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KdV Inverse scattering problem: examples

@ One bound state: N=1, reflectionless potential: R(K)=0, cn(t) = cn(O)e‘l”"it
N (0 @)

1 .
F(z,t) = E e T 4 or R(k,t)e " dk == [F(x,t) = 02(0)e—nw+8n3t }
n=1
A — 00 B l(l _I_ 1) . B 2 B -
»u(x) = _cosh2(:13)’ A= —K", [K‘, =K = 1}

[— Sturm-Liouville equation (I1=1): I Ve = + m Y = @
spectrum B

Single normal discrete mode: ¢1( ) \f cosh:z: — %‘ Tasx — o0
The scattering data c(t) = \/§e4t c(0) = V2
T |F(x,t) = 2577

GLM equation: l K(z,y;t) + 28— (@+y) —|—2/K x,2;1)eS 0T dy = 0 =lg

/
Ansatz: K(z,y,t) = M(x,t)e” Y = M(az,t) +2e¥7%+ 2M (z, t)e® /e_2zdz =0

T

M = 27 => u(z,t) = ZQK(CE z,t) —[2 sech?(z — 4t)]
(w’t)__]__'_eSt—Zw T Tex T

One-soliton solution propagating to the right




KdV Inverse scattering problem: examples

@ Two bound states: N=2 , reflectionless potential: R(k)=0,

) (10+1)=6; A=—k?, k1 =1; Ky =2]

6 . Two normal
Vo + ()\ + cosh? :13) Y =0 discrete modes: @
Y1 =1/3 coeny — V0 a0)=v6 = ai(t) = Ve
o= 5 comnrs 230 e |20 =2V = alt) =23

cosh? z
[ § :C e K,nw_ 8t :1:_|_12664t 2:1:]

GLM equation: I
oo

K(x,y;t)+6e~

(2+9) 1 12842V 1 | K(z, ;1) {668t—(y+z) n 12664t—2(y+z)} dz =0

Collecting the coefficients

X
Ansatz: K(x,y,t) = Mi(z,t)e”? + My(x,t)e” %Y at e Y and e %Y

y

\

oo o0
Mj + 6e3~% 4 6eB {Ml [e=22dz + M, fe_3zdz} =0 @
r r

oo o0
My + 125422 4 12064 {M1 [e=3*dz + M [ e_4zdz} =0
T r



2-soliton solution of the GLM equation; . K (z,x,t) = Mi(z,t)e™® + My(z,t)e

6(e72t—57 — 8t—)
1 + 3e8t—2z } 3ebdt—4z | oT2t—6a
12(e84t—20 4 gT2t—4x)
1 + 3e8t—2z } 3ebdt—4z | oT2t—6a

M1 (SU, t) =

MZ(xv t) —

N
@ N bound states, reflectionless potential: R(K)=0 == F(z,t) = Z 2 (t)e rn®

n=1

N
The ansatz for the solution of the GLM equation: K (x,y,t) = Z M, (x,t)e”" Y

n=1



KdV Inverse scattering problem: Nsoliton solution

_ L 2
The solution of the GLM equation is given by [u — 2~ Indet Az, t)}
02

Here the N X N matrix A is defined as

2
A =06 + cn(o) e—(nn—nm)w+8nit

Kn + Em

Asymptotically, ast — +oo this solution of the KdV equation represents a
superposition of N single-soliton solutions propagating to the right and ordered
In space by their speeds (amplitudes):

N
t) ~ Z 262 sech?®[kn (z — 4k2t — )]

The position of the n-th soliton is given by:

1 02 Kr — K N Kp — KR

The N-soliton solution is characterised by 2N parameters: K1 ...KN,C1 (0), ce CN(O)

The evolution is isospectral, i.e. kK, = const - the solitons preserve their amplitudes
(and velocities) in the interactions; the only change they undergo is an additional
phase shift 0n = z} — 1z, due to collisions.



KdV solitons 2-soliton solution

A(x,t) =1+exp {F&l(CE —x1) — 4/4:?15} + exp {KQ(CE —Z3) — 4/<,§t} Uy = 2@ In A(z, t)
2
k1 — K -
+ (Kzi +Iiz) exp{kal(a: —x1) — 4K3t + Kp(T — T2) —4/<,gt}

Asymptotically, as t — oo
up(z,t) ~ 23 sech?[ky (T — 43t — 1) + 23 sech [k (x — 4k3t — 22)]

For a two-soliton collision the outcome is the phase shift (fil > f‘éz)

1 1
51=2x1=—ln(nl+l€2), 5222332:——11&(/{1_'_&2)
K1 K1 — K2 K2 K1 — K2

As a result of the interaction, the taller soliton gets an additional shift forward by
the distance 6, while the shorter soliton is shifted backwards by the distance -9,



KdV solitons 2-soliton collision

Fast and slow solitons interaction for the KdV Equation
Fast and slow solitons interaction for the KdV Equation

10

10

10 20 30 40




KdV solitons Hirota method

Another way around: Let us apply a different approach to find the 2-soliton solution

@ Step I: Substitute into the KdV  |u = vy| =i Uy + 6UUL + Ugyy = 0

Lsoliton KdV @ 6?1: (vt + 3v2 + Vgzz) =0 Potential KdV equation: I
-SOlIton
u(f) = _SeCh2 (@) = v(0)=+v (tanh [\fﬁ ])

o Step Il:  Hirota substitution < 2V ) Na

_ oMz, _ NGT)
V0 1 1 =2—; n=1+e

@ v=2n;/n=20,Inny | =) Ut—|—3vi—|—vwm =
NwtN — Nat + Nezwet — MzNezz + 30>, = 0 | Hirota form of KdV (bilinear equation) I
D f - 9j= (00, —05,)" f(z1)g(22)| =G, f(z+y)g(z—y)

L1=T2=I
[DLLTI n= 2(77mm77 NNz + 3773;3:)} @
- [Dthﬂ L= 2(773:7577 ), %ﬂt)}

(D; + DyDy)n-n=0

Hirota's D-operator

y=0




Hirota'’s bilinear operator

DXf-g=(0n—0:)"f(@)g(ea)

Note: the operator D acts on a product of 2 functions similar to the usual Leibniz
rule, except for a crucial sign difference:

Dyf-9=feg— f9s
DyDif - 9= f9ct — fo9t — [t9z + [t
Dg2r;f 9= fra9 — 2f09c + Guuf
How to construct the soliton solutions of KdV D, (Dt + Dg) n-n=07?

Almost Perturbatively ! I _ K=+

@ Trivial solution: 7 =1 @1 —soliton_solution: n=1+¢€’; 6= kz— 3+ &

o 2-soliton_solution: 7 =1+e% +e% +aer™ g, = g,z — K3t + 5§0);

0 — K1 — K2 2 " szmgx—/igt—l—Jéo)
K,(1>o-|-f%2

@ N-soliton solution: n =1+ Z €"nn(x,t) - expansion in powers of €

n=1 N 0.
m = E :6 * - N-soliton
=1

m = e%1_ 1-soliton m = et + %2 - 2-soliton



Nonlinear Schrodinger Equation

Non-linear Schr 6dinger equation: i1y + e + 20|0|*h = 0 o= 4+1

Lagrangian: | L = (Y] — p™) + %|¢m|2 — %|¢|4

. 1 o
Symmetries: Hamiltonian: | H = §|¢w|2 + §|¢4|
@Translational invariance: t—>t, z—o>x+0z, Y=Y
o : One-parameter Lie
@Time invariance: t—>t+0t, T—x, Yv—Y group of symmetries

aScale invariance: t—=a’t, T—az, Y —Y/a

@Galilean invariance: t—>t, r—>zxz—ct Y — ¢eic(w—§t)/2




NSE Solitons

1t + Yo + 20|¢|2'¢ =0

Ansatz for the soliton solution: ¥(z,t) = u(m)ew(t) - | — U + Uy + 20u° =0

d T
¢—u—+2au2=C’= const —>|¢p = Ct

@ dt ~ w
X integrating factor U, === (ug)? = —ou* + Cu?® + Cy

Upy = —20u> + Cu

Shape of the solitary waves depends on the sign of o

@ Bright _Soliton : =1 (Focusing NLS) (u:z:)2 = —u* + Cu* + Cp

du
. . _ , _ _
Boundary conditions: u =4 =0, as T — o0 = /u\/C— —uZ /da:

{

[Simplest solution (C=1): © = sech z; ¢ =t =—> 1) = sech meit] —In (”— Vi_“z) =2

Using Galilean and scale symmetry: Homework: Consider C=-1

Two-parameter family
of bright solitons




c=2 c=5 c=10 c=20
Re ¢
~NJ | U

Instability of the bright soliton : for sufficiently large values of c the envelope has
spatial oscillations of the same period as the carrier wave

@ Dark Soliton : o=-1 (Defocusmg NLS) (u,,g)2 =ut + Cu2 + C’o

[¢ —tanh—e % ] Homework: Consider C=1‘ Two-parameter family

f \f of dark solitons

> C C2

Simplest solution (C=-1, C,=Y%4):

c=1 c=3 c=10 c=20

/\ 55 =Y \/\ /\5 /\/\ Mﬂﬂﬂﬂl\nnﬂﬂ!\ﬂﬂﬂ Hmnmmmmumu
AV \/ \/\/\/V\ IUUUWWUUUUUUM wvm'm"mumlw




FocusingNSE:Breathers

shallow water surface waves

‘Euler hydrodynamical equations —___
" >| deep water surface waves | NLS equation I

Freak (rogue) wave: a single wave or a very short wave group with a signicantly
larger steepness than the surrounding waves — Breather solution of the NLS equation

KdeequatiOh;

cos({2t — 2ik) — cosh(k) cosh(pzx) J2it,
cos({2t) — cosh(k) cosh(pz) ’

Note: While for a bright soliton there is always a reference frame where the
envelope [¢| is stationary, this is not so for breathers (“dynamical solitons")

P = Q = 2sinh(2k), p = 2sinhk

Limit of zero breathing period & — 0

Peregrine breather (1983)

A4 ]
14+ 422 4+ 16¢2




ZS-AKNS technique

The ZS-AKNS scheme is a generalisation of the Sturm-Liouville equation

Zakharov and Shabat - Ablowitz, Kaup, Newell, and Segur

@ Consider the 2x2 spectral linear problem %bg(cl) &Y —iMb(l) +q(z, t)¢(2)
P = ixp® + p(z, )y

Note: If p(x,t) = 0we recover
the linear Sturm-Liouville equation:

(2) 2 (2) Time evolution: ¢§1) 5 A(x)¢(1) T B(w)¢(2)
‘D:_A; Amqu—pB

(p()), = (¢(“)) —r B;,; + 2iAB = q; — 2Aq;  Various solutions of this system
* — 2iAC = p; + 2Ar yield different integrable PDE

We take p = — = —2i\? +909q*;  provided that g(z, t) satisfies NLS:
o=%1" = < B =2\ igs; igs + qzz + 20qg = 0
= —20q* )\ +i0q; @

W = (—2i22 +io|g)p® + (29 + igy)yp®
§)—( —20¢* A +iog})yM) + (2i\% — ioq*)yp™®




NLS direct scattering problem

@ Focusing NLS: o=1 Spectral problem: I { M = —ixp® + g(z, t)yp®@

g(z,t) > 0asz — too |9 =ixp® — ¢*(z, )™

Complex conjugation: if (¢(1), ¢(2)) is an eigenvector, so is (¢(2)*, —w(l)*)

Asymptotically (w(l),zp@)) — (k1e7%, kpe™™?) as x — +00 | Jost solutions

Consider the set {(zp(l) ), (2%, —pD* } [(¢(1) ¢(2)) — (€7*,0) as £ — 400
(

@ as a basis for solutions of the spectral problem ¢(2)* _Qp(l)*) — (0, ¢ ) as T — 0o

(zp(l) w(_2)) — (7% 0)as z = —o0
{ P = ()‘)lﬂ(l) + b()‘)ib@)* (w(_2)*, —w(_l)*) — (0, —€**) as £ — —00

@) = a()\)¢(2) b(w\ Scattering data: _a(\), b(\)

Scattering problem

a(A) = 1, b(A) = 0 as |A\| = o0

Note: Discrete spectrum is introduced as those values of A, for which eigenvectors
decay both for x — +00 and for x = —o0 (“bound states”) === The discrete
spectrum coincides with the zeros of the function a(A) in the upper half-plane.



NLS inverse scattering problem

@ Recall: The inverse scattering problem —  reconstruct the function ¢(z,t) from
the scattering data, a()), b(A)

Consider representation with restrictions on the kernels of the Jost functions

. Ki(z,y) = Ko(z,y) =0asy <«
—z)\a: —iA
A "'/Kl (z,y)e™dy Spectral problem:
b® — : Pt = —ixp® + g(, )@
/K (z,y)e " ¥dy ¢§:2) = ixp® — ¢*(z, )™
The boundary problem: 8K1 + 8K1 = gK> /
subject to 6K2 B 6K2 K
Kl(way) — 07 Ox Ay q 1

Ko(z,y) > 0asy— 0
KQ(.’E,Q?) = %q* = >3

if we can find Ko (x, ) from our knowledge of the
scattering data, we can reconstruct ¢(z) from

q(z) = 2K;(z, )



NLS inverse scattering problem

Analogue of the Gelfand-Levitan- Marchenko equation:

K(z,9) = K(2,y), K(o,y) - F*(@+y) /ny, 2K (2, 2)dz = 0

Discrete spectrum data Reflection coefficient
where
T 1 Tan”
G(z,y,2) = /F(y + s)F*(s+ z)ds; [ = —1i Z Cretn® 4 / 0 e“"’"d)]
a
T n=1 \\ oo
A\ are the N zeros of a(A) in the upper half plane; ¢, = 28‘\:;
@ One bound state: a single zero of a(A) at A = \; and reflecteonless potential: 28‘3 =0
(Fla) = —iere™*) e Gla,y,9) = 19 e
IS data equation: , o0
K(z,y) — icte—iN @+) _ ()\z|01|)\*) /ei}\l(a:+z)e—i)\’{(w+y)K(x, 2)dz =0
1

. A\ * T ’iC* )\ _)\* 26_?:}\;:1:
Ansatz: K (z,y) = M(z)e MY | mmmpe M(z) = O — ;S); _ |Ci)|262i(/\1—/\1‘)w
1

A =a+10




Time evolution of the scattering data

= (—2i)? +igg* ) D + (2Aq + ige ) ®
P = (—2xg* +ig2)p® + (202 — igq*)yp®
Asymptotically ¢ — 0; {w(_l ), @b(_z)} — {a(\,t)e™®, —b(\,1)e**} as £ — +o00

{

Time evolution:

ar = —2iX%a; by =2iA% | | a(\t) = e 22 tg(N,0);  b(),t) = €2 th(), 0)

Note: The zeros of a(A\,1) (i,e. the discrete spectrum) are independent of time,

cn(t) = eliNte, (0)

This yields the single bright NLS soliton:




Apropos: Boussinescequation

Recall: The Lax pair for the KdV equation:

Another example: The Lax pair for the Boussinesq-type equation

Ly = (=02, +u0; +v) = M Py = Ay = (8, + gu)‘p

\ 3

d 2 2

—(—83 _|_ua_|_v) — [A,L] — (2,vl _ u//)a_|_,v// —_2d" — 2

dt 3 3
u=2v" —u"; 1 4
R WU Y L i L

Boussinesqg-type equations describe waves which can propagate both to the right,
and to the left (“the two-way long-wave equations”).

Ut — Ugg T 3(’LL ):L':L' + Uggge = 0
Travelling wave solution has the form % = u(0) where 0 =z — vt @

u(z,t) = 2a2sech?(a(zx — vt)); v = 11— 4a?



Fermi-PastaUlam system

E Fermi, J Pasta, and S Ulam (1955): numerical study of the —
dynamics of an anharmonic chain of particles connectedto &
their nearest neighbours by weakly nonlinear springs

MANIAC-1
(Mathematical Analyzer Numerical Integrator And Computer)

e g —e * ° .

f(Au) = kAu + ‘

My, = f(’um,+1 — Un) - .f(un - Un—l); n=12...N=64 |weak non-linearity

Uy, - displacement of the n-th
particle from the equilibrium

Miin, = k(unt1 — 2un +Un—1) + & [(Unt1 = un)® — (un — up—1)?]

A general solution of the linearized systenta@=0) is given by the expansion in the normal modes

[u,’z<t) — Aysin ( ]'f,”ﬁ) cos(wit + «m))} Wk = 2\/%1“ (2(173 1))




STUDIES OF NON LINEAR PROBL.

E. FErRMI, J. PASTA, and S. ULAM
Document LA-1940 (May 1955),

(1]

MS

A one-dimensional dynamical system of 64 particles with forces between neighbors.
containing nonlinear terms has becen studied on the Los Alamos computer MANIAC 1. The
nonlinear terms considered are quadratic, cubic, and broken linear types. The results are
analyzed into Fourier components and plotted as a function of time.

The results show very little, if any, tendency toward equipartition of energy among
the degrees of freedom. -

-‘;: = (Xig: + Xies — 2 %) + o [(xie — x)? — (%, — Xiw1)?)

(Z'=I,2,-~,64),



Fermi-PastaUlam... + Mary Tsingou

All numerical simulations
of the Fermi-Pasta-Ulam
problem were performed
by Mary Tsingou

Note: There is no energy transfer between

the modes in the linear approximation. In What was observed? I

the nonlinear chain (@¢#0) modes become
coupled. It was expected that if all the

982 266. — Studies of non Linear Prodlems

o . <ok 1 Recurrences
initial energy was put into a few lowest INENEEYA
modes, the nonlinear coupling would yield Vi -
equal distribution of the energy among the 0 AH-HAHH
normal modes. e T
- \ \ VLT |
However: If the energy was initially in the A
mode of lowest frequency, it returned almost aﬁ?zﬁgfx_\ rs\\} 12 -
entirely to that mode after interaction with a S L T
few other low frequency modes

units. About 30,000 computation cycles were calcw'ated.



From Fermi-PastaUlam to Boussinesceguation

@ Continuum approximation __ (Zabusky and Kruskal (1965)).

Un(t) = u(zy,,t) = u(na, t);

a Gradient expansion:

2

Un+1(t) = u(z, £ a,t)

3

4

Up+1(t) = u(zn,t) av' (z,,t) + %u"(wn, t) & a—u'"(xn, t) + a—u""(wn, t)+...

{

3!

4]

FPU: [mﬁn = k(Un+1 = 2un +Un—1) + @ [(tnt1 — un)® = (Un — Up—1)] J

d
<

Boussinesq: I [ Ut — C Uy = 5c2(umum + 52umm)}

2 — k. 200, 2 _ a’

X R

Note: the leading order nonlinear and dispersive contributions in the r.h.s.

are balanced at the same order of ¢

J. Boussinesq originally derived a system
of two first-order (in time) equations for
weakly nonlinear surface waves in shallow
water (1881)

U is the horizontal velocity

/

77t+u:c+

(nu)z =0

Ut + Nz + Uz — Uggt =0

™

1) is the free surface elevation



From Boussinescequation to KdV

[ Ut — czua:w o 502 (uwuww ~= 62“:1::1:3::1:)}

@ Asymptotic _miltiple -scale expansion:  u(x,t) = f(0,T) + ev(z,t)
@ O=xz—ct, T =c¢t

Vg — C2 Uy = 2¢fT9 + C* fofoo + c*6° fooge + .. .

2cfre + 2 fofog + c*6° fogop = 0 | mmmmii

Note: The function v(z,t) grows linearly in 6 = x + ¢t unless the r.h.s is not zero:
. T
@ Change of variables: ¢q = ﬁ; T = il

KAV ] g + 600 + a000 =0
6’ 2

In 1965 Kruskal and Zabusky numerically studied the dynamics of the KdV equation
with sinusoidal initial conditions (for small 6 =0.022 with periodic boundary conditions)

——

@ The appearing solitary waves interact with each other elastically

@ They have called the waves solitons since they behave like particles

@ Explanation of the FPU reccurence as property of the system of solitons moving
with different speed. Since the system studied was of finite length, solitons eventually
reassembled in the (X, t) plane and approximately recreated the initial configuration




The Frenkel-Kontorova model

e g —e - % °

The original FK model (1938) was proposed
to describe dislocations in metals. The atoms
“" are treated as a one-dimensional chain

@ Rescaling ll: = —

o Va s subjected to an external periodic potential
2V, produced by the surrounding atoms.
L=T-V= mui—gZ(u —u)2—VZ 1 — cog 2Tt
9 9 n+1 n 0 a
n n n
. 2TU 2w |V, a/2m)?
@ Rescaling |: u,, — "; t— — —Ot; o — aw
a aV m Vo @
[’iin — o(Upt1 — 2Up + Up—1) = — sinun}
o @ Gradient expansion: Ut — ozazuf,,.fc = —sinu
.

/o > | — Ugye +SIDNU = 0

This is the sine-Gordon equation I



Sine-Gordon model: Josephson junctions

Z
y,\ i Superconducting transmission line
I
Z @ Capacitance (C per unit length
g N .
/ o @ Inductance L per unit length
SUperSCRZlIcon o Critical current I, per unit length
0 @ Josephson phase ¢= ¢,— ¢,
e o' o AN .. @ Voltage V
(»g dC —— >|<a!10 — X ov LaI 0p  2eV
: - 8z ot ot  h
n dx @
shunt current
oI G1% O |[8p  2eL
— =—C —Iysing | ———— || £ _ _=~
[8:13 o’ ¢] Oz Lax h !

: " 1 0% 0% 1
Swihart velocity: _ hh — Josephson length I
\—A C2 8t2 8272 + )\2 Sln¢ 0
sine-Gordon equation! I




Sine-Gordon model: scalar field theory

=3 uqﬁ@“qﬁ U(¢); Ulp)=1—cos¢

2 \ | U(¢) AT A N[ Note: The model is Lorentz-invariant
st (\ A A 0 ( Field equation: Symmetry:
| Ottt — Pz +5indp =0 ¢ —>pLt2mn, nel
Non-trivial static solutions: the function ¢(a) interpolates
v v U V \L between ¢(—o0) = 0 and ¢(+o00) = 2
ST s e 1w % elntegration: Opz = SIN O |X integrating factor%
(;li) = —cosp+C Boundary condition: ¢ — 0 as x — oo =>(C =1

It looks like an equation of motion of a “particle” in the effective potential

@ Separating the variables:

xr—x0 = ;I;/ \/2(1d—¢cos¢) = ;|;/ 251;1:;/2) /d(lntan —)

. . _ _ T — vt
@ Kink solution: ¢ = t4arctanexp (z — o) Busted kink: £ —




Sine-Gordon model: scalar field theory

Note: @ Unlike KdV solitary wave the function ¢)(X) does notgoto 0 as £ — £0oo
@ The amplitude of the SG soliton is independent of its velocity

@ SG soliton is topological s T ﬂ """"" :

@ The SG model is integrable
@ The SG model is relativistic-invariant

2 4
A A

o= MR AN
sy R

Forsmall¢(x) 1—cos¢ =

Kink solution:  @xg = t4arctan(e”*+*0)

4

Energy density: | € =

Topological charge:

Topological current:

cosh?(z — z)

Q =

Ju

mmmp | Mass of the kink: | M = /Sda: =8

o0
% f dw% - n-fold cover of [0,27]
—00

1
= o —ewdd, 01, =0

Note: This is not a Noether current!



Sine-Gordon model isintegrable!

Backlund transformation: if we have a solution of an integrable system, even
a trivial one, there is a transformation which transforms it into a new non-trivial solution.

@ Example I: Laplace equation in 2d [Au(m, y) = (02 + 82)u = 0]

Let us take another equation for a new functionv(z, y):
[ Av(z,y) = (02+8;)v=0 ]

Note: the functionsu(z,t) and v(z,t) are not independent:

Ozu = Oyv; Oyu = —0;v| —m===m Backlund transformation _

Indeed 0, (0zu) = 0(0yv), Oy(Oyu) = —0y(0,v) , SO sum of these two
equations yields the original Laplace equation.

Now we take the trivial solution v(X,y) = Xy and plug it into the Backlund transformation:

Up = uy=-—y le. u=j(z" -y’



Backlund transformation for the sine-Gordon model

@ Light cone coordinates:

— a::l:tl 8, =10, +10_; 8,=10, — 1o

= —0_0, Thenthe SG equation becomes |0_0;¢ =sin¢

@ Consider the pair of equations: SGBacklundtransfrmanon =

[&Mﬁ 91— 2)\sm(¢_|2_¢), a_zp_—a_¢+—sm(

{

D_041h = 0_0, ¢ — 2 cos (¢ ! ¢) sin (%) — 0.0, ¢+sing — sing
If 0_0+¢ =sin ¢, then 0_0;1% = sinv

@ Start with the trivial vacuum solution: ¢=0 Homework: Prove it! ‘
-1 _: — Ay — Az

O = —2Xsin(1)/2); O_1h = —2X"'sin(y)/2) === th = 4arctan(e )

T — vt 1 — )2

@ Back to original coordinates: Az, +A"lz_ =+

. . T
Kink solution:  |¢z = = t+4 arctan(e V1—v2

'— _
V1 —v? v 14+ )2




Backlund transformation for the sine-Gordon model

A1 Y1 A2
@ SG two -soliton_solution: ¢ < > P2
A2 P2 1

Elimitating the derivatives in the SG Backlund transformation, we obtain (¢0=0)

P2\ [ A1+ A2 Yo — Y1
Recall:

1 ) c c
1.2 = 4arctan 1.2 019 = . ()\z_w 4 )\i—lt 4 Cz') @ 2 one-soliton solutions

ATicA 01 _ b2
[qﬁz =4arctan( g 2) i S } two-soliton solution

)\1 e )\2 1+ efd1+02
0 0 0, /.0
o Consider asymptotic: 0 > 1 =mmp € — €~ L ° /e — 1 ~ —p—1
1+ ef1t62 e—02 4 b1
@ The symmetric 2 _-kink solution No — 1 Y — 1— X2 S 0
(head-on collision, identical velocities): 2= A 1+ A2’ 1

T

v sinh . 7
%2 = 4 arctan [ — \/it—zﬂ ]} Topological charge: Q = o da:% =2
V1—v?

— 00




sine-Gordon model: 2soliton interactions

: T
@ KK-collison ¢ = 4arctan vsinh V1—v2
v=0.8 cosh =%
Ji—o?
Asymptotic: 8 — +o00
The phase shift: § = 2y/v2 —1lnv
@ KK-collison A= —; v= —;, A1 >0
v=0.8 sinh —=%—
¢2 = 4arctan [ 1_;2 ;
v cosh == |
- — 2 . B
® Breather: 4, = 4arctan | Y1 % Sin wt :
w  coshv1— w2z
W
V= 10
V1 —w?

+ ;




sine-Gordon model: Lax pair formulation

Recall: Lax pair is given Ve = Lap; Py = A b = ( Y11 Y12 )

by two linear equations o1 P22

{ Yot = L) + Liy; ‘{WL‘M = A+ ALv; | Ly — Ay = [A, L]

Zero curvature condition

@ sine -Gordon: . :
L:z‘)\(l 0)4-3(0 uw)zz’)\-03—|—%um-01; AeC

0 -1 2 \u; 0 —
boLa=T% ((1) —01)+$((i) Bi)=cifxu"’3+ﬁ“2

L, = Z’U;,a; . 01; @Aw = —ﬁuwsinu-ag—l—ﬁuw-ag
EAaL]=%-02—%-03+%sinu-oj inomm_d;n)\[i’l;t“’-m:%sinu-al

sine-Gordon equation is recovered!



sine-Gordon <« massive Thirring-model

1 .
S=/d2w [iauqba“qb—%(l—cosﬂqb)] sine-Gordon model

Thirring model 5= / & |0t = (7, ) (1)
Yo =01, Y1 = —02, V5= 7071 = 03
Invariancies: d— P =d+ %T’n; b — P = eOVah; ah — 1) = el5%Aq)
1 . 2
map 4;’75¢ _ _%ej:qu B~ _ 1+;/W

Meson states — fermion-anti fermion bound states (S.Coleman, 1975)

Soliton — fundamental fermion

1
The topological current of the sine-Gordon model J, p— 9-€ uua V¢ _
coincides with the Noether current of the massive Thirring model J uw = i‘b’)’uaﬂ (0




~ Solitons vs. Solitary Waves

Equation Solution

SG §- ¢ +sing=0 bxck = Harctan (e7+20)

Ap': G- — g+ 0 =0 bxr = *atanh (M)

How do we know If it IS Integrable or it is a non -integrable ?

Historically, combination of  “experimental mathematics ” (¢*) and
known analytic solutions (S -G), then inverse scattering transform,
group theoretic structure (Kac -Moody Algebras), Painlev ¢ test.

Does any part of “hierarchy ” of solitons In integrable
theories (S -G breather) exist in non -intergrable
theories?




Topology primer: maps and windings

Kinks In 2d:

+00 @ +1 @
Space: Vacuum: Maps:
-00 @ -1 @

Topological charge: Q = f dz a¢ .

Circles; St >SSt

Vacuum:




Circles; St -8t

2m
Topological charge: / dp €ag Cili &P
4

0
Vacuum:

— (07 1)

(sinp; cosyp)

Q (sin 2¢p; cos2¢p)

-0
= (O
= ()




Scaling agruments: Derrick’s theorem

Consider a model with scalar field ind  -dim
E[¢] = [d*z[0,¢0" ¢+ U(4)] = E2 + Eo
Scale transformation:  F — ¢ = \%; 9,¢(%) = 04(Z) _, 3 99(AZ) _ 4 8¢(7)

oz, O(Ax,) Oy
d d —d _ \—dd
d%z — d*(Az)A ™% = A~ %% E[¢] = N29E, + A\ 9%E,

Each term is positive. If there is a stationary point of E(A)?

BRI — (2 — d)AUE, — AN LE,




For a simple model E[¢] = [d%z[0,60*¢ + U(¢)] = E + Eo

nontrivial solutions (E , # 0, E, # 0 ) are possible only in d=1

. take E, = O, then the model is scale -invariant

» Extend the model including higher derivatives in ¢ (Skyrme model in
d=3, baby Skyrme model in d=2, Faddeev-Skyrme model in d=3)

« Extend the model including gauge fields (monopoles In d=3,
iInstantons in Euclidean space d=4)

A (%) = MNL@G); Duo(E) = ADud(9);  Fuu (L) = N F,(Y)

E[¢] = [d% [|Fu|*> + |Du¢|> + U(¢)| = E4 + E> + Ep

E[gb] — )\4_dE4 + /\Q_dE2 + /\_dEO




If we restrict ourselves to the models with quadratic
terms in derivatives, there are possibilities:

. there are soliton solutions inthe models with gauge
and scalar fields or in pure scalar models with a potential
U(dp) (Kinks ).

. there are soliton solutions in the models with gauge
and scalar fields (vortices ) or in pure scalar models without

potential U( ¢) (Lumps ).

. there are soliton solutions in the models with gauge
and scalar fields (monopoles )

. there are soliton solutions in the models with gauge
field only (instantons )

. there are no soliton solutions, higher derivatives are
necessary.

Alternative: one can consider time-dependent

stationary configurations!




