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Abstract

We analyze the influence of the finite duration of the measurement on the quantum Zeno effect, using a simple model of the
measurement. It is shown that the influence of the finite duration of the measurement is unimportant when this duration is small
compared to the duration of the free evolution between the measurements. 2001 Published by Elsevier Science B.V.
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1. Introduction

The quantum Zeno effect is a consequence of the
influence of the measurements on the evolution of a
quantum system. In quantum mechanics the short-time
behavior of the non-decay probability of unstable par-
ticle is not exponential but quadratic [1]. This devi-
ation from the exponential decay has been observed
experimentally [2,3]. In 1977, Mishra and Sudarshan
[4] showed that this behavior when combined with
the quantum theory of measurement, based on the as-
sumption of the collapse of the wave function, led
to a very surprising conclusion: frequent observations
slowed down the decay. They modeled the continuous
observation of the system by a succession of the in-
stantaneous measurements with free evolution of the
system between the measurements.
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Cook [5] suggested an experiment on the quantum
Zeno effect that was realized by Itano et al. [6]. In this
experiment a repeatedly measured two-level system
undergoing Rabi oscillations has been used. The
outcome of this experiment has also been explained
without the collapse hypothesis [7–9]. Recently, an
experiment similar to Ref. [6] has been performed by
Balzer et al. [10]. The quantum Zeno and anti-Zeno
effects have been experimentally observed in Ref. [3].

In the analysis of the quantum Zeno effect the fi-
nite duration of the measurement becomes important.
In Ref. [11] a simple model that allows us to take
into account the finite duration and finite accuracy
of the measurement has been developed. However, in
Ref. [11] it has been analyzed the case when there are
no free evolution between the measurements. In this
Letter we obtain the corrections to the jump probabil-
ity due to the finite duration of the measurement with
the free evolution between the measurements.

We proceed as follows. In Section 2 we present the
model of the measurement. Section 3 is devoted to
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the derivation of the formula for the probability of the
jump into another level during the measurement of the
frequently measured perturbed system. In Section 4
the evolution of the measured two-level system is
analysed as an example of the application of our
model. Section 5 summarizes our findings.

2. Model of the measurements

We consider a system which consists of two parts.
The first part of the system has the discrete energy
spectrum. The Hamiltonian of this part iŝH0. The
other part of the system is represented by Hamiltonian
Ĥ1. HamiltonianĤ1 commutes withĤ0. In a partic-
ular case the second part may be absent andĤ1 may
be zero. The operator̂V (t) causes the jumps between
the different energy levels of̂H0. Therefore, the full
Hamiltonian of the system equals tôHS = Ĥ0 + Ĥ1 +
V̂ (t). An example of such a system is an atom with
the HamiltonianĤ0 interacting with the electromag-
netic field, represented bŷH1.

We will measure in which eigenstate of the Hamil-
tonian Ĥ0 the system is. The measurement is per-
formed by coupling the system with the detector. The
full Hamiltonian of the system and the detector equals
to

(1)Ĥ = ĤS + ĤD + ĤI,

whereĤD is the Hamiltonian of the detector and̂HI
represents the interaction between the detector and the
system. We choose the operatorĤI in the form

(2)ĤI = λq̂Ĥ0,

whereq̂ is the operator acting in the Hilbert space of
the detector and the parameterλ describes the strength
of the interaction. This system–detector interaction is
considered by von Neumann [12] and in Refs. [11,13–
18]. In order to obtain a sensible measurement, the pa-
rameterλmust be large. We require a continuous spec-
trum of operator̂q. For simplicity, we can consider the
quantityq as the coordinate of the detector.

The measurement begins at time momentt0. At
the beginning of the interaction with the detector,
the detector is in the pure state|Φ〉. The full den-
sity matrix of the system and detector iŝρ(t0) =
ρ̂S(t0) ⊗ |Φ〉〈Φ| where ρ̂S(t0) is the density ma-
trix of the system. The duration of the measurement

is τ . After the measurement the density matrix of
the system isρ̂S(τ + t0) = TrD{ÛM(τ, t0)(ρ̂S(t0) ⊗
|Φ〉〈Φ|)Û †

M(τ, t0)}, whereÛM(t, t0) is the evolution
operator of the system and detector, obeying the equa-
tion

(3)ih̄
∂

∂t
ÛM(t, t0)= Ĥ (t + t0)ÛM(t, t0)

with the initial conditionÛM(0, t0) = 1. Further, for
simplicity we will neglect the Hamiltonian of the
detector (as in Ref. [11]). Then the evolution operator
ÛM obeys the equation

ih̄
∂

∂t
ÛM(t, t0)

(4)= (
(1+ λq̂)Ĥ0 + Ĥ1 + V̂ (t + t0)

)
ÛM(t, t0).

After the measurement the system is left for the
measurement-free evolution for timeT − τ . The
density matrix becomeŝρS(T + t0)= ÛF(T − τ, τ +
t0)ρ̂S(τ + t0)Û†

F(T − τ, τ + t0)}, whereÛF(t, t0) is
the evolution operator of the system only, obeying the
equation

(5)ih̄
∂

∂t
ÛF(t, t0)= ĤS(t + t0)ÛF(t, t0)

with the initial conditionÛF(0, t0)= 1.
The measurements of the durationτ with a subse-

quent free evolution for the timeT − τ are repeated
many times with the measurement periodT . Such a
process was considered by the Mishra and Sudarshan
[4] and realized in the experiments [6].

3. Jump probability

We will calculate the probability of the jump from
the initial to the final state during the measurement and
subsequent measurement-free evolution. The jumps
are induced by the operator̂V (t) that represents the
perturbation of the unperturbed Hamiltonian̂H0 +
Ĥ1. We will take into account the influence of the
operator̂V by the perturbation method, assuming that
the durations of the measurementτ and of the free
evolutionT − τ are small.

The operator̂V (t) in the interaction picture during
the measurement is

(6)ṼM(t, t0)= Û (0)M (t)V̂ (t + t0)Û (0)M (t),
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whereÛ (0)M (t) is the evolution operator of the system
and the detector (1) without the perturbationV̂

(7)Û
(0)
M (t)= exp

(
− i

h̄

(
Ĥ0 + Ĥ1 + ĤI

)
t

)
.

The evolution operator̂UM(τ, t0) in the second order
approximation equals to

ÛM(τ, t0)≈ Û (0)M (τ )

(
1+ 1

ih̄

τ∫
0

dt ṼM(t, t0)

(8)

− 1

h̄2

τ∫
0

dt1

t∫
0

dt2 ṼM(t1, t0)ṼM(t2, t0)

)
.

The operator̂V (t) in the interaction picture during
the free evolution is

(9)ṼF(t, t0)= Û (0)F (t)V̂ (t + t0)Û (0)F (t),

whereÛ (0)F (t) is the evolution operator of the system
without the perturbation̂V , i.e.,

(10)Û
(0)

F (t)= exp

(
− i

h̄

(
Ĥ0 + Ĥ1

)
t

)
.

The evolution operator̂UF(t, t0) in the second order
approximation equals to

ÛF(t, t0)≈ Û (0)F (t)

(
1+ 1

ih̄

t∫
0

dt1 ṼF(t1, t0)

(11)

− 1

h̄2

t∫
0

dt1

t∫
0

dt2 ṼF(t1, t0)ṼF(t2, t0)

)
.

We can choose the basis|nα〉 common for the
operatorŝH0 andĤ1,

(12)Ĥ0|nα〉 =En|nα〉,
(13)Ĥ1|nα〉 =E1(n,α)|nα〉,

wheren numbers are the eigenvalues of Hamiltonian
Ĥ0 andα represents the remaining quantum numbers.

The probability of the jump from the level|iα〉 to
the level|fα1〉 is

W(iα→ f α1)

(14)

= TrD
{〈f α1|ÛF(T − τ )ÛM(τ )

(|iα〉〈iα| ⊗ |Φ〉〈Φ|)
× Û†

F(T − τ )Û†
M(τ )|f α1〉

}
.

In the second-order approximation we obtain the
expression for the jump probabilityW(iα → fα1).
The jump probability consists from three parts.

W(iα→ f α1)=WF(iα→ f α1)+WM(iα→ f α1)

(15)+WInt(iα→ f α1),

whereWF is the probability of the jump during the free
evolution,WM is the probability of the jump during
the measurement andWInt is an interference term. The
expressions for these probabilities are (see Refs. [11,
17] for the analogy of the derivation)

WF(iα→ f α1)

= 1

h̄2

T−τ∫
0

dt1

T−τ∫
0

dt2

× V (t1 + t0 + τ )f α1,iαV (t2 + t0 + τ )iα,f α1

(16)× exp
(
iωfα1,iα(t1 − t2)

)
,

WM(iα→ f α1)

= 1

h̄2

τ∫
0

dt1

τ∫
0

dt2

× V (t1 + t0)f α1,iαV (t2 + t0)iα,f α1

(17)× exp
(
iωfα1,iα(t1 − t2)

)
F
(
λωf i(t1 − t2)

)
,

WInt(iα→ f α1)

= 2

h̄2
Re

τ∫
0

dt1

T∫
τ

dt2

× V (t1 + t0)f α1,iαV (t2 + t0)iα,f α1

(18)× exp
(
iωfα1,iα(t1 − t2)

)
F
(
λωif (τ − t1)

)
,

where

(19)ωf i = 1

h̄
(Ef −Ei),

(20)ωfα1,iα = ωf i + E1(f,α1)−E1(i, α)

h̄
,

(21)F(x)= 〈Φ|exp(ixq̂)|Φ〉.
The probability to remain for the system in the

initial state|iα〉 is

(22)W(iα)= 1−
∑
f,α1

W(iα→ f α1).

After N measurements the probability for the system
to survive in the initial state is equal toW(iα)N ≈
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exp(−RNT ), whereR is the measurement-modified
decay rate

(23)R =
∑
f,α1

1

T
W(iα→ f α1).

4. Example

As an example we will consider the evolution of the
measured two-level system. The system is forced by
the periodic of the frequencyωL perturbationV (t)
which induces the jumps from one state to another.
Such a system was used in the experiment by Itano
et al. [6]. The Hamiltonian of this system is

(24)Ĥ = Ĥ0 + V̂ (t),
where

(25)Ĥ0 = h̄ω

2
σ̂3,

(26)V̂ (t)= (vσ̂+ + v∗σ̂−)cos(ωL t).

Hereσ1, σ2, σ3 are Pauli matrices andσ± = 1
2(σ1 ±

iσ2). The HamiltonianĤ0 has two eigenfunctions|0〉
and |1〉 with the eigenvalues−h̄ ω2 and h̄ ω2 , respec-
tively.

Using Eqs. (16), (17) and (18) for the jump from the
state|0〉 to the state|1〉 we obtain

(27)WF(0→ 1)= |v|2
h̄2

sin2( ω
2 (T − τ ))
( ω)2

,

(28)

WM(0→ 1)= τ

2

|v|2
h̄2

Re

τ∫
0

dt F (λωt)

× exp(i ωt)

(
1− t

τ

)
,

(29)

WInt(0 → 1)= |v|2
2h̄2 Re

τ∫
0

dt1

T∫
τ

dt2 exp
(
i ω(t1 − t2)

)
× F (λω(t1 − τ )),

where ω = ω − ωL is the detuning. Equation (28)
has been obtained in Ref. [11].

Whenλ is large, the functionF varies rapidly and
we can approximate expressions (28) and (29) as

(30)WM(0→ 1)= τ

2Λω

|v|2
h̄2 ,

(31)WInt(0 → 1)= |v|2
h̄2

1

2Λω ω
sin
(
 ω(T − τ )),

whereΛ = λ/C, C is the width of the functionF ,
defined by the equation (see Ref. [11])

(32)C = 1

2

∞∫
−∞

F(x)dx

If T � τ and ωT � 1 then we obtain

(33)W(0 → 1)= |v|2
h̄2

T 2

4
+ |v|2
h̄2

T

2

(
1

Λω
− τ

)
.

From Eq. (33) we see that the jump probability
for the non-ideal measurement consists of two terms.
The first term equals to the jump probability when
the measurement is instantaneous, the second term
represents the correction due to the finite duration of
the measurement. In Ref. [11] it has been shown that
the duration of the measurement can be estimated as

(34)τ � 1

Λω
.

From Eq. (33) we see that the correction term is small,
since the duration of the measurementτ is almost
compensated by the term 1/Λω.

5. Conclusion

The quantum Zeno effect is often analysed using the
succession of the instantaneous measurements with
free evolution of the measured system between the
measurements. We analyze here the measurements
with finite duration, instead. We apply the model of
the measurement, developed in Ref. [11]. The equa-
tions for the jump probability (15)–(18) are obtained.
Applying the equations to the measured two-level sys-
tem we obtain a simple expression for the probabil-
ity of the jump from one level to the other (33). The
influence of the finite duration of the measurement is
expressed as the small correction.
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