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Historical remarks

Linear waves D'Alembert's solution. Dispersionrelations.
The Burger's equation. TheKorteweg and deVries equation.
The scattering and inverse scattering problems.

The nonlinear Schrodinger equation, itssoliton solutions.
Hirota's method and Bicklund transformations.

Further integrable non-linear differential equations,

the Lax formulation.

The Fermi-PastaUlam problem.

Models for dislocations in crystals. The sin€ordon equation.
Kink soliton solutionsin A¢* model

|dea of topological classification

Sigmamodel, Baby Skyrmions, Skyrmions and Hopfions
Magnetic monopoles
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Solitons and lufnps in non-linear physics

Solitons knots,vortonsandsphaleronsn the electroweak and
strong interactiongaloronsolutions in QCD, €balls, black
holes, fullerenes and ndimear optics, etc...

Soliton: This is a solution of a nonlinear partial differentid equation which
represent a solitary travelling wave, which:

Has a permanent form;

It is localisedwithin a region;

It does not obey the superposition principle;
It does not disperse.

Optical fibres - NLSE

6 ' Josephson junctions - sine-Gordon model

Bose-Einstein condensate - Skyrme model
Superconductivity = Abrikosov-Nielsen-Olesen model
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_ . Soliton wavefunction of trans-polyacetylene
Jupiter's Great Red Spot — vortex soliton doped by a counter ion — kink soliton










J SRusselobservation of Solitary Waves

John Scott Russell (1808-1882) - engineer, naval architect and shipbuilder

S.S. Great Eastern
(1858)

Union Canal at Hermiston, Scotland




John ScottRusselAgueduct

“l was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of the
vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which continued its course along the
channel apparently without change of form or diminution of speed...”



This Is Impossible !!!

George Airy: [

The Gt Hlove o Fronslitin k

- Unconvinced of the + s A f

Great Wave of Translation W

- Consequence of linear

wave theory? - =

G. G. Stokes: /
-Doubted that the solitary wave Observation by J Scott Russel:
could propagate without change in form 2 = g(h + A)

Boussines1871) andrayleigh(1876):

- Discovered a correct nonlinear
approximation theory



Linear wave eguations

Simplest (second order) linear wave equation: I

Pu  ,0%u o There is no dissipation
9¢2 02 ==> o There is no dispersion

D'Alembert's solution  u(z,t) = f(x — ct) + g(x ct) f,garearbitrary functions

—~ —————

Harmonic wave solution fu,(a;, t) — ei(k"’_wt) = k—w=0

(Dispersion relation)
rescalingt—ct. | u; +uz =0

Less simple linear wave equation with dispersion: I Ut + Ug + Uggz = 0

k_kB —Ww :O e kx — wt = k[$ — (]. — k2)t] Wavelength

H*A‘;H

X\

Phase velocity depends on the wave number:

vpz%zl—k2




Dispersion and Dissipation

wlx — ez’(k:c—wt)
{( ) _Z_o A(k) dk} b

dw/

group velocity: Vg = e 1 — 3k?

Question: If the dispersion finction w(K) is always real ?

Less simple linear wave equation with dissipation: I

i,

The wave decays exponentially!

Odd powers in spatial derivatives — dispersion

Even powers in spatial derivatives — dissipation




Non-linear wave equations

Simple Non-linear wave equation: I Us + Uy + VU = U + (1 +u)u, =0
. 4
/

Propagation velocity depends on the wave profile: ¢ =14 u

General non-linear wave solution: I u(a;, t) = f[CL' - (1 + U)t]

However: @ An explicit solution u(x,t) can be not a single-valued function of X

@ The solution becomes sharp at leading and trailing edges
(shock wave formation)

@ There is no superposition of the solutions

How about the dispersion/dissipation? I

@ Korteweg- de Vries equation (1895)
(non-linear + dispersion)

ut + (1 + w)ug + Ugze =0

@ Burgers equation (1906)
(non-linear + dissipation)

ut + (1 + w)ug — Uz =0




KdV equation: Solution

@ Reparametrisation |:
af B B
l+u—au, t— 0t z—yr = Ut+7uuw+$umw—0

Let us consider a particular case | Uz + 6uum 4+ Upaa = 0

@ Reparametrisation Il: We are looking for solutions of the type u(z,t) = u(x — vt)

du db ,
@uzu(ﬁ) where 6 = x — vt — Ut = g g = VU
d U — @d_@ —u U — "
—vu’ + 6un’ +u" = @(—vu+3u2 -I-u") =0 7 dl dz ) Teaw

{J

' +3ul—vu+C =0 ‘ X integrating factor u'

@V 2 v ]
g TUW —Qu T Cru=0C2 | i the “otential”  Vess = u® — §u2 + Cru

It looks like an equation of motion of a “particle”




KdV equation: Solitons

+ud— 22+ Cu=C, Boundaryconditions: u=1u' =0, as 6 — oo

@2 2
du

Ci=Cy=0, df= Separation of

U
1 d
| 6 — 6o = / -
Vou2 — 2u3 variables ﬁuo w1 — 2u

Soliton solution of the KdV equation: w0y _ Esech2 (\gﬁ)

v : : :

Note: e A= — --amplitude is proportional to
the velocity of propagation while the “width” is proportional to v/v
- taller solitary waves are thinner and move faster

vl
——csch2 (\f ) - singularity at « = vt

e There is another solution: u(0) 5

e More general solutions can be found for other choices of C, and C,

e KdV equation has multisoliton solutions

e There is anti-soliton solution of the another KdV equation obtained by
replacing U —-U . Uz — 6uuw + Uppr = 0

e KdV equation is not Lorentz-invariant



KdV equation: shallow water waves

Assumptions:

_ | A LA
e amplitude of the waves is small w.r.t.
water depth, A/lh <1 u(z, t) h
e Long waves on shallow water: h << A

e Nearly 1d motion
e Unrotated incompressible inviscid liquid

The Euler equation for such a system bounded by the rigid plane (bottom)

and by a free surface from above: .
surface tension

u—§ 9 geu + uu —|—10u o= —

//7 1
Ratio € = A/ 5 |

Note: If the depth A > A the equation is reduced |

04
03

Ut = CUy

01

0 &




KdV eqguation: Boundary conditions and other solutions

) total “energy”
u — v
( 2) + Verr = Ch; Veff:u3——u2—|—C’1u /
U, /-

2

@ Solitary wave: C; =C2 =0

The function V(u) has a local maximum at u=0
The soliton solution corresponds to the ‘motion’
from V' (0) at 8 — —co toV(uy) at § — oo
@ Cnoidal wave: a general solution, C7,Cy # 0

2
(Z—Z) = 20 — 2u® + vu® — 2C1u = 2(u; — u)(uz — u)(u3z — u)
du
Assume that u1 < ug < ug === 5= +1/2(u; — u)(ug — uw)(us — u)

The cubic P(u) = 2(u1 — u)(u2 —u)(uz —u) >0 for wus <u < ug

@ Reparametrization:

u 0 [ — us—up.
e I
P(u) Us =ty V1 — k2sin? ¢ 3 —\Us—h)SIL ¥




KdV equation: Cnoidal waves anasoliton lattice

Uz — ux

Cnoidal wave solution: I u(f) = us — (ug — ’uz)/87n2(77); n = 5 0

Jacobi elliptic function

What does It mean?

k) = sin ¢; 5 0 B
(64 /¢1 s’ _’{ k)=cosp (&R Fen(&k) =
(57 ) = sin¢; Trigonometric
For ¢ =27 For k= 0 cn(€,0) = cosé limit

Complete elliptic integral

/\/1—k2sm 90_4’C /\/\
Soliton lattice: I = 2\[16

m Ll e
JARVRVAAVARVAR

Note: If the limit k=1 the soliton solution sech(¢) is recovered




Linear transport equation

Simplest non -linear PDE equation Us + Ul = 0 @ Poisson and Riemann
(dispersionless KdV equation) t xr — (1820s)

Definition: the solutions to the PDE are constant on the characteristic curves ()

The characteristic curves are the level sets of the characteristic variables

dx
@ Example | - Linear transport equation %t + Cgy = ( s> o c = const

. . / . o o
The solutions are travelling waves © = u(@) where 0 = z — ¢t = characteristic variable
dx

@ Example Il - Linear transport equation Ut — TUy =0 commi - = —
The characteristic variable is 0 = ze® @

The general solution: u(z,t) = f(6)
The initial data u((),g;) — f(;;;),e.q. u((),g;) —
Then

1
1+ x2

—2t

u(e,t) =1/(1+(@e)) = 5




Non-linear transport equation

Uy + UUyp = 0 Definition: the solutions to the PDE are constant on the
characteristic curves which are solutions to the autonomous ODE

dx
— = t
Note: du =u d—x—l—u = UlUg + Uy = 0 o> dz = u(xg,0) = const
St At TR a0
The characteristic curve must be a straight line: T = o + u(zo,0)t

The characteristic variable is § = ¢ —ut  The general solutionis u(z,t) = f(0)

@ Example Ill - Non-Linear transport equation has a solution f@) =ab+p
ax + 3

Then u(z,t) = a(z —ut) + 5 == u(z,t) =

There is a problem:
e Straight lines may have a different slope, so they may cross...

@ First (trival) scenario: all characteristic lines are parallel — u = const
@ Second (less trival) scenario: the function f(f) increases monotonically,

all characteristic lines never cross ast > 0 — rarefaction wave
@ Third (non-trival) scenario: f/(9) < 0 - there are multiply-valued solutions

— shock wave formation




Lecture 1. Summary

@ KdV equation: U + 6uuw + Upgpr = 0

Non-linearity Dispersion

( v
@ Soliton solution of the KdV equation: u(f) = —sech” %,.

& Cnoidal wave solution of the KdV equation:




Burgers equation: Solution

Simplest non-linear equation S ——— =0
with viscous term (diffusion): t x — YUgx =

@ Traveling wave solution:

ou , Ou , Ou ,
‘ ’U,:’U,(H), 0 =1 — vt T %—U,, @—’U;, E——’U’U,,
/ ; __n | Separation of B 1 2
—vu 4+ uu = yu variaples == vu + gU" — YU =0
0_ 4 2vdu Boundary conditions: u =u' =0, as 6 — oo
RGN / u? — 2uu
9—9():;].1'1 1—; == ) 1_e%(w—vt)

\




Burgers equation: theHopf-Cole transformation

Remarkable observation: the non-linear_ Burgers @ J. Cole and E. Hopf
equation can be converted Into the linear___ heat equation! (1950 - 1951)

@ Reparametrisation:
u(z,t) = @8 5 ¢(z,t) = lnu(w t) ‘

Up = a¢te = @y, e Uy (O‘¢azw + O‘2¢2)

Potential Burgers equation: I Gt = YPzz + 0:7¢3; ‘

@ Differentiation with respect to X: Pzt = YPzzz + 20YPz Pz

0
Definition: the potential functionis u = 8—i - | Ut = YUzg + 207UUL

Any positive solution v(z,t) to the linear heat equation solves the Burgers equation:

0 Vg
u(zx,t) = Ey (—2vInv(z,t)) = —277



KdV equation: Conservation laws

Definition: A conservation law is an equation of the form %{ %X 0
T
Note: the non-linear transport equation\ /
has the form of the conservation law: Conserved density @ Flux
ou O (u2> 00 .
Ut + Uy = + =0 d 8X
ot Oz \ 2 — Tdxr = —dr=X| =
~ / dt / Ox |_
—00 — 00
@ Example | - KdV equation Ut — 6UUL + Ugpgr = 0
Oou O 9 .
+ (um — 3u ) = () =P | udx = const = M  Conservation of mass
ot Ox
—0Q0
0 (u? 0 V5
@ Ut — OUUL + Ugpgpy = 0| XU o p (5) + o (uum—Zu _7) =0
/— x = const =P Conservation of momentum

Conservation of energy

>
@3u2>< KAV +wu, x 38 KdV»/(u + )dw= const = FE
0

0 u+ 2 + — —gu4—|—3uu 6uu + u,u —1 2 1=0
8t 8(17 4 TT x Y 92 Uspn



Apropos: KdV Lagrangian

1
U — 3(@,,2)3c + Uppy =0 | < [ = §¢w¢t — @3 _

Field equation: | Pot — 3(62), + Proza =0 ¢s =u

Symmetries of the KdV field theory I

@Translational invariance: Conservation of momentum
o0 oo
1 1
P = _ 2 — 2
5¢t qbwdx /qudx 5 /u dz
— o0 — o0
aTime invariance Conservation of energy
oo
H = L—— dr = 142 + ¢3 ) dz = 1u2—|—u dx
a¢t 2 rxr T 2
—00 —00

a@Scale invariance: ¢ — ¢ + 0¢

M = /%dx_ /qﬁmda:—— /'u,da:

Conservation of mass



KdV eqguation: Gardner transform

TlN’U,; T2~u2; T3~u3...

Ty = 5u* + 10uuy +u2,; T = 21u® + 105u2u2 + 21luu? | + u?__

TxT)?

Gardner transform: | | u = w + ew, + Ae*w® | == U + UUz + Ugge = 0

0
Up = Wy + €Wy + 2ACWW; = (1 -+ 63— + 2Ae2fw) Wy
T

0
Uy +Uppy = (1 + €5 + 2Ae2w) (Wwy + Wazer + AW wy) +€Mw

Trick: we can take A=-1/6

o € e
Ut +UUp +Uppe = |1+ 66— — —w Wt + WWy + Wege — —W W,
oxr 3 6

If W satisfies the Gardner equation €2 200 =0
u=w+ew, — EuP /6 satisfies KAV | Wt T WWs + Wazg — g Wy =

-
Note: the Gardner equation can be a_w_|_£ w €. 3 _
written as conservation law: \at Oz




KdV equation: Conservation laws- How many?

o0
u=w + ew, — e2w?/6 == Why don’t we try the expansion w = Z e"w, ?
n=0
By comparing powers of €

awo awl 1 2 ﬁ
Wy =U; W = ——F7— =~Uyp; Wy = + —wy =Mlgy + U ...

Ox Oz 6 6
For n =3 Ow.. 1 173
Wy, = — 67.; - 4 3WWn—2+ ¢ I; Wi W —2—k

Substituting the expansion of w into the Gardner equation and collecting powers of €
o0

2 2

o /' ot  Ox \ 2 \18
oT 0X = 2 ¢

w €

—N. _ _ n . - - =3 — n
[3t+3x —0,] T(e)—’w—Ze Tn; X(e) = 5 " 1g¥ + Wypyp ?;)e X,

n=0
2 2
wi u
Xo= - T Woez = 5 +Uzs; X1 = WoW1 +Wigs = —Uls — Usag)- -

There is an infinite number of independent local conservation laws!! I



KdV equation as a Hamiltonian System

. _ 0JH

Note: the KdV equation can be writtenas Ut = 5 <
ox du

00 00 )

Here 1 IS the “energy” integral and the
H = /T3d:13 = /(u3 — Zu?)dzx

variational derivative of the functional
Hlu] = [f(u,uz;z)dzis

y
oo )

The Poisson (H,G} = 0H 0 <5G) 0H _0f d (3f)
)

bracket : N Ou,

ou Oou dx

— OO

Note: integration by parts yields H = /(u3 + Uy, )dr == (;_H = 3u? + QU
U

Question: How to link it to the traditional form of the fimtdimensional Hamiltonian syste

Fourier expansion: u(z,t) = Y uxe*® wmp {qr, = up/k, pr=u_p, H=--H}

We recover the usual Hamiltonian equations % — 8_7-[, % — _8_7-[
dt 0D dt oqy.
. o0
OH 0G
with the Poisson bracket {H,G} = % Z kauk u_,

k=—o0



Lecture 2: Summary

Existence of the infinite tower of conservation laws — strong indication
that we deal with a completely integrable system

U + 6uuy + Uppe =0

What does it mean?

@ Gardner (1971) : The KdV equation represents an infinite-dimensional
Hamiltonian system with an infinite number of integrals of motion in involution
@ Gardner, Greene, Kruskal & Miura (1967): Inverse Scattering Transform
(IST) method : the method to solve an initial-value problem for the KdV
equation within a class of initial conditions.

@ Zakharov,Shabad and other (1971): Inverse Scattering Transform for the
nonlinear Schrodinger equation (NLS), the Sine-Gordon equation and many

other completely integrable equations.

Note: The availability of the travelling wave (and, in particular, soliton) solutions

for the KdV equation does not constitute its integrability. Practically the complete
integrability means just the ability to integrate the KdV equation for a reasonably
broad class of initial or boundary conditions.




KdV equation: Linearization?

Question: if the infinite number of conservation laws for KdV means
that it is an analogue of a completely integrable Hamiltonian system?

Recall: the Burgers equation can be solved exactly through the Hopf-Cole transform:

Vo= Voo =0 <mm u=-2%2 =ty — e =0

How about KdV? U — buuy + Ugppr = 0

@ Step |: Miura transform: I u = v? + v, (ﬁ —|—2v) (vt —("yusz _|_me) —0

Ox N ~ Y
o Step Il: | jnearization fhe modified KdV equation? Should we try I @
Uw:'%bww_’sbﬁ < ’U=ﬁ »vt_6v2vw+vwww20
Y v 2 ¥

Galilean symmetry of KdV: © — u+ E === “Schroedinger” equation: @

Potential Eigenvalue (mode) Eigenfunction

This is like quantum mechanics!!



KdV equation: scattering problem

@ Scattering problems: given a potential 1, determine the spectrum {y,E}
@ Inverse scattering problem: given a spectrum {y,E} , determine the potential

Assume u(+o0) =0 — |¢|? is integrable over R and it is normalizable
The discrete spectrum:  ¥n(x) = che™ %, E = —k2 as = — 00

: . 2
The continuous spectrum:  E =k*, ke R Reflection coefficient

—ikx 1 : ikr L R(k)e ik _
o B P B (k)e as T — —00
f = V@E) = | e s 7 - +o0
> \ Transmission coefficient

»

Question: What happened if uw = u(x,t) such that u(z,t) solves KdV equation?

Naive answer: the eigenvalues E, which in general depend on t through the 9
parametric dependence in 1z, should change as t varies .

(@ Theorem I: If u(x,t) solves the KdV equation and it vanishes as « — £00 A

the discrete eigenvalues of the Sturm-Liouville problem Yz + (A —uw)y =0

. do not dependon't )




KdV equation: scattering problem

U
Recall: the soliton solution of the KdV equation is u(x) = — g
A cosh”(z)
> : : j V : U
‘ SRR e tion e + [ X+ —0
SturmLiouville equation:; [ ( o2 (w)> (U ]

@ Change of variable: n = tanhz @

Remark: There are certain
eigenvalues for those the

d Oy A
3_77 ((1 — nz)a—n) + (uo + 1 772) v=0 potential is reflectionless

Discrete spectrum:ug = l(I +1); A= —k? < 0 - Legendre polinomials
d¥ 1 d
p=PP = (-1 -2 Bm); Pi(n) = 5o (0 — 1)
dn ) 21! dn
P() 1—p2 =~ P(O)_ — tanh
Examples: n coshz’ n anh x

. ik
Continuum:  ¢g(x) = AmFm(a,b, cz); z= 1—J2rna

a=4—ik+\[ll+D+] b=4—ik—\JIl+1)+§ c=1—ik
F(C)F(a’ +b— C) —ikx AF(C)F(C —a— b) eikw
I'(a)l'(b) |, I'(c—a)l'(c—b)

;(1 Reflection coefficient

Asymptotically: Yr(x) ~ A
T — —00 \




Linearized KdV and the Fourier transform

Consider linearized KdV equation: [ Ut + Ugzz = 0; 2 €R, u(z,0) =up(x) }

+oo +o00
: 1 : .
@ Fourier transform: wu(k) = 2—/ u(z)e”*dx; wu(zx,t) = /u(k,t)e”k‘”dk
(9

g (7, 1) = a% / u(k, £)e*=dls = (ik) / u(k, £)e*e dks = / g (I, ) e dk

ug(k,t) = iku(k,t), Ugzz(k,t) = —ik3u(k,t)

Fourier transform of the linearized KdV: us(k,t) — z'k3u(k, t)=0

= !

ulk,t) = up(k)e—iF"t  mmpe u(z,t) = / e~ Kt g—kay (1) dk

- F )
u(z,0) == y(k,0)
PDE ‘ ‘ Time evolution
w(z, t) <t u(k,0)e "t

- (i o




Scattering problem and the Fourier transform

Question: What is the analogue of the Fourier transform for KdV? I
This is the Sturm-Liouville equation! I Yoz + (A —u)p =0

e + R(k)e~** as x — —o0
Y(zk) = { T (k)et*® as & — +00

& S {?(k’g) } D

u(x,) — (k. 0)

Sturm- Liouville ‘ Time evolution

SR bt

3 steps for solving the KdV equation:.

@ Given the initial conditionu(x,0) consideru as a potential in the Schrodinger equation
and calculate the discrete spectrubv= —x? ,the norming constant, = ¢,(0)  and
reflection coefficientR(k) = R(k;0)

@ Introduce time dependence of these spectral daaigenvalueg; — —x2 are fixed

@ Carry out the procedure of the inverse scatterioglpm to recoveu(z, t)




KdV eqguation: Lax Pair

Remark |: the KdV equation can be linearised via the spectral theory of the
Schrodinger operator but not by means of an explicit change of variables

Remark II: the KdV equation u; + 6uu, + U, = 0 can be viewed as a
compatibility (integrability) condition for two linear differential equations for

the same auxiliary functions)(z, t; \)
_ Spectral problem
Evolution problem L= (—8% — — )\ —
onpodlem. Ly = (~02, — u)yp = X
Ve = Ay = (—403,, — 6ud; — 3uy + C)Yp = (ug + C)p + (4X — 2u)ip,

A is a complex parameter, C(A,t) depends on normalization of i

Compatibility condition + | | (4, ), = ()ee + Ae=0 = KdV
Isospectral evolution:

Homework: Prove it!
The operators L and A are referred to as the Lax pair.
Remark IlI: the spectral equation L ¥ is the Schrddinger equation we discussed!

Remark iV: the KdV equation is isospectral, i.e. Ay =0




Remark V: the KdV equation can be represented in an operator form as
L; =LA — AL = [LA]

This operator representation provides a route for constructing the KdV _hierarchy
by appropriate choice of the operator A. Indeed, given the L-operator, the A-

operator in the Lax pair is determined up to an operator commuting with L, which
makes it possible to construct an infinite humber of equations associated with the
same spectral problem but having different evolution properties.

@ KdV hierarchy Uy + gLnﬂ[u] — 0
x
1 0 0> 0 ou
L = —; —L, = —=—+4+4u—+2— | L,
ol 2’ ox il (8:63 * Yo i 8:1:) v
@ Lifu] = u; =l uy+uz =0
@ L2[u] = Ugy T+ 371'2; mmp U + 6UUL + Ugge = 0
G) Ls[u] = Uzzzs + 10utee + 5u + 10u?;

up + 10Ul ypy + 30U Uy + 20Uptipy + Upppps = 0



Lax Pair operator formulation

Consider 2 linear equations: Ve = Lp;  he = AY Y= ( pu e )

Ya1 P22

"ptw — A:c"vb + A"vbw

@ { Wet = Lty + Ly %Azﬁ = Aw"p + AL¢, Ly — As = [A’ L]

Zero curvature condition

(1 0 (0 u
oLetustake | L =1 (0 _1) 1 (1 0) , AeC (an educated guess)

— . . . 92
A= —4)2[ — 2\ ( 0“ Z“"’) + (“"’ Wige + 200 )

U 21U — Uy
:

. T . - Ug —1 T T ) T 41 x
L= (8 "g) Ay = —4i)2 (8 “(’))—m(g ” )+<2"fm i _Z "‘“)

Equalising the coefficients:

0 |ut (0 (Ugge + Ouug KdV equation!
—z(o O) A, —|—[AL]))\0 (O 5 ) q I
(W (W A du (W (W
The spectral equation: I’vbw =Ly = o (,pii 1,0;2 — i —i) zp; 7,0;2

2y = i1y + uthay;
2apar = P11 — iAoy

Ly

2
| [{882 +u+ )\ } W91 = ()J Spectral problem
4




KdV eqguation: Direct scattering problem

@ Discrete spectrum ¥y (z,0) ~ c,(0)e™"*"* as x — Foo

ikx —ikx —
@ Continuous spectrum ’l,b(.’L', k) — { ;-v(k)_;lﬁ(k)e :: i : _|_§

Substitution into the second Lax equation yields for spectral data of continuum:
: dR . dTl’
Yy = Ay = (—483,, — 6udy — 3uy +c)yp == (A1) =4k’ — =8ik°R; —- =0

Hence | R(k,t) = R(k,0)e**t: T(k,t) = T(k,0)

Substitution into the second Lax equation yields for spectral data of the discrete spectrum:

d
c=cp, = 4K} = % = 4cpkS = c{,(t) = cn(O)e4"?lt

Remark: the bound state problem can be viewed as an analytic continuation of the
scattering problem defined on the real k-axis, to the upper half of the complex
k-plane. Then the discrete points of the spectrum are found as simple poles k = ik
of the reflection cofficient R(k)



KdV eqguation: Inverse scattering problem

It is well known from 1950s that the potential of the Schrodinger equation can be
completely recovered from the scattering data — Gelfand-Levitan-Marchenko equation

We define the function of the scattering data

Continuum data

Discrete spectrumdata — | N 1 0 —

F(x,t) = Z c2e fn® 4 o R(k,t)e**dk
n=1

— 00
Then the potential u(x,t) can be restored from the equation

[u(:t:, t) = 2(%1{(:,;, z, t)]

where function K(a:, Y, t) can be found from the linear integral-differential GLM equation
o0
K(@,y)+ Fla+y) + [K(@2)Py+2)dz =0
X

Note: at each step of solving of the KdV equation we consider a linear problem



Lecture 3: Summary

[ e** 4 R(k)e™™*® as z— —o0
¢(l‘, k) - { T(k)eikw as = — +oo
€ S_ [ Rk,0 =
Sturm- Liouville ‘ ‘ Time evolution
R(k,t
U(T, 1) ~m— T(k ¢

. S+

3 steps to solve the KdV equation:
@ Given the initial conditionu(x,0) consideru as a potential in the Schrodinger equation
and calculate the discrete spectrulh= —x? ,the norming constanf, = c¢,(0)  and
reflection coefficientR(k) = R(k;0) (scattering data)
@ Introduce time dependence of these spectral deaitienvalueg; — 2 are fixed
@ Carry out the procedure of the inverse scatternoblpm to recoveu(z, t) making use
of the GLM equation:

_4

K(z,y)+ F(x+y) + /OOK(:I:, 2)F(y+2)dz=0

e —
F(z,t) = E:cie_""”c +5- R(k,t)e**dk u(z,t) = 2%1{(337 z,1)

— o0



