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We study the influence of three laser beams on the center-of-mass motion of cold atoms with internal energy
levels in a tripod configuration. We show that, as for electrons in graphene, the atomic motion can be equiva-
lent to the dynamics of ultrarelativistic two-component Dirac fermions. We propose and analyze an experi-
mental setup for observing such a quasirelativistic motion of ultracold atoms. We demonstrate that the atoms
can experience negative refraction and focusing by Veselago-type lenses. We also show how the chiral nature
of the atomic motion manifests itself as an oscillation of the atomic internal state population, which depends
strongly on the direction of the center-of-mass motion. For certain directions an atom remains in its initial state,
whereas for other directions the populations undergo oscillations between a pair of internal states.
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I. INTRODUCTION

Two-dimensional �2D� quantum systems are a source of
many remarkable phenomena. A striking example in this re-
spect is provided by the properties of electrons in graphene
�1–9�—a two-dimensional hexagonal crystal of carbon at-
oms. Near the Fermi level the electrons in graphene behave
like massless ultrarelativistic two-component Dirac fermions
�10�, moving with a velocity vF which does not depend on
the momentum. This leads to a number of distinct effects in
graphene and graphene bilayers, such as a half-integer quan-
tum Hall effect �1,4,5� and the Klein paradox �3�. Further-
more, it has been suggested recently that electrons in
graphene should exhibit a negative refraction �8,9� at a po-
tential barrier, similar to the electromagnetic waves refract-
ing in a counterintuitive way at an interface with a material
characterized by a negative dielectric permittivity and a
negative magnetic permeability �11,12�.

In this Rapid Communication we show how cold atoms
obtain ultrarelativistic properties of Dirac fermions if ma-
nipulated by laser beams. We suggest using three laser beams
acting on atoms in a tripod configuration �13,14�. The light
beams induce an effective vector potential �the Mead-Berry
connection �15–17�� which influences the atomic center-of-
mass motion �14�. We demonstrate that by choosing proper
light fields the vector potential can be made proportional to
an operator of spin 1 /2. For small momenta the atomic mo-
tion becomes equivalent to the ultrarelativistic motion of
two-component Dirac fermions, as is the case for electrons in
graphene. We propose and analyze an experimental setup for
observing such a quasirelativistic behavior of the cold atoms.
We show that the atoms can experience negative refraction
and focusing by Veselago-type lenses �11�.

Interestingly, the velocity of the quasirelativistic atoms is
of the order of 1 cm /s. This is ten orders of magnitude
smaller than the speed of light in vacuum, c�3�108 m /s.
For comparison, the velocity of the Dirac-type electrons in
graphene, vF�106 m /s, is only three hundred times smaller
than c �4�. Thus the ultrarelativistic behavior of cold atoms

manifests itself at extremely small velocities. Note also that
our proposal does not need a lattice and thus operates in a
continuous regime, in contrast to recent papers on the qua-
sirelativistic dynamics of cold atoms in one-dimensional �18�
or 2D hexagonal �graphene-type� �19� lattices.

II. FORMULATION

Let us consider the adiabatic motion of atoms in the field
of three stationary laser beams. The beams couple four inter-
nal atomic levels in a tripod configuration �13,14�, in which
the atoms are characterized by three lower levels �1�, �2�, and
�3� and an excited level �0� shown in Fig. 1�a� �20�. The
jth laser induces a transition �with a Rabi frequency � j�
between the jth lowest level and the excited level �0�. We
shall be interested in a scheme where the first two lasers
have the same intensities and counterpropagate in the x
direction while the third one propagates in the negative
y direction �see Fig. 1�b��, i.e., �1=� sin � e−i�x /�2,
�2=� sin � ei�x /�2, and �3=� cos � e−i�y, where �
=���1�2+ ��2�2+ ��3�2 is the total Rabi frequency, and the
mixing angle � defines the relative intensity.

The electronic Hamiltonian of the tripod atom in the in-
teraction representation is �14�

Ĥ0 = − ���1�0�	1� + �2�0�	2� + �3�0�	3�� + H.c. �1�

The Hamiltonian Ĥ0 has two eigenstates of zero energy con-
taining no contribution from the excited state �0�:

FIG. 1. �Color online� An atom interacting with three laser fields
in a tripod configuration.
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�D1� =
1
�2

e−i�y�ei�x�1� − e−i�x�2�� , �2�

�D2� =
1
�2

e−i�y cos ��ei�x�1� + e−i�x�2�� − sin ��3� . �3�

The states �D1� and �D2�, known as the dark states �13,14�,
depend on the atomic position through the spatial depen-
dence of the Rabi frequencies � j.

The adiabatic approximation is carried out neglecting
transitions from the dark states to the bright state �B�

�1

*�1�+�2
*�2�+�3

*�3�. The latter is coupled to the excited
atomic state �0� with the Rabi frequency �, so the two states
�B� and �0� split into a doublet separated from the dark states
by the energies ��. The adiabatic approximation is justified
if � is sufficiently large compared to the two-photon detun-
ing due to the laser mismatch and/or Doppler shift. In that
case the internal state of an atom evolves within the dark
state manifold. The atomic state vector ��� can then be ex-
panded in terms of the dark states according to ���
=� j=1

2 	 j�r��Dj�r��, where 	 j�r� is the wave function for the
center-of-mass motion of the atom in the jth dark state.

Thus atomic center-of-mass motion is described by a two-
component wave function 	= �	1 ,	2�T. The column matrix
	 obeys the Schrödinger equation �14�

i�
�

�t
	 = � 1

2m
�− i� � − A�2 + V + �	 , �4�

where m is the atomic mass, and A, �, and V are 2�2
matrices. The gauge potentials A and � emerge due to the
spatial dependence of the atomic dark states. The reduced
2�2 matrix A with the elements An,m= i�	Dn�r� ��Dm�r��
represents the effective vector potential known as the
Mead-Berry connection �14–17�. The 2�2 matrix � acts as
an effective scalar potential. The external potential V con-
fines the motion of the dark state atoms to a finite region in

space. Specifically, we have Vn,m= 	Dn�r��V̂�Dm�r�� with V̂
=V1�r��1�	1�+V2�r��2�	2�+V2�r��3�	3�, where Vj�r� is the
trapping potential for an atom in the internal state j=1,2 ,3.
Note that the potential Vj can also accommodate a possible
detuning of the jth laser from the resonance of the j→0
transition.

III. ATOMIC MOTION IN THE FIELD OF THREE
PLANE WAVES

The potentials A, �, and V have been considered in Ref.
�14� for arbitrary light fields. In the present configuration of
the light fields, the potentials take the forms

A = ��� ey − ex cos �

− ex cos � ey cos2 �
 , �5�

� = ��2�2 sin2 �/2m 0

0 �2�2 sin2�2��/8m
 , �6�

V = �V1 0

0 V1 cos2 � + V3 sin2 �
 , �7�

where the external trapping potential is assumed to be the
same for the first two atomic states, V1=V2.

In what follows we take V3−V1=�2�2�sin2 �� /2m. This
can be achieved by detuning the third laser from the two-
photon resonance by the frequency 
�3=��2�sin2 �� /2m.
Thus the overall trapping potential simplifies to V+�=V1I
�up to a constant�, where I is the unit matrix. In other words,
both dark states are affected by the same trapping potential
V1�V1�r�.

Furthermore we take the mixing angle �=�0 to be such
that sin2�0=2 cos �0, giving cos �0=�2−1. In that case the
vector potential can be represented in a symmetric way in
terms of the Pauli matrices �x and �z,

A = ����− ex�x + ey�z� + ��0eyI, �8�

where ��=� cos �0�0.414� and �0=��1−cos �0�. Although
the vector potential is constant, it cannot be eliminated via a
gauge transformation, because the Cartesian components Ax
and Ay do not commute. Thus the light-induced potential A
is non-Abelian. Note that non-Abelian gauge potentials can
also be induced in optical lattices using other techniques
�21�.

It is convenient to introduce new dark states:

�D1�� =
1
�2

��D1� + i�D2��ei�0y , �9�

�D2�� =
i

�2
��D1� − i�D2��ei�0y . �10�

The transformed two-component wave function is related
to the original one according to �=exp�−i�0y�exp�−i�� /
4��x�. The exponential factor exp�−i�0y� induces a shift in
the origin of the momentum k→k−�0ey. With the new set
of dark states, we get the vector potential A�=−�����,
where ��=ex�x+ey�y is the spin-1 /2 operator in the xy
plane. The transformed equation of the atomic motion takes
the form

i�
�

�t
	� = � 1

2m
�− i� � + ������2 + V1	�. �11�

In this way the vector potential governing the atomic motion
is proportional to the spin operator ��.

If the trapping potential V1 is constant, we can consider
plane-wave solutions

	��r,t� = 	keik·r−i�kt, 	k = �	1k

	2k
 , �12�

where �k is the eigenfrequency. The k-dependent spinor 	k
obeys the stationary Schrödinger equation Hk	k=��k	k,
with the following k-dependent Hamiltonian:
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Hk =
�2

2m
�k + �����2 + V1. �13�

For small wave vectors �k����, the atomic Hamiltonian re-
duces to the Hamiltonian for the 2D relativistic motion of a
two-component massless particle of the Dirac type known
also as the Weyl equation �22�,

Hk = �v0k · �� + V1 + mv0
2, �14�

where v0=��� /m is the velocity of such a quasirelativistic
particle. The velocity v0 represents the recoil velocity corre-
sponding to the wave vector ��, and is typically of the order
of 1 cm /s.

The Hamiltonian Hk commutes with the 2D chirality op-
erator �k=k ·�� /k. The latter has the eigenstates

	k
� =

1
�2� 1

�
kx + iky

k
� , �15�

for which �k	k
�= �	k

�. Here the chirality is associated
with the subspace of the dark states defined by the basis in
Eqs. �9� and �10� rather than with the spin states in the usual
sense. The corresponding dynamics can therefore also be il-
lustrated by, for instance, a Poincaré sphere.

The eigenstates �15� are also eigenstates of the Hamil-
tonian Hk with eigenfrequencies �k��k

�. In what follows
the atomic motion is assumed to be confined in the xy plane.
The dispersion then reads

��k
� = �v0�k2/2�� � k� + V1 + mv0

2 �16�

�see Fig. 2�. The atomic motion in different dispersion
branches is characterized by opposite chirality if the direc-
tion k /k is fixed. For small wave vectors �k���� the disper-
sion simplifies to ��k

�= ��v0k+V1+mv0
2, where the upper

�lower� sign corresponds to a linear cone with a positive
�negative� group velocity vg

�= �v0. Exactly the same disper-
sion is featured for electrons near the Fermi level in graphene
�1–5�.

IV. PROPOSED EXPERIMENT

To observe the quasirelativistic behavior of cold atoms,
we propose the following experimental situation. We sup-
pose initially an atom �or a dilute atomic cloud� is in the
internal state �3� with a translational motion described by a
wave packet with a central wave vector kin and a wave-
vector spread 
k�kin, i.e., �	in�=�r�eikin·r�3�, where the
envelope function �r� varies slowly within the wavelength
�in=2� /kin. The cold atoms can be set in motion using vari-
ous techniques, e.g., by means of the two-photon scattering
which induces a recoil momentum �kin=�k2phot in the at-
oms, where k2phot is the wave vector of the two-photon mis-
match �23�.

Initially all three lasers are off. Subsequently, the lasers
are switched on in a counterintuitive manner, switching the
lasers 1 and 2 on first, followed by the laser 3. At the begin-
ning of this stage the internal state �3� coincides with the dark
state �D2�, so the original and transformed multicomponent
wave functions are given by

	 = �0

1
�r�eikin·r, 	� =

1
�2

�− i

1
�r�eik·r, �17�

where the transformed wave function 	� is obtained by ex-
pressing the original dark state �D2� through the new ones
�D1,2� �, with k=kin−�0ey being a new central wave vector. If
the laser 3 is switched on sufficiently slowly, the atom re-
mains in the dark state �D2� during the whole switch-on
stage. Yet the duration of the switching on should be short
enough to prevent the dynamics of the atomic center of mass
at this stage. To have ultrarelativistic behaving atoms, the
wave number k should be small k��, so that k is a small
contribution to kin=�0ey +k. In addition, the wave-number
spread 
k�k, i.e. the width of the atomic wave packet is
much larger than the central wavelength. The subsequent
center-of-mass motion of atoms in the laser fields is sensitive
to the direction of the wave vector k.

�i� If k= �key, the wave function �17� reads

	� = − i	k
��r�e�iky, 	k

� =
1
�2

�1

i
 . �18�

The upper �lower� sign in k= �key corresponds to a situa-
tion where the atom is characterized by a positive �negative�
chirality, hence being in the upper �lower� dispersion branch.
In both cases the atomic wave packet propagates along the y
axis with the velocity v0=ey��� /m.

�ii� If the wave vector is along the x axis �k=kex�, the
multicomponent wave function �17� takes the form

	� = �c+	k
+ + c−	k

−��r�eik·r, 	k
� =

1
�2

� 1

�1
 , �19�

where c�= �−i�1� /2. In that case the initial wave packet
splits into two with equal weights ��c�

2 �=1 /2� and the same
wave vector k. The wave packets are characterized by dif-
ferent chiralities and thus move in opposite directions with
the velocities v0= �ex��� /m.

Suppose the time is sufficiently small �v0t�d� that the
wave packets of width d are not yet spatially separated. The
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FIG. 2. �Color online� Upper �red solid� and lower �green
dashed� dispersion branches for a tripod atom in light fields.
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internal atomic state will then undergo temporal oscillations
between the dark states �D2� and �D1� with a frequency equal
to �k

+−�k
−=2v0k. Such an internal dynamics can be detected

by switching the laser 3 off at a certain time. This transforms
the dark state �D2� to the physical state �3�. Subsequently, one
can measure the population of the state �3� for various delay
times and various wave vectors k. The chiral nature of the
atomic motion will manifest itself in the oscillations of the
population of the atomic state �3� if k is along the x axis, and
the absence of such oscillations if k is along the y axis.

Furthermore, as a consequence of the constructed Hamil-
tonian �14�, the quasirelativistic atoms can show negative
refraction at a potential barrier and thus exhibit focusing by

Veselago-type lenses �11,12�. Consider incident atoms that
are in the upper dispersion branch and propagate along the y
axis with a wave vector k=key. Let us place a potential bar-
rier of a height 2�v0k at an angle of incidence � �see Fig. 3�.
Inside the barrier the atoms are transferred to the lower dis-
persion branch with kt=−k�cos�2��ey +sin�2��ex�. This
would lead to the negative refraction of cold atoms at the
barrier as shown in Fig. 3. Thus the potential barrier can act
as a flat lens which refocuses the atomic wave packet.

In summary we have shown how the atomic motion can
be equivalent to the dynamics of ultrarelativistic �massless�
two-component Dirac fermions. As a result the ultracold at-
oms can experience negative refraction and focusing by
Veselago-type lenses. In addition, we have investigated an-
other manifestation of the chiral nature of the atomic motion
through dynamics of the population of the internal atomic
states.
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FIG. 3. �Color online� Negative refraction of cold atoms at a
potential barrier. The incoming and outgoing atoms are in the upper
�red� dispersion branch, whereas the atoms inside the barrier are in
the lower �green� one.
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