the equations to the measured two-level sys-
tem we obtain a simple expression for the probabil-
ity of the jump from one level to the other (33). The
influence of the finite duration of the measurement is
expressed as the small correction.
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