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We propose a method of constructing cold atom analogs of the spintronic device known as the Datta-

Das transistor (DDT), which, despite its seminal conceptual role in spintronics, has never been success-

fully realized with electrons. We propose two alternative schemes for an atomic DDT, both of which are

based on the experimental setup for tripod stimulated Raman adiabatic passage. Both setups involve

atomic beams incident on a series of laser fields mimicking the relativistic spin-orbit coupling for

electrons that is the operating mechanism of the DDT.
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The emerging technology of semiconductor spintronics
exploits the electron’s spin degree of freedom, as well as its
charge state. The first scheme for a semiconductor spin-
tronic device was a spin field-effect transistor known as the
Datta-Das transistor (DDT) [Fig. 1(a)] [1]. The 18 years
since the theoretical proposal have seen numerous exper-
imental efforts to construct the DDT. Various experimental
obstacles, such as difficulties in spin injection, stray elec-
tric fields, and insufficient quality of spin-orbit coupling
have prevented successful implementation of the DDT [2].

Cold atom systems, in contrast with their electronic
counterparts, are highly controllable and tunable. This
suggests the possibility of designing precise atomic ana-
logs of electronic systems which, due either to fundamental
physical limits or technological difficulties, are experimen-
tally inaccessible in their original manifestations. The idea
grows out of recent interest in ‘‘atomtronics,’’ or building
cold atom analogs of ordinary electronic materials, devi-
ces, and circuits [3–5]. In particular, an atom diode has
been proposed [3] and realized [5].

In this Letter, we identify a method for constructing
a cold atom analog of a Datta-Das transistor. The setup is
based on a four level ‘‘tripod’’ scheme of atom-light cou-
pling [6–8] involving three atomic ground states and one
excited state [see Fig. 1(b)]. Such tripod schemes are an
extension of the usual three-level �-type setup for stimu-
lated Raman adiabatic passage (STIRAP) [3,9], and are
experimentally accessible in metastable Ne, 87Rb and
a number of other gases [10,11]. The proposed device
provides a robust method for atomic state manipulation
that is immune to the inhomogeneities intrinsic to pro-
grammed Rabi pulses.

The source terminal of an electronic DDT [Fig. 1(a)] is
a ferromagnetic electrode that emits spin-polarized elec-
trons. The DDT drain terminal, a ferromagnetic analyzer,
acts as a spin filter. Between source and drain is a semi-
conducting gate region, in which the gate-induced electric
field produces a Rashba spin-orbit coupling [12] for elec-
trons. While passing through the gate region, the electron’s

spin precesses; the electron emerges at the drain having
undergone a spin rotation which is tunable via the gate
voltage. Since the drain passes only a certain spin direc-
tion, the drain current is an oscillating function of the gate
voltage.
Our atomic analog of the DDT [Figs. 1(c) and 1(d)] uses

a beam of atoms in place of electrons. The two dark states
in the tripod setup play the role of the electron’s spin states,
and the ‘‘source’’ is a dilute atomic beam. The ‘‘gate’’
region consists of crossed laser beams engineered to mimic
Rashba or Rashba-like spin-orbit couplings [13–17]; the
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FIG. 1 (color online). (a) Schematic of a DDT. ‘‘S’’ and ‘‘D’’
are ferromagnetic source and drain electrodes. In between is
a semiconducting gate region, where the spin precesses by an
amount which depends periodically on the tunable gate voltage
Vg. This precession results in a controllable current modulation

at D. (b) A tripod scheme of atomic energy levels, coupled by
laser fields with Rabi frequencies �i. (c),(d) Two alternative
setups for an atomic version of the DDT. Here, the source is a
state-polarized atomic beam (blue arrow labeled ‘‘S’’), the gate
is the intersection region of a configuration of laser beams (red
arrows labeled �1, �2, and �3), and the drain is an atomic state
analyzer (green squares).
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analog of the gate voltage can be tuned by varying the
relative strengths of the lasers. The drain is a state-selective
atomic filter, such as a Stern-Gerlach device or radio-
frequency or Raman outcoupler [18]. While the goal of
this Letter is to explore the possibility of constructing the
atomic analog of spintronic devices, the two dark states of
the tripod atom can be considered qubit states [19–22]; in
this context the atomic DDT represents a single-qubit
phase gate for a dilute atomic beam. In contrast to typical
single-qubit gates, this setup does not involve time-
dependent pulses, and the amount of the qubit rotation
within the gate region is independent of the atom’s veloc-
ity, due to the geometric nature of the process.

Tripod scheme.—The proposed DDT implementations
exploit the tripod scheme [Figs. 1(b) and 1(c)] [6–
8,10,11,23], in which a four-level atom feels two counter-
propagating stationary laser beams and a third orthogonal
beam [14,16,17]. The lasers induce transitions between the
ground states jji (j ¼ 1, 2, 3) and an excited state j0i with
spatially dependent Rabi frequencies �1 ¼ j�1je�i�0x,
�2 ¼ j�2jei�0x, and �3 ¼ j�3jei�0z, �0 being a wave
number.

The electronic Hamiltonian of a tripod atom is, in the
interaction representation and rotating wave approxima-

tion, Ĥe ¼ �@�jBih0j þ H:c:, where jBi ¼ ðj1i��
1 þ

j2i��
2 þ j3i��

3Þ=� and �2 ¼ j�1j2 þ j�2j2 þ j�3j2. Ĥe

has two degenerate dark states jDji containing no excited

state contribution: ĤejDji ¼ 0, j ¼ 1, 2. An additional

pair of bright eigenstates j�i ¼ ðjBi � j0iÞ= ffiffiffi
2

p
is sepa-

rated from the dark states by �@�. For the light fields of
interest, the dark states can be chosen as

jD1i ¼ ðsin’j1i0 � cos’j2i0Þ; (1)

jD2i ¼ "ðcos’j1i0 þ sin’j2i0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
j3i; (2)

with j1i0 ¼ j1iei�0ðzþxÞ and j2i0 ¼ j2iei�0ðz�xÞ, where

" ¼ j�3j=�; ’ ¼ arctanðj�1j=j�2jÞ (3)

characterize the relative intensities of the laser beams. The
dark states jDji � jDjðrÞi are position dependent due to

the spatial variation of the Rabi frequencies �jðrÞ.
Let us adiabatically eliminate the bright states, so that

the atom evolves within the dark-state manifold. The full
atomic state vector can then be expanded as j�ðr; tÞi ¼P

2
n¼1 �nðr; tÞjDnðrÞi, where �nðr; tÞ describes the motion

of an atom in the dark state jDnðrÞi. The atomic center of
mass motion is thus represented by a two-component wave
function � ¼ ð�1; �2ÞT obeying [7]

i@
@

@t
� ¼

�
1

2M
ð�i@r�AÞ2 þU

�
�; (4)

where A is the effective vector potential [7,24–26] repre-
senting a 2� 2matrix whose elements are vectors,An;m ¼
i@hDnðrÞjrDmðrÞi. The particular light field configuration
we have chosen yields

A 11 ¼ �@�0ðez � cosð2’ÞexÞ; (5)

A 12 ¼ �@"ð�0 sinð2’Þex þ ir’Þ; (6)

A 22 ¼ �@�0"
2ðez þ cosð2’ÞexÞ; (7)

with ex and ez the unit Cartesian vectors. The 2� 2matrix
U with elements Unm ¼ ð@2=2MÞhDnðrÞjrBðrÞi�
hBðrÞjrDmðrÞi is an effective scalar potential; both A
and U arise due to the spatial dependence of the atomic
dark states.
Suppose the incident atom has a velocity vmuch greater

than the recoil velocity vrec ¼ @�0=M � 0:5 cm=s for
87Rb. In this limit, the laser beams do not significantly
change the atom’s velocity, permitting a simplified semi-
classical approach with no reflected waves. We apply

a gauge transformation �ðr; tÞ ¼ eiMv�r=@�iMv2t=2@ ~�ðr; tÞ,
implying transition to a reference frame moving with
velocity v, where the two-component envelope function
~� varies slowly with r over the atom’s wavelength � ¼
h=ðMvÞ. Keeping only terms containing v (or its time
derivatives), we arrive at the following approximate equa-
tion for ~�:

i@ð@=@tþ v � rÞ~�ðr; tÞ ¼ �v �AðrÞ~�ðr; tÞ: (8)

As the omitted scalar potentialU and the A2 term are of the
order of the recoil energy @!rec ¼ @

2�2
0=2M � Mv2=2,

the fast moving atoms will not feel these potentials. For
incident velocities v of the order of vrec or smaller, the
atomic motion will undergo a Zitterbewegung [15,27]
which is beyond the scope of the present study. While
the atoms must move much faster than the recoil velocity,
they should also be slow enough to avoid coupling to the
bright states. We provide a quantitative analysis of these
limitations near the end of the Letter.
In both of the DDT schemes to be presented, the oper-

ator v �A commutes with itself at different times. Going to
a moving frame of reference r0 ¼ r� vt, we can thus
relate the wave function ~� at time t ¼ tf to the wave

function at a previous time t ¼ ti through
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FIG. 2. Schematics of the first (a) and second (b) setups for an
atomic transistor: The atom, along its trajectories [shown in
Figs. 1(c) and 1(d)] sees the above profile of laser fields.
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~�ðr0; tfÞ ¼ expði�Þ~�ðr0; tiÞ: (9)

The 2� 2 Hermitian matrix � ¼ �@
�1

Rtf
ti Aðr0 þ vtÞ �

vdt describes the evolution of the internal state of the
atom as it traverses the path from ri ¼ r0 þ vti to rf ¼
r0 þ vtf,

� ¼ � 1

@

Z rf

ri

AðrÞ � dr: (10)

Our subsequent analysis of the atomic dynamics will cen-
ter on Eqs. (5)–(7), (9), and (10).

Atomic analogs of the DDT.—We first consider the setup
depicted in Figs. 1(c) and 2(a). The atoms are incident
along the y axis, along which laser beams 1 and 2 are
relatively shifted [6,8,10,23], so that

Ay ¼ @�y"ðyÞ@’ðyÞ=@y: (11)

Equations (10) and (11) yield

� ¼ ��y; � ¼ �
Z yf

yi

"ðyÞ @
@y

’ðyÞdy; (12)

where � is the mixing angle, �y (or �x) being the usual

Pauli matrix. By taking the initial and final times suffi-
ciently large, we have yi ! �1 and yf ! þ1.

As Figs. 1(c) and 2(a) show, the first laser beam domi-
nates as the atom enters the gate region, while the second
dominates as it exits the region. In between, the atom also
feels the third beam. This configuration results in a gate-
induced rotation of the atom’s internal state by a mixing
angle �. Specifically, suppose the atom enters the gate
region in the internal state j3i ¼ �jD2ðr0; tiÞi, with center
of mass wave function �ðr0Þ. The atom then exits the gate
region in the rotated state

~�ðr0; tfÞ ¼ ��ðr0Þ sin�
cos�

� �
: (13)

Thus, the probability for the atom to emerge in the second
dark state is cos2�. Note that the second dark state co-
incides with the third internal ground state upon exit:
jD2ðr0; tfÞi ¼ �j3i. This gate-controlled state rotation is

an atomic analog of the action of the DDT. Define � ¼
j�3j=j�1j as the relative amplitude of the third laser at the
central point. The specific relation between � and � de-
pends on the particular choice of light field configuration
and is readily derived from Eqs. (3) and (12). For arbitrary
light field configurations, � is a complicated space-
dependent function. However, for the particular laser con-
figuration we examine here, � simplifies to a function
solely depending on �, and � controls �. Figure 3 shows
the dependence of � on � for Gaussian laser beams. As in
the electronic DDT, the transmission coefficient cos� is
independent of the velocity of the incident atoms, so that
the transistor properties are robust to a spread in atomic
velocities. We estimate the regime of validity of this in-
dependence near the end of the Letter.

Since "ðyÞ 	 1, the mixing angle given by Eq. (12)
ranges from 0 to �=2, and the sensitivity j��j=j��j of

the DDT is on the order of unity. Small changes in the
relative Rabi frequency�will thus lead to small changes in
the mixing angle: j��j 
 j��j. We next analyze an alter-
native setup which enables us to create a more sensitive
DDT.
Now suppose that the first two light beams counter-

propagate along the x axis with equal intensities
[Fig. 1(d)], i.e., ’ ¼ �=4 in Eqs. (5)–(7) for A. After the
trivial gauge transformation exp½i@�0ð1þ "2ÞzI�, the
light-induced vector potential resembles the Rashba spin-
orbit coupling which is the spin rotation mechanism of the
electronic DDT:

Az ¼ � @�0

2
ð1� "2Þ�z; (14)

Ax ¼ �@�0"�x; Ay ¼ 0: (15)

The atomic beam crosses the lasers at an angle in the x-y
plane, with initial velocity components vx � 0 and vy.

Although the atomic motion in the y direction does not
affect the internal state rotation (Ay ¼ 0), sending the

beam in at an angle removes the experimental difficulty
of having the atoms incident from the same direction as the
laser beams. Along its trajectory, the atom feels the laser
beam profile illustrated in Fig. 2(b). The evolution matrix
of Eq. (10) is then

� ¼ ��x; � ¼ �0

Z xf

xi

"ðxÞdx: (16)

Initial and final times are taken sufficiently large that the
spatial integration runs from xi ¼ �1 to xf ¼ þ1.

As in the previous scheme, the intensity of the third laser
vanishes (" ! þ0) outside the gate region [see Fig. 2(b)].
Only the third laser’s intensity has significant spatial de-
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FIG. 3. The mixing angle � vs the relative amplitude of the
third field � for the first (solid line) and the second (dashed line)
setups. The amplitudes of the beams are Gaussian: j�1j ¼
a expð� ðuþ �Þ2=w2

1Þ, j�2j ¼ a expð� ðu� �Þ2=w2
2Þ, and

j�3j ¼ a� expð�u2=w2
3 � �2=w2

1Þ, with u ¼ y (first setup) or

u ¼ x (second setup). In the first setup, w1 ¼ w2 ¼ w3 ¼ � ¼
2�, with � ¼ 600 nm being the laser wave length. For the
second setup, all the beams are centered at the same point (� ¼
0) and have the widths w1 ¼ w2 ¼ 10w3 ¼ 20�.
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pendence inside the gate region, the intensities of the
first two lasers being nearly constant there. In both setups,
the controlled state rotation arises from the spatial depend-
ence of the beams in the gate region. In the first setup the
variation is in the lasers’ relative intensities. Contrastingly,
in the second setup, the intensities of the first two lasers are
constant in the gate region, so the controlled state rotation
is driven by only the relative phases of the counterpropa-
gating laser beams.

As in the previous setup, the atom enters the gate region
in the internal state j3i ¼ �jD2ðr0; tiÞi and with center of
mass wave function �ðr0Þ. The atom exits in the rotated
state

~�ðr0; tfÞ ¼ ��ðr0Þ i sin�
cos�

� �
; (17)

where the mixing angle � is controlled by the variation of
the relative intensity of the third laser beam.

To estimate the mixing angle, suppose that �3, and
hence ", do not change significantly in the gate re-
gion. Equation (16) then gives � ¼ �0 �"L, where L [see
Fig. 2(b)] is the length of the area in which the third laser
has the strongest intensity. Note that the mixing angle is
now proportional to L, as well as to the average strength
�0 �" of the spin-orbit coupling. This behavior is in direct
analogy to the electronic DDT [1]. As in Eq. (2) of [1], the
output power of the atoms in the internal state j3i is P ¼
cos2� ¼ cos2ð�0 �"LÞ. Using this atomic setup, � ¼ �0 �"L
can be much larger than �=2, provided L � ð�0 �"Þ�1, as
shown in Fig. 3. Small changes in the relative amplitude of
the third laser � ¼ j�3j=j�1j can therefore yield substan-
tial changes in the mixing angle: j��j 
 j��j�0L. The
sensitivity of such a DDT, j��j=j��j 
 �0L, can far
exceed unity if L is much greater than the optical wave
length � ¼ 2�=�0.

Let us estimate the range of atomic beam velocities for
which our approximations are valid. The atom crosses the
gate region in a time 	 ¼ L=v. Because of nonadiabatic
coupling to the bright states, the dark-state atoms have the
finite lifetime 	D ¼ �2=
�!2 [28], where 
 is the excited
state decay rate and �! ¼ v@’=@y
 v�=L (first setup),
or �! ¼ v�0 (second setup). The frequency shift �!
represents the two-photon detuning due to the finite time
of the atom-light interaction (first setup) or the two-photon
Doppler shift (second setup). To avoid decay, we require
the beam to be in the adiabatic limit, i.e., 	=	D � 1.
Taking � ¼ 2�� 107 Hz [29], 
 ¼ 107 s�1, �0 ¼
2�=�, � ¼ 600 nm, and L ¼ 4�, we require atomic ve-
locities v � 100 m=s for the first setup and v � 1 m=s
for the second setup. The increased sensitivity in the
second scheme thus comes at the expense of increased
nonadiabatic losses.

Ultracold atoms are highly tunable and controllable, and
can thus serve as quantum simulators for a variety of other
systems, including systems which have yet to be experi-
mentally accessed in their original manifestations. In this

Letter, we have identified an atomic analog of one such
system, the spin field-effect transistor. Our atomic tran-
sistors, like their electronic counterpart, provide control-
lable state manipulation that is relatively insensitive to the
thermal spread of beam velocities. The devices we have
proposed are based on the familiar tripod STIRAP config-
uration, and appear to be feasible within current experi-
mental procedures.
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Europhys. Lett. 83, 54002 (2008).
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