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Slow polaritons with orbital angular momentum in atomic gases
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Polariton formalism is applied for studying the propagation of a probe field of light in a cloud of cold atoms
influenced by two control laser beams of larger intensity. The laser beams couple resonantly three hyperfine atomic
ground states to a common excited state, thus forming a tripod configuration of the atomic energy levels involved.
The first control beam can have an optical vortex, with the intensity of the beam going to zero at the vortex core.
The second control beam without a vortex ensures the lossless (adiabatic) propagation of the probe beam at a
vortex core of the first control laser. We investigate the storage of the probe pulse into atomic coherences by
switching off the control beams and its subsequent retrieval by switching the control beams on. The optical vortex
is transferred from the control to the probe fields during the storage or retrieval of the probe field. We analyze
the conditions needed for the vortex to be transferred efficiently to the regenerated probe beam and discuss the
possibilities of experimental implementation of the proposed scheme using atoms such as rubidium or sodium.
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I. INTRODUCTION

During the last several years, there has been a great deal of
interest in slow [1–5], stored [6–18], and stationary [19–25]
light. Light can be slowed down by 7 orders of magnitude to
velocities of several tens of meters per second [1] due to the
electromagnetically induced transparency (EIT) [26–30]. The
EIT makes a resonant and opaque medium transparent for a
probe beam by applying a control laser beam of larger intensity.
The probe beam couples resonantly the ground and excited
atomic states, whereas the control beam couples the same
excited state to another unpopulated atomic ground state. This
makes a � configuration of the atomic energy levels involved,
as depicted in Fig. 1. The optical transitions induced by both
laser beams interfere destructively, preventing population of
the excited atomic state. As a result, a weak pulse of probe
light travels slowly and with little losses in a resonant medium
due to the application of the control laser beam.

The EIT was shown not only to slow down dramatically
light pulses [1–5], but also to store them [7,8,13,15–18]
in atomic gases. The storage and release of a probe pulse
has been accomplished [7,8,13,15–18] by switching off
and on the control laser [6]. The coherent control of the
propagation of quantum light pulses can lead to a number
of applications, such as generation of nonclassical states in
atomic ensembles and reversible quantum memories for slow
light [6,9,10,13,29–33]. On the other hand, propagation of
slow light through moving media [34–41] may be used for the
light memories and rotational sensing devices.

The orbital angular momentum (OAM) [42,43] provides a
new element to the slow light, giving additional possibilities
in manipulation of the optical information during the storage
and retrieval of the slow light. The previous studies have
concentrated on situations where the probe beam contains an
OAM [41,44–47]. In this paper, we consider another scenario
in which a control laser beam can carry an optical vortex. The
intensity of such a control beam goes to zero at the vortex
core, leading to the absorption losses of the probe beam in this
area. To avoid the losses, we suggest the use of an additional
control laser without an optical vortex, so that the total intensity
of the control lasers is nonzero at the vortex core of the first

control laser. The probe along with both control laser fields
induce transitions between the atomic energy levels in a tripod
configuration of the light-atom coupling [48–59], as depicted
in Fig. 2(a). We show that the regenerated slow light can
acquire the OAM if one of the control beams contains it. We
explore conditions for the optical vortex of the control beam
to be transferred efficiently to the regenerated probe beam.

The tripod scheme can be realized for atoms such as
sodium [7] or rubidium [8] containing two hyperfine ground
levels with F = 1 and 2, as depicted in Fig. 2(c). These atoms
have been employed in the original experiments on the storage
of slow light based on a simpler � setup [7,8]. In this situation,
|1〉 and |3〉 correspond to the magnetic sublevels (with mF = 1
and −1) of the F = 1 hyperfine ground level, whereas the
state |3〉 represents the hyperfine ground state with F = 2 and
mF = 1. The probe beam is to be σ+ polarized, whereas both
control beams are to be σ− polarized to make a tripod setup.
Such a scheme can be produced by adding an extra circularly
polarized laser beam �c3 as compared to the experiment by
Liu et al. [7] on the light storage in the sodium gases using
the � scheme. Thus, it is feasible to implement the suggested
experiment on the transfer of optical vortex from the control
to the probe fields using the tripod setup.

The storage and retrieval of slow light is analyzed using
the polariton formalism. The starting point is a set of the
atomic equations together with the equation for the probe field.
Subsequently, we obtain two coupled equations for dark-state
polaritons representing the slow light in the atomic medium.
We provide conditions for when the polaritons are decoupled.
An advantage of polariton formalism is the simplicity of the
relationship between the polariton field and the regenerated
electric field, a feature that is missing in the direct analysis of
the probe beam propagation [59]. Furthermore, the equation
for the polariton has a usual form of matter wave equation,
which describes the atomic evolution when the control fields
are off.

II. INITIAL EQUATIONS

We will deal with an ensemble of atoms characterized by
three hyperfine ground states |1〉, |2〉, and |3〉, as well as an
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FIG. 1. (Color online) Probe and control laser beams acting on
atoms characterized by two hyperfine ground states |1〉 and |2〉 as
well as an excited state |0〉 to form a three-level scheme of the �

type. Atoms are initially in the ground state |1〉. Stimulated exchange
of photons between the probe (E) and contol (�c2) laser fields creates
a superposition of the hyperfine atomic ground states |1〉 and |2〉,
making the medium transparent for the resonant probe pulse.

electronic excited state |0〉. The atomic internal and center-of-
mass dynamics is represented by a four-component field �(r).
Its components �1(r,t), �2(r,t), �3(r,t), and �0(r,t) describe
the atomic center-of-mass motion in the corresponding internal
states |1〉, |2〉, |3〉, and |0〉. In the semiclassical (mean-field)
approach, �j (r,t) defines the probability amplitude to find an
atom positioned at r in the j th internal state, with j = 0,1,2,3.
In the fully quantum approach, �j (r,t) is the corresponding
field operator.

Three beams of light act on the atoms in a tripod configura-
tion of the atom-light coupling [48–59]. Two strong classical
control lasers induce transitions |2〉 → |0〉 and |3〉 → |0〉,
whereas a weaker probe field drives a transition |1〉 → |0〉,
as shown in Fig. 2. The former control lasers are characterized
by the Rabi frequencies �c2 and �c3 to be treated as incident
variables. The latter probe beam is a dynamical quantity
described by the electric field strength

E(r,t) = ê

√
h̄ω

2ε0
E(r,t)e−iωt + H.c., (1)

where ω = ck is the central frequency of the probe photons,
k = ẑk is the wave vector, and ê⊥ẑ is the unit polarization
vector. The probe field can be treated either as a classical
variable or as a quantum operator. The dimensions of the
electric field amplitude E are chosen such that its squared
modulus represents a number density of probe photons.

The probe field is considered to be quasimonochromatic,
and its amplitude E ≡ E(r,t) changes little over the optical

cycle. The slowly (in time) varying amplitude of the probe
field obeys the following equation:(

∂

∂t
− i

c2

2ω
∇2 − i

ω

2

)
E = ig�∗

1�0, (2)

where the parameter g = µ
√

ω/2ε0h̄ characterizes the
strength of coupling of the probe field with the atoms, with
µ being the dipole moment of the atomic transition |1〉 → |0〉.
The quantities on the right-hand side of Eq. (2), i.e., �0 and �∗

1,
represent slowly (in time) varying atomic fields. The asterisk
in �∗

1 refers either to the complex conjugation of a classical
field or the Hermitian conjugation of a quantum field. The
slowly varying atomic fields �j (j = 1,2,3,4) are related
to the original ones as �1 = �1e

iω1t , �2 = �2e
i(ω1+ω−ωc2)t ,

�3 = �3e
i(ω1+ω−ωc3)t , �0 = �0e

i(ω1+ω)t , where h̄ω1 is the
energy of the atomic ground state 1, whereas ωc2 and ωc3

are the frequencies of the control fields.
The atomic equations of motion read as

K̂�1 = V1(r)�1 − h̄gE∗�0, (3)

K̂�0 = h̄(ω01 − iγ )�0 + V0(r)�0 − h̄�c2�2

− h̄�c3�3 − h̄gE�1, (4)

K̂�2 = h̄ω21�2 + V2(r)�2 − h̄�∗
c2�0, (5)

K̂�3 = h̄ω31�3 + V3(r)�3 − h̄�∗
c3�0, (6)

with

K̂ = ih̄
∂

∂t
+ h̄2

2m
∇2, (7)

where ω21 = ω2 − ω1 + ωc2 − ω and ω31 = ω3 − ω1 + ωc3 −
ω are the frequencies of the electronic detuning from the two-
photon resonances, ω01 = ω0 − ω1 − ω is the frequency of
the electronic detuning from the one-photon resonance, and
γ is the decay rate of the excited electronic level. Note that
the inclusion of the nonzero decay rates should be generally
accompanied by the introduction of the noise operator in the
equations of motion [28]. Yet, in the present situation, one
can disregard the latter noise: we are working in the linear
regime with respect to the probe field, so the population of
the excited state is small enough. In addition, m is the atomic
mass and Vj (r) is the trapping potential for an atom in the
internal state j (j = 1,2,3,0). The terms containing atomic
mass m are important for the description of the light-dragging
effects [34–41].

2

3

3

FIG. 2. (Color online) (a) Tripod scheme of the atom-light coupling involving a probe beam (E) and two control beams (�c2 and �c3). The
three beams induce transitions between the atomic excited state |0〉 and three ground states |1〉, |2〉, and |3〉. (a), (b) A control beam with the
Rabi frequency �c2 can have an optical vortex. Application of an additional control laser beam without the OAM (�c3 �= 0) makes it possible
to avoid losses in the propagation of the probe beam at the vortex core, where the amplitude �c2 goes to zero. (c) A possible experimental
realization of the tripod setup for atoms such as sodium [7] or rubidium [8] containing the hyperfine ground states with F = 1 and 2.
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In Eqs. (3)–(6), the coupling of atoms with the probe
and control fields has been written using the rotating wave
approximation. Therefore, the last term in Eq. (3) has a
negative frequency part of the probe field (E∗), whereas the
last term in Eq. (4) has a positive frequency part (E). Similarly,
Eq. (4) contains Rabi frequencies �c2 and �c3, whereas
Eqs. (5) and (6) contain their complex-conjugated counterparts
�∗

c2 and �∗
c3.

The equation of motion (3) for �1 does not explicitly
accommodate collisions between the ground-state atoms. If
the atoms in the internal ground state 1 form a Bose-
Einstein condensate (BEC), the collisional effects can be
included, replacing V1(r) by V1(r) + g11|�1|2 in Eq. (3), where
g11 = 4πh̄2a11/m and a11 is the scattering length between
the condensate atoms in the internal state 1. This yields a
mean-field equation for the condensate wave function �1.

Initially, the atoms populate the ground level 1. We are
interested in the linear regime where the modulus of Rabi
frequency of the probe field �p = gE is much smaller than
the total Rabi frequency of the control beams �c given by
Eq. (9) below. Consequently, one can neglect the last term
in Eq. (3) that causes depletion of the ground level 1. This
provides a closed equation for the ground-state dynamics
K̂�1 = V1(r)�1. If the atoms in the internal ground state 1
form a BEC, its wave function �1 = √

n exp(iS1) represents
an incident variable determining the atomic density n and
the condensate phase S1. The latter phase will not play an
important role in our subsequent analysis, since we are not
interested in the influence of the condensate dynamics on the
propagation of slow light. The phase will be taken to be zero
(S1 = 0) when dealing with the storage and retrieval of slow
light in Sec. IV.

III. DARK- AND BRIGHT-STATE POLARITONS

When the probe photons enter the atomic media, they are
converted into composite quasiparticles of the radiation and
atomic excitations known as polaritons. Let us first introduce
the bright-state polariton �B :

�B = ζc(ξc2�2 + ξc3�3) + ζ1E, (8)

where

�c =
√

|�c2|2 + |�c3|2 (9)

is the total Rabi frequency,

ξc2 = �c2/�c, ξc3 = �c3/�c, (10)

ζ1 = g�1/, ζc = �c/ (11)

are dimensionless parameters, and

 =
√

�2
c + g2n. (12)

The polariton �B represents a specific superposition of the
atomic and the probe fields featured in the equation of
motion (4) for atoms in the excited electronic state. The
latter equation (4) can be rewritten in terms of the bright-state
polariton

K̂�0 = h̄(ω01 − iγ )�0 + V0(r)�0 − h̄�B. (13)

In this way, the bright-state polariton is responsible for the
light-induced atomic transitions to the excited state.

The two dark-state polaritons are defined as superpositions
of the atomic coherences and the probe photons orthogonal to
the bright-state polariton �B1:

�D1 = ζcE − ζ ∗
1 (ξc2�2 + ξc3�3), (14)

�D2 = ξ ∗
c3�2 − ξ ∗

c2�3. (15)

It is to be noted that only the first dark-state polariton �D1 of
the tripod scheme contains the electric probe field component
and thus has a nonzero radiative group velocity. The incoming
light is converted exclusively into this polariton when it
enters the medium. The second dark-state polariton �D2 does
not have any contribution by the probe photons and is thus
characterized by a zero radiative group velocity. It corresponds
to the dark state of the � system consisting of the levels 2, 3,
and 0. The combination ξc2�2 + ξc3�3 featured in Eqs. (8)
and (14) represents the bright state of such a � system. In this
way, only the first polariton experiences the radiative motion,
with the second one being trapped in the atomic medium.

The “bare” atomic and probe fields can be cast in terms of
the dark and bright polaritons of the tripod system as

�2 = ξ ∗
c2(ζc�B − ζ1�D1) + ξc3�D2, (16)

�3 = ξ ∗
c3(ζc�B − ζ1�D1) − ξc2�D2, (17)

E = ζ ∗
1 �B + ζc�D1. (18)

To obtain the equation for the dark-state polaritons, one needs
to take the time derivative of Eqs. (14) and (15) and make use
of the equations of motion (2), (5), (6), and (13).

Suppose the control and probe beams are tuned close to the
two-photon resonance. Application of such beams causes EIT,
in which the transitions |1〉 → |0〉, |2〉 → |0〉, and |3〉 → |0〉
interfere destructively, preventing population of the excited
state 0. As a result, the atom-light system is driven to the
dark states, and the bright-state polariton �B [featured in
the equation of motion (13) for the excited state atoms] is
weakly populated: �B ≈ 0. Neglecting the contribution due to
the bright-state polariton �B (adiabatic approximation), one
obtains the equations for the dark-state polaritons �D1 and
�D2. Introducing a column � = (�D1,�D2)T , it is convenient
to represent these equations in a matrix form

ih̄
∂

∂t
� =

[
−h̄2

2

(
1/mD1 0

0 1/m

)
∇2 + ih̄J · ∇ + U

]
�,

(19)

where the 2 × 2 matrices J and U are defined in Appendix A.
The former J represents a complex vector potential, with U

being a complex scalar potential. Even though the potentials
are complex, the equation of motion (19) is Hermitian and thus
it preserves the norm of the column �. Also,

mD1 =
(

c2

h̄ω
|ζc|2 + 1

m
|ζ1|2

)−1

(20)

is the effective mass of the first dark-state polariton. The
mass mD1 exhibits position and time dependence through its
dependence on the Rabi frequencies of the control fields and
also on the atomic density. The second polariton does not have
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a radiative component, so its effective mass coincides with the
atomic mass m in Eq. (19).

The effective mass of the first polariton can be represented
as

mD1 =
(

1

mrad
+ 1

m

g2n

�2
c + g2n

)−1

, (21)

where

mrad = h̄ω

cvrad
= m

vrec

vrad
(22)

and

vrad = c2�2
c

�2
c + g2n

(23)

are, respectively, the radiative “mass” and the radiative group
velocity of the first polariton, with vrec = h̄ω/mc being the
atomic recoil velocity. In the slow light regime where �2

c 

g2n, the latter vrad ≈ c2�2

c/g
2n is much smaller than the

vacuum speed of light vrad 
 c. The radiative velocity vrad can
be of the order of 10 m/s for the slow light in atomic gases [1].
This greatly exceeds the typical velocities associated with the
center-of-mass motion of cold atoms. For instance, the atomic
recoil velocity is typically of the order of 1 cm/s. Thus, the
second term can be neglected in Eq. (21), giving mD1 ≈ mrad.

A. Co-propagating probe and control beams

Suppose that the control beams propagate along the z axis
with kc2 ≈ kc3 = kc:

�c2 = �′
c2e

ikcz, �c3 = �′
c3e

ikcz. (24)

For paraxial control beams, the amplitudes �′
c2 and �′

c3 depend
weakly on the propagation direction z. It is convenient to
represent the dark-state polaritons as

�D1(r,t) = �′
D1(r,t)eikz, (25)

�D2(r,t) = �′
D2(r,t)e−ikz, (26)

where the amplitudes �′
D1(r,t) and �′

D2(r,t) depend slowly on
the propagation direction z in the paraxial case. Introducing a
column �′ = (�′

D1,�
′
D2)T in Eq. (19) provides the following

equation for the slowly varying amplitudes:

ih̄

[
∂

∂t
+

(
vg1 0

0 0

)
∂

∂z

]
�′

=
[
−h̄2

2

(
1

mD1
0

0 1
m

)
∇2 + ih̄J′ · ∇ + U ′

]
�′, (27)

where the 2 × 2 matrices J′ and U ′ are presented in
Appendix B. Here,

vg1 = vrad + h̄

m
(k − kc)|ζ1|2 (28)

is the group velocity of the first dark-state polariton. It
comprises the radiative group velocity and the velocity of the
two-photon recoil. The latter term can be neglected giving
vg1 ≈ vrad.

B. Decoupled dark-state polaritons

Let us analyze the terms that couple both dark polaritons in
the equation of motion (27). The term with time derivatives in
the nondiagonal elements of the matrix U ′ is proportional to

ξc2
∂

∂t
ξc3 − ξc3

∂

∂t
ξc2 = �c2

�2
c

∂

∂t
�c3 − �c3

�2
c

∂

∂t
�c2. (29)

If both control pulses depend on time in the same manner, i.e.,
�c2 = �

(0)
c2 f (t) and �c3 = �

(0)
c3 f (t), the above term is zero.

Thus, the coupling between the two dark-state polaritons can
be avoided by switching both control pulses off and on in
the same way so that both of them exhibit the same temporal
behavior.

Let us next estimate nondiagonal terms that contain the
spatial derivatives of the control pulses in the equation of
motion (27) and, hence, couple both dark polaritons. Such
nondiagonal matrix elements are of the order of the atomic
recoil energy h̄ωrec = h̄2k2/(2m) and, thus, can be neglected if
the characteristic interaction time between the two dark-state
polaritons τpulse = l/vg1 is small compared with the reciprocal
recoil frequency ωrecτpulse 
 1, where l is the length of the
probe pulse in the medium. The latter condition can be easily
fulfilled for typical slow light pulses, the durations of which
are of the order of a microsecond [1] and thus are much
smaller than the reciprocal recoil frequencies. Consequently,
the polaritons �D1 and �D2 are decoupled and equations for
them can be solved separately.

We are interested in the equation for the first dark polariton.
Such a polariton contains the radiative contribution and thus
describes propagation of the probe pulse of light in the
medium. Neglecting the coupling with the second polariton,
Eq. (27) yields a closed equation for the paraxial propagation
of the first polariton along the z direction:

ih̄

(
∂

∂t
+ vg1

∂

∂z

)
�′

D1

= − h̄2

2mD1
∇2�′

D1 + ih̄J′
11 · ∇�′

D1 + U ′
11�

′
D1, (30)

with vg1 ≈ vrad. Due to the finite lifetime of the excited
atomic state γ −1, the first polariton will experience ra-
diative losses, which are not included in the propagation
equations (27) and (30). Let us now estimate the losses. The
polariton lifetime is determined by the rate of the excited-state
decay and the total Rabi frequency of the control lasers
�c [9]: τpol = γ −1(�c/�ω)2, where �ω is a detuning from the
two-photon resonance. One of the reasons for the appearance
of the two-photon detuning is the finite duration of the probe
pulse �ω = τ−1

pulse. To avoid the losses, the time in which
the polariton transverses the sample should be smaller than
the polariton lifetime: L/vrad 
 τpol, with L being the length
of the atomic cloud. This means that the total Rabi frequency
�c should be large enough:

L 
 vradγ
−1�2

cτ
2
pulse. (31)

Note also that, in the slow light regime, the probe radiation
makes a tiny contribution to the polariton, which is composed
predominantly of the atomic excitations (atomic coherences).
In fact, the velocity ratio vrad/c 
 1 represents a fraction of
the radiation component in the polariton [6,9]. Thus, Eq. (30)
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effectively describes propagation of the atomic coherences
along the z axis at the velocity vrad 
 c appearing due to the
small radiative component.

IV. STORAGE AND RELEASE OF SLOW LIGHT:
GENERAL

A. Storage of slow light

Let us first consider the storage of the slow light. The probe
beam E (s) enters the atomic medium at z = z0. The medium
is illuminated by two control beams characterized by Rabi
frequencies �

(s)
c2 and �

(s)
c3 , where the index (s) refers to the

storing stage of light. Initially, the Rabi frequencies of the
control beams (and hence the group velocity vg1 ≡ v

(s)
g1 ) are

time independent. Neglecting the diffraction effects, one can
thus write

E (s)(t,z) = E (s)(τ,z0), τ = t −
∫ z

z0

(
1/v

(s)
g1

)
dz′. (32)

At the boundary, the probe beam is converted into a dark-state
polariton �

(s)
D1(t) propagating at the group velocity v

(s)
g1 
 c in

the medium. Since the atomic population is created exclusively
by the incident probe light, only the first dark-state polariton
is populated, giving

�
(s)
D1 = E (s)/ζ (s)

c , �
(s)
D2 = 0, (33)

where the temporal and spatial dependences of the first polari-
ton are kept implicit. In writing the last relationship, use has
been made of Eq. (18) relating E to �D1 and �B , together with
the adiabatic approximation implying that �B ≈ 0. For slow
light, the parameter ζ (s)

c ≈
√

v
(s)
g1 /c [featured in Eq. (33)] is

much smaller than the unity. This is why the dark-state polari-
ton �

(s)
D1 contains only a tiny contribution by the electric field.

Equations (16) and (17) together with the condition
�

(s)
B (t) = �

(s)
D2(t) = 0 provide the atomic fields (atomic co-

herences) associated with the first polariton:

�
(s)
2 = −ξ

(s)∗
c2 ζ

(s)
1 �

(s)
D1, �

(s)
3 = −ξ

(s)∗
c3 ζ

(s)
1 �

(s)
D1. (34)

At a certain time t = t (s), the whole probe pulse enters the
atomic medium and is contained in it. To store the slow
polariton, both control fields are switched off at t = t (s) in
such a way that the Rabi frequency ratio �

(s)
c2 /�

(s)
c3 = ξ

(s)
c2 /ξ

(s)
c3

remains constant, whereas ζ
(s)
1 → 1. This gives the following

atomic fields (atomic coherences) at the storing time:

�
(s)
2 (t (s))→−ξ

(s)∗
c2 �

(s)
D1(t (s)), �

(s)
3 (t (s))→−ξ

(s)∗
c3 �

(s)
D1(t (s)).

(35)

The stored atomic coherences no longer have the radiative
group velocity and thus are trapped in the medium. The
retrieval of these coherences is accomplished at a later time
t = t (r).

B. Regeneration of slow light

To restore the polariton propagation, both control fields are
switched on again at t = t (r) in such a way that their the ratio
�

(r)
c2 /�

(r)
c3 = ξ

(r)
c2 /ξ

(r)
c3 is constant. The difference between the

storage and the retrieval times should not be too large, so that

the atomic coherences given by Eq. (35) are preserved up to the
retrieval time. In the initial experiment [7], the light was stored
up to a millisecond, yet the storage duration was increased up
to a second recently [16,17].

If the relative Rabi frequencies ξ
(r)
c2 and ξ

(r)
c3 differ from

the original ones ξ
(s)
c2 and ξ

(s)
c3 , both dark-state polaritons are

regenerated. Using Eqs. (14) and (15), the dark-state polaritons
regenerated from the atomic coherences (35), at the beginning
of the release of light where ζ

(r)
1 ≈ 1, read as

�
(r)
D1(t (r)) = (

ξ
(r)
c2 ξ

(s)∗
c2 + ξ

(r)
c3 ξ

(s)∗
c3

)
�

(s)
D1(t (s)), (36)

�
(r)
D2(t (r)) = −(

ξ
(r)∗
c3 ξ

(s)∗
c2 − ξ

(r)∗
c2 ξ

(s)∗
c3

)
�

(s)
D1(t (s)). (37)

The electric probe field reappears due to the first dark-state
polariton containing a nonzero electric field contribution

E (r)(t) = ζ (r)
c (t)�(r)

D1(t). (38)

Substitution of Eq. (36) into Eq. (38) and using Eq. (33), one
can relate the regenerated electric field to the initial one as

E (r)(t (r)) = ζ (r)
c

ζ
(s)
c

(
ξ

(r)
c2 ξ

(s)∗
c2 + ξ

(r)
c3 ξ

(s)∗
c3

)
E (s)(t (s)). (39)

If both the storing and the retrieval take place in the slow
light regime �(s)

c 
 g
√

n and �(r)
c 
 g

√
n, the above equation

simplifies to

E (r)(t (r)) = �
(r)
c2 �

(s)∗
c2 + �

(r)
c3 �

(s)∗
c3∣∣�(s)

c2

∣∣2 + ∣∣�(s)
c3

∣∣2 E (s)(t (s)). (40)

Propagation of the regenerated polariton �
(r)
D1 is governed by

Eq. (30) in the paraxial case. The polariton �
(r)
D1 propagates

at the velocity vg1 ≡ v
(r)
g1 and might experience diffraction

effects due to the second-order transverse derivatives featured
in Eq. (30). On the other hand, the second polariton �D2 is not
coupled to the light fields and hence remains trapped (frozen)
in the medium.

V. STORAGE AND RETRIEVAL OF SLOW LIGHT:
SPECIFIC SITUATIONS

A. Restored control beams with the same spatial behavior

Let us first analyze the simplest situation where the Rabi
frequencies of the restored control beams are proportional to
the corresponding original ones with the same proportionality
constant b:

�
(r)
c2 = b�

(s)
c2 , �

(r)
c3 = b�

(s)
c3 (41)

and hence ξ
(r)
c2 = ξ

(s)
c2 and ξ

(r)
c3 = ξ

(s)
c3 . Under these conditions,

Eqs. (36) and (37) together with (10) provide the following
amplitudes of the regenerated dark-state polaritons:

�
(r)
D1(t (r)) = �

(s)
D1(t (s)), �

(r)
D2 = 0. (42)

Thus, the second polariton is not populated (�(r)
D2 = 0),

whereas the first regenerated dark-state polariton coincides
with the original one. The corresponding regenerated electric
field

E (r) = bE (s) (43)
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is proportional to the original one and thus does not acquire
the phase singularity of the control beam �c2 (if any). In such
a situation, the vortex can not be transferred from the control
to the regenerated probe beam. In the following subsections,
we will analyze the vortex transfer from the control beam
�c2 to the regenerated probe beam in the case for which the
condition (41) no longer holds. Such a vortex transfer is
accompanied with some population of the second polariton.

It is noteworthy that the regenerated electric field E (r) given
by Eq. (43) is increased (decreased) if the ratio of the total
Rabi frequencies b = �(r)

c /�(s)
c is larger (smaller) than the

unity. On the other hand, the group velocity is increased for
b > 1 and decreased for b < 1. This leads to the compression
(for b < 1) or decompression for (b > 1) of the regenerated
probe pulse as compared to the stored one, a feature known
from the light storage and retrieval in the � system [7]. Note
also that the total number of the regenerated photons is the
same as that in the input beam. This is because the second
polariton is not populated �D2 = 0, so no atomic coherence
remains frozen in the medium.

B. Transfer of optical vortex at the retrieval of the probe beam

Suppose that only one control field is used during the
storage phase of the probe light, i.e., �

(s)
c3 = 0 and hence

|ξ (s)
c2 | = 1. This means that the storage stage involves a �

scheme as depicted in Fig. 1. In such a setup, the control
beam �

(s)
c2 can not carry an OAM; otherwise, there would be

nonadiabatic losses of the probe beam at the vortex core of
the control beam. On the other hand, the retrieval of the probe
beam is accomplished using a tripod system in which generally
both �

(r)
c2 and �

(r)
c3 are nonzero. Under these conditions,

Eqs. (36) and (37) provide the following results for the
regenerated polaritons:

�
(r)
D1

(
t

(r)
i

) = ξ
(r)
c2 ξ

(s)∗
c2 �

(s)
D1

(
t

(s)
f

)
, (44)

�
(r)
D2

(
t

(r)
i

) = −ξ
(r)∗
c3 ξ

(s)∗
c2 �

(s)
D1

(
t

(s)
f

)
. (45)

The second polariton given by Eq. (45) does not have a
radiative component and is trapped in the medium. The electric
field of the probe beam is regenerated exclusively due to the
first polariton and reads as [using Eq. (40)]

E (r) = �
(r)
c2

�
(s)
c2

E (s)(t (s)). (46)

Equations (44) or (46) represent the initial condition for the
subsequent propagation of the polariton in the medium. Such
a polariton will propagate along the z axis with the group
velocity vrad. Its transverse profile will change due to the
diffraction effects represented by the second-order spatial
derivatives in Eq. (30).

If the control beam �c2 carries an optical vortex at the
retrieval stage �

(r)
c2 ∼ ei�ϕ , the regenerated electric field E (r) ∼

ei�ϕ acquires the same phase as one can see from Eq. (46).
This means that the restored control beam transfers its optical
vortex to the regenerated electric field E (r). If the initial control

and probe fields have the same transverse dependence, the
transverse profile of the regenerated electric field will mimic
that of the control field E (r) ∼ �

(r)
c2 ∼ ei�ϕ .

As an illustration, let us take the restoring control laser
�

(r)
c2 to be the first-order Laguerre-Gaussian (LG) beam �

(r)
c2 =

Aρ̃eiϕ exp(−ρ̃2/σ 2
r ), where ρ̃ = ρ/λ is a dimensionless cylin-

drical radius, with λ = 2π/k being the optical wavelength.
On the other hand, the control beam is assumed to be the
zero-order LG beam during the storage stage involving a
� system: �

(s)
c2 = a−1A exp(−ρ̃2/σ 2

s ), where a determines a
relative amplitude of the control fields �

(r)
c2 and �

(s)
c2 , with σr

and σs being their dimensionless widths. This provides the
regenerated probe field

E (r) = aρ̃eiϕ exp
[−ρ̃2

(
σ−2

r − σ−2
s

) ]
E (s)(t (s)). (47)

It is noteworthy that the Rabi frequency of the additional
laser �

(r)
c3 does not enter the above equations (46) and (47)

for the regenerated probe field. Yet, the additional laser plays
an important role to ensure that the lossless propagation of
the restored probe field in a vicinity of the vortex core where
�

(r)
c2 → 0, as one can see from Eq. (31).

C. Transfer of the optical vortex during the storage of slow light

Consider next the opposite situation in which both control
fields are on during the storage phase, so the storage of the
probe beam is carried out using a tripod scheme. On the other
hand, a � scheme is employed during the retrieval of the
probe beam where only one control field is on, i.e., �

(r)
c3 = 0

and hence |ξ (r)
c2 | = 1. In this case, Eqs. (36) and (37) yield the

following results for the regenerated polaritons:

�
(r)
D1

(
t

(r)
i

) = ξ
(r)
c2 ξ

(s)∗
c2 �

(s)
D1

(
t

(s)
f

)
, (48)

�
(r)
D2

(
t

(r)
i

) = ξ
(r)∗
c2 ξ

(s)∗
c3 �

(s)
D1

(
t

(s)
f

)
. (49)

Again, the electric probe field is regenerated exclusively due
to the first polariton and is given by [using Eq. (40)]

E (r) = �
(r)
c2 �

(s)∗
c2∣∣�(s)

c2

∣∣2 + ∣∣�(s)
c3

∣∣2 E
(s)(t (s)). (50)

Equations (48) or (50) represent the initial conditions for the
subsequent propagation of the regenerated polariton governed,
in the paraxial case, by the equation of motion (30). Such
a polariton will propagate along the z axis with the group
velocity vrad, and its transverse profile will change due to
the diffraction effects represented by the second-order spatial
derivatives in Eq. (30). On the other hand, the second polariton
�D2 will be frozen in the medium (neglecting the atomic
motion), and its spatial form is given by Eq. (49).

If the second control beam carries an optical vortex at
the storing stage �

(s)
c2 ∼ ei�ϕ , the regenerated electric field

E ∼ e−i�ϕ acquires an opposite vorticity, as one can see from
Eqs. (48) and (50). The additional control beam �

(s)
c3 does not

have a vortex and hence is nonzero at the center. This ensures
the lossless (adiabatic) propagation of the probe beam during
the storage phase. It is noteworthy that the transverse profile

023812-6



SLOW POLARITONS WITH ORBITAL ANGULAR MOMENTUM . . . PHYSICAL REVIEW A 83, 023812 (2011)

FIG. 3. (Color online) Propagation of the regenerated probe
field in the free space for σ = 10 and a = 1. The � scheme is
used for storage and the tripod system is used for retrieval of the
probe field.

of the regenerated probe field differs now from that of the
storing beam �

(s)
c2 because of the denominator in Eq. (50).

Suppose that the control lasers are the first- and zero-order
LG beams at the storage stage

�
(s)
c2 = Aρ̃eiϕ exp

( − ρ̃2/σ 2
s

)
, �

(s)
c3 =bA exp

( − ρ̃2/σ 2
s

)
,

(51)

where the parameter b determines the relative amplitude of the
additional control laser. On the other hand, the control beam
is assumed to be the zero-order LG beam at the retrieval stage
involing the � scheme: �

(r)
c2 = aA exp(−ρ̃2/σ 2

r ). Thus, one
arrives at the following regenerated probe field containing the
phase-conjugated vortex:

E (r) = a

ρ̃2+b2
ρ̃e−iϕ exp

[ − ρ̃2
(
σ−2

r −σ−2
s

)]
E (s)(t (s)). (52)

It is noteworthy that for b < 1, the transverse profile of
the regenerated beam can differ considerably from the the
Laguerre-Gaussian shape. By decreasing b, the transverse
shape of the regenerated beam becomes narrower. This leads
to a larger diffraction in its subsequent propagation, as will be
explored in the following subsection.

D. Dynamics of the restored probe beams

Let us suppose that the atomic cloud is small enough so
that the diffraction can be neglected during the propagation

of the probe beam in the medium. Such a condition can be
fulfilled readily for a typical cloud of cold atoms, the length
of which normally does not exceed a third of a millimeter [1].
After leaving the atomic cloud, the probe beam propagates in
the free space according to Eq. (2) with g = 0. Since the probe
field is quasimonochromatic, its amplitudeE(r,t) changes little
during an optical cycle. In the stationary case, one arrives
at the following propagation equation for the slowly varying
amplitude of the probe field:

i
∂

∂z
E = − 1

2k
∇2

⊥E . (53)

In the previous two subsections, we have considered two
possible scenarios to regenerate the probe field. In the first
(�-T ) case, the lambda scheme is used for storing the probe
field, whereas the tripod setup is employed for the regeneration.
In the second (T -�) case, the tripod scheme is used for storing
the probe field, whereas the lambda setup is used for the
regeneration. In what follows, we shall explore the subsequent
propagation of the probe beam. The regenerated fields given
by Eqs. (47) and (52) represent the initial conditions for such
a propagation. By taking the initial probe beam to be Gaussian
E (s) = E (s)

0 exp(−ρ̃2/σ 2
p), the regenerated fields for both cases

read as

E (r)
�−T = aE (s)

0 ρ̃eiϕe−ρ̃2/σ 2
,

(54)
E (r)

T −� = a

ρ̃2 + b2
E (s)

0 ρ̃e−iϕe−ρ̃2/σ 2
,

where σ−2 = σ−2
p + σ−2

r − σ−2
s determines the width of the

regenerated probe field measured in optical wavelength λ =
2π/k.

Equation (53) has been solved numerically for σ = 10.
Figure 3 shows the subsequent propagation of the regenerated
beam for the first case. Here the regenerated field E (r)

�−T

represents the first-order LG beam and is proportional to
the relative intensity of the control field at the release and
storage stages �

(r)
c2 /�

(s)
c2 . The subsequent propagation of the

field qualitatively preserves the transverse profile and is
accompanied by some of the diffraction spreading.

Figures 4(a)–4(c) illustrate the second case in which the
tripod scheme is used for the storing and the � scheme is used
for the retrieval of the probe beam. The transverse profile of the
regenerated beam E (r)

T −� is determined by the relative intensity

b of the additional laser beam �
(r)
c3 . For b = 3, the profile is

much narrower as compared to the first-order LG beam with

FIG. 4. (Color online) Propagation of the regenerated electric field in the free space in the case of a tripod system for storage and a �

system for retrieval by taking σ = 10 and a = 1. The parameter b appearing in Eq. (54) is b = 3, 10, and 30 in (a), (b), and (c), respectively.
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the same width σ , as one can see comparing Figs. 3 and 4(a).
Consequently, the light beam spreads out much faster than that
in the first case [see Fig. 4(a)]. When b increases [b = 10 in
Fig. 4(b) and b = 30 in Fig. 4(c)], the profile of the probe
beam approaches the shape featured in the first case. Note that
the increase in the relative intensity b of the additional control
laser is accompanied by the decrease in the intensity of the
regenerated probe beam. Thus, the improvement in the quality
of the regenerated beams comes at the cost of reducing its
intensity.

VI. CONCLUDING REMARKS

Polariton formalism has been applied for studying the
propagation of a probe field of light in a cloud of cold atoms
influenced by two additional control laser beams of larger
intensity. The probe and control beams couple resonantly three
hyperfine ground states to a common excited state in a tripod
configuration of the atomic energy levels. The first control
beam can have an optical vortex. Application of another control
beam without a vortex ensures the lossless (adiabatic) propaga-
tion of the probe beam at the vortex core where the intensity of
the first control beam goes to zero. The adiabatic propagation
of the probe beam is obtained when the total intensity of the
control lasers is sufficiently large at the vortex core.

We have started with a set of atomic equations coupled
with the equation for the probe beam, subsequently trans-
forming them into two coupled equations for the dark-state
polaritons. We have analyzed conditions (related to the laser
pulse durations and switching times) when the polaritons are
decoupled and thus the problem reduces to a single equation
for the polariton. An advantage of polaritonic analysis is the
simplicity of the relationship between the polariton field and
the regenerated electric field. Furthermore, the equation for
the polariton has a usual form of matter wave equation, which
also describes the atomic evolution when the control fields are
off.

The probe pulse is stored onto the atomic coherences and
subsequently retrieved by switching off and on the control
beams. As a result, the optical vortex can be transferred from
the control to the probe fields during the storage or retrieval.
Two scenarios have been analyzed in more detail. The first
case involves a � system for the storage and a tripod system
for the retrieval. In such a situation, the phase of the vortex is
transferred from the restoring control beam to the regenerated
probe beam. In the second case, the tripod system is used for
the storage and the � system is used for the retrieval. The
vortex phase is then transferred from the storing control beam
to the regenerated probe beam in the phase-conjugated form,
so the probe beam acquires an opposite vorticity. The profile of
the regenerated probe field is well preserved in the first case.
On the other hand, in the second case, the regenerated beam
becomes narrower and thus experiences larger diffraction
spreading. The width of the regenerated beam can be controlled
by changing the intensity of the additional control beam during
the storage phase.

The tripod setup can be realized for atoms such as
sodium [7] or rubidium [8] containing two hyperfine ground
levels with F = 1 and 2, as depicted in Fig. 2(c). The scheme
can be produced by adding an extra circularly polarized laser

beam �c3 as compared to the experiment by Liu et al. [7] on
the light storage in the gases using the � scheme. Thus, it is
feasible to implement the suggested experiment on the transfer
of the optical vortex from the control to the probe fields using
the tripod setup.
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APPENDIX A: MATRIX ELEMENTS IN THE EQUATION
FOR THE DARK POLARITONS

The elements of the matrix J featured in Eq. (19) are

J11 = ih̄

(
c2

h̄ω
ζc∇ζc + 1

m
ζ ∗

1 ∇ζ1

)
+ |ζ1|2JB2, (A1)

J22 = i
h̄

m
(ξ ∗

c3∇ξc3 + ξ ∗
c2∇ξc2), (A2)

J12 = i
h̄

m
ζ ∗

1 (ξc3∇ξc2 − ξc2∇ξc3), (A3)

where

JB2 = i
h̄

m
(ξc2∇ξ ∗

c2 + ξc3∇ξ ∗
c3). (A4)

The elements of the matrix U in Eq. (19) read as

U11 = −h̄2

2

(
c2

h̄ω
ζc∇2ζc + 1

m
ζ ∗

1 ∇2ζ1

)
+ ih̄ζ ∗

1 ∇ζ1 · JB2

+ |ζ1|2UB2 − h̄ω

2
ζ 2
c + ih̄

(
ζc

∂

∂t
ζc + ζ1

∂

∂t
ζ ∗

1

)
, (A5)

U22 = − h̄2

2m
(ξ ∗

c3∇2ξc3 + ξ ∗
c2∇2ξc2) + [h̄ω21 + V2(r)]|ξc3|2

+ [h̄ω31 + V3(r)]|ξc2|2 + ih̄

(
ξc3

∂

∂t
ξ ∗
c3 + ξc2

∂

∂t
ξ ∗
c2

)
,

(A6)

U12 = − h̄2

2m
ζ ∗

1 (ξc3∇2ξc2 − ξc2∇2ξc3)

+ ζ ∗
1 ξc2ξc3[h̄ω32 + V3(r) − V2(r)]

+ ih̄ζ ∗
1

(
ξc2

∂

∂t
ξc3 − ξc3

∂

∂t
ξc2

)
, (A7)

U21 = − h̄2

2m
ζ1

(
ξ ∗
c2∇2ξ ∗

c3 − ξ ∗
c3∇2ξ ∗

c2

) + ih̄
1

ζ1
∇ζ1 · J21

+ ζ1ξ
∗
c2ξ

∗
c3[h̄ω32 + V3(r) − V2(r)]

+ ih̄ζ1

(
ξ ∗
c3

∂

∂t
ξ ∗
c2 − ξ ∗

c2
∂

∂t
ξ ∗
c3

)
, (A8)

where

UB2 = − h̄2

2m
(ξc2∇2ξ ∗

c2 + ξc3∇2ξ ∗
c3) + [h̄ω21 + V2(r)]|ξc2|2

+ [h̄ω31 + V3(r)]|ξc3|2 + ih̄

(
ξ ∗
c2

∂

∂t
ξc2 + ξ ∗

c3
∂

∂t
ξc3

)
.

(A9)
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APPENDIX B: MATRIX ELEMENTS IN THE PARAXIAL
EQUATION FOR THE DARK POLARITONS

Using Eq. (24), the parameters ξc2 and ξc3 have the form
ξc2 = ξ ′

c2e
ikcz, ξc3 = ξ ′

c3e
ikcz, where ξ ′

c2 and ξ ′
c3 slowly change

with the distance z within the optical wavelength. The diagonal
elements of the matrix J′ entering Eq. (27) are given by

J′
11 = ih̄

(
c2

h̄ω
ζc∇ζc + 1

m
ζ ∗

1 ∇ζ1

)
+ |ζ1|2J′

B2, (B1)

J′
22 = i

h̄

m
(ξ ′∗

c3∇ξ ′
c3 + ξ ′∗

c2∇ξ ′
c2), (B2)

where

J′
B2 = i

h̄

m
(ξ ′

c2∇ξ ′∗
c2 + ξ ′

c3∇ξ ′∗
c3). (B3)

The nondiagonal matrix elements of J′ read as

J′
12 = J12e

−i(k+kc)z = i
h̄

m
ζ ∗

1 ei(kc−k)z(ξ ′
c3∇ξ ′

c2 − ξ ′
c2∇ξ ′

c3),

(B4)

J′
21 = J21e

i(k+kc)z = J′∗
12. (B5)

The diagonal matrix elements of the complex scalar potential
U ′ in Eq. (27) are

U ′
11 = −h̄2

2

(
c2

h̄ω
ζc∇2ζc + 1

m
ζ ∗

1 ∇2ζ1

)
+ ih̄ζ ∗

1 ∇ζ1 · J′
B2

+ |ζ1|2
(

U ′
B2 + h̄2(k − kc)2

2m

)
+ ih̄

(
ζc

∂

∂t
ζc+ζ1

∂

∂t
ζ ∗

1

)
,

(B6)

U ′
22 = − h̄2

2m
(ξ ′∗

c3∇2ξ ′
c3 + ξ ′∗

c2∇2ξ ′
c2)

+ [h̄ω21 + V2(r)]|ξc3|2 + [h̄ω31 + V3(r)]|ξc2|2

+ ih̄

(
ξ ′
c3

∂

∂t
ξ ′∗
c3 + ξ ′

c2
∂

∂t
ξ ′∗
c2

)
, (B7)

where

U ′
B2 = − h̄2

2m
(ξ ′

c2∇2ξ ′∗
c2 + ξ ′

c3∇2ξ ′∗
c3) + [h̄ω21 + V2(r)]|ξc2|2

+ [h̄ω31 + V3(r)]|ξc3|2 + ih̄

(
ξ ′∗
c2

∂

∂t
ξ ′
c2 + ξ ′∗

c3
∂

∂t
ξ ′
c3

)
.

(B8)

Finally, the nondiagonal elements of the complex scalar
potential U ′ are given by

U ′
12 = − h̄2

2m
ζ ∗

1 ei(kc−k)z(ξ ′
c3∇2ξ ′

c2−ξ ′
c2∇2ξ ′

c3)

+ ζ ∗
1 ei(kc−k)zξ ′

c2ξ
′
c3[h̄ω32 + V3(r) − V2(r)]

+ ih̄ζ ∗
1 ei(kc−k)z

(
ξ ′
c2

∂

∂t
ξ ′
c3 − ξ ′

c3
∂

∂t
ξ ′
c2

)
,

U ′
21 = − h̄2

2m
ζ1e

i(k−kc)z(ξ ′∗
c2∇2ξ ′∗

c3 − ξ ′∗
c3∇2ξ ′∗

c2)+ ih̄
1

ζ1
∇ζ1 · J′

21

+ ζ1e
i(k−kc)zξ ′∗

c2ξ
′∗
c3[h̄ω32 + V3(r) − V2(r)]

+ ih̄ζ1e
i(k−kc)z

(
ξ ′∗
c3

∂

∂t
ξ ′∗
c2 − ξ ′∗

c2
∂

∂t
ξ ′∗
c3

)
.
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438 (2010).

023812-10

http://dx.doi.org/10.1103/PhysRevLett.102.213601
http://dx.doi.org/10.1103/PhysRevLett.102.213601
http://dx.doi.org/10.1103/PhysRevLett.104.033903
http://dx.doi.org/10.1103/PhysRevLett.105.173603
http://dx.doi.org/10.1103/PhysRevLett.105.173603
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1103/RevModPhys.75.457
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/PhysRevLett.100.093602
http://dx.doi.org/10.1103/PhysRevLett.100.093601
http://dx.doi.org/10.1103/PhysRevLett.100.093601
http://dx.doi.org/10.1088/1367-2630/11/1/013049
http://dx.doi.org/10.1088/1367-2630/11/1/013049
http://dx.doi.org/10.1103/PhysRevLett.84.822
http://dx.doi.org/10.1103/PhysRevA.66.021603
http://dx.doi.org/10.1103/PhysRevLett.88.070404
http://dx.doi.org/10.1103/PhysRevLett.88.070404
http://dx.doi.org/10.1103/PhysRevA.67.023809
http://dx.doi.org/10.1103/PhysRevA.67.023809
http://dx.doi.org/10.1103/PhysRevA.67.011602
http://dx.doi.org/10.1103/PhysRevLett.92.253201
http://dx.doi.org/10.1103/PhysRevLett.92.253201
http://dx.doi.org/10.1364/OL.31.002205
http://dx.doi.org/10.1103/PhysRevA.76.053822
http://dx.doi.org/10.1103/PhysRevA.76.053822
http://dx.doi.org/10.1016/S0079-6638(08)70391-3
http://dx.doi.org/10.1103/PhysRevLett.93.193602
http://dx.doi.org/10.1103/PhysRevLett.93.193602
http://dx.doi.org/10.1103/PhysRevLett.98.203601
http://dx.doi.org/10.1103/PhysRevA.77.043815
http://dx.doi.org/10.1103/PhysRevA.77.043815
http://dx.doi.org/10.1103/PhysRevA.79.023825
http://dx.doi.org/10.1103/PhysRevA.79.023825
http://dx.doi.org/10.1016/S0030-4018(98)00358-7
http://dx.doi.org/10.1103/PhysRevA.66.015802
http://dx.doi.org/10.1103/PhysRevA.70.032317
http://dx.doi.org/10.1103/PhysRevA.70.023822
http://dx.doi.org/10.1103/PhysRevA.70.023822
http://dx.doi.org/10.1103/PhysRevA.70.053822
http://dx.doi.org/10.1103/PhysRevA.70.053822
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevA.71.023806
http://dx.doi.org/10.1016/j.optcom.2005.10.021
http://dx.doi.org/10.1103/PhysRevA.75.013810
http://dx.doi.org/10.1103/PhysRevA.75.013810
http://dx.doi.org/10.1016/j.optcom.2007.07.025
http://dx.doi.org/10.1016/j.optcom.2007.08.012
http://dx.doi.org/10.1134/S0030400X10030197
http://dx.doi.org/10.1134/S0030400X10030197

