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The Larkin-Ovchinnikov (LO) state which combines the superfluidity and spatial periodicity of pairing order
parameters and exhibits supersolid properties has been attracting intense attention in both condensed-matter
physics and ultracold atoms. Conventionally, realization of the LO state from an intrinsic s-wave interacting
system necessitates breaking the time-reversal (TR) and sometimes spatial-inversion (SI) symmetries. Here we
report a prediction that the LO state can be realized in a TR- and SI-symmetric system representing a bilayer
Fermi gas subjected to a laser-assisted interlayer tunneling. We show that the intralayer s-wave atomic interaction
acts effectively like a p-wave interaction in the pseudospin space. This provides distinctive pairing effects in the
present system with pseudspin spin-orbit coupling, and leads to a spontaneous density modulation of the pairing
order predicted in a very broad parameter regime. Unlike the conventional schemes, our results do not rely on
the spin imbalance or external Zeeman fields, showing a highly feasible way to observe the long-sought-after
LO superfluid phase using the laser-assisted bilayer Fermi gases.

DOI: 10.1103/PhysRevA.99.043601

I. INTRODUCTION

The Fulde-Ferrell-Larkin-Ovchinikov (FFLO) state with
finite-momentum pairing [1,2] is an exotic phase hosting
many novel physical phenomena in condensed-matter physics
and nuclear physics [3–5]. In particular, the predicted Larkin-
Ovchinnikov (LO) state exhibits a supersolidity, which com-
bines a superfluid order parameter and a unidirectional
Cooper-pair density wave, i.e., it simultaneously has the off-
diagonal long-range order and long-range density order. The
two orders are often mutually exclusive, and can lead to vari-
ous exotic low-energy modes [6] and macroscopic quantum
phenomena [7]. For bosons, a similar order, called stripe
phase with supersolid properties, has been recently observed
in spin-orbit (SO) coupled atomic Bose-Einstein condensates
(BECs) [8]. However, although the LO state has been pursued
for half a century, the conclusive evidence of this exotic state
remains elusive so far for fermions.

Conventionally, realization of the FFLO state needs to
break the time-reversal (TR) and sometimes spatial-inversion
(SI) symmetries for the s-wave interacting systems. For exam-
ple, in the widely studied spin imbalanced Fermi gases [9–14],
the population imbalance is equivalent to a TR-breaking
Zeeman field, which can induce mismatched Fermi surface
and lead to the LO state. In the SO coupled ultracold Fermi
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atom gas [15–26], it was proposed that an in-plane Zeeman
term can deform the symmetric Fermi surface. This breaks
the SI symmetry and induces the Fulde-Ferrell (FF) super-
fluid whose pairing order has a single nonzero momentum.
The predicted FFLO states in the spin-orbit coupling (SOC)
systems [27–37] are essentially the FF superfluids which
preserve the translational symmetry. The FFLO state was also
proposed in the Weyl and Dirac semimetals, where the broken
TR and SI inversion symmetries may favor the formation
of finite-momentum pairing orders [38,39]. However, since
the broken TR and SI symmetries generically suppress the
s-wave superfluid order, and near resonant Raman lasers
induce heating problems in the SOC systems [26], the FFLO
phases predicted in the literature are hard to observe in
experiment.

Here we propose that the LO state with supersolid prop-
erties can be realized in laser-assisted bilayer Fermi gases,
which preserve both the TR and SI symmetries. The layers
play the role of a pseudospin-1/2 system, and the laser-
assisted interlayer tunneling generates a one-dimensional
(1D) SOC in the pseudospin space [8]. We show that the
s-wave interaction between the real spin-up and spin-down
states renders an effective p-wave interaction in the pseu-
dospin space, which essentially leads to a spontaneous LO
superfluid order in the presence of laser-induced pseudospin
SOC. The present realization exhibits fundamental advantages
over the existing schemes in generating the LO order. First,
the pseudospin SOC does not break TR symmetry, or SI
symmetry, for which the LO phase can be obtained in a very
broad parameter regime. Further, generation of the pseudospin
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SOC does not apply near resonant Raman couplings, so the
present system can have a lifetime much longer than the cold
atom systems with a real SOC. These advantages enable the
realization of LO order with the currently available experi-
mental techniques.

The paper is organized as follows: First in Sec. II, we
formulate the model and analyze the symmetry of the system.
Then based on the variational method and numerical sim-
ulations, we present the two-body problem and many-body
phase diagram in Sec. III. Finally in Sec. IV, we discuss some
experiment-related issues and give a brief summary.

II. THE MODEL AND SYMMETRY ANALYSIS

We consider a two-component Fermi gas composed of
atoms in two metastable internal (spin) states; for example,
two hyperfine atomic ground states. The atoms are confined
in a state-independent double-well optical potential along the
z axis providing a bilayer structure [40,41]. An asymmetry
of the double-well potential prevents a direct atomic tunnel-
ing between the wells, and instead there is a laser-assisted
interlayer tunneling. The second-quantization Hamiltonian of
this bilayer system reads in the momentum space (see the
Appendix for more details)

H =
∑
kγ

⎡
⎣∑

j

ξkγ jψ̂
†
kγ jψ̂kγ j + J

2

(
ψ̂

†
kγ ,1ψ̂kγ ,2 + H.c.

)⎤⎦
+ U

S

∑
kk′q j

ψ̂
†
k↑ jψ̂

†
k′↓ jψ̂k′+q↓ jψ̂k−q↑ j, (1)

with

ξkγ j = 1
2 [(k + (−1) j+1κex )2 + h(−1) j ± δ], (2)

where the upper and lower signs in Eq. (2) correspond to
different atomic internal states labeled by γ =↑,↓, and the
atomic mass m and h̄ are set to the unity. Here ψ̂

†
kγ j and ψ̂kγ j

are Fermi operators for creation and annihilation of an atom
in the jth layer ( j = 1, 2) with the spin γ and momentum k
in the xy (layer) plane; h and δ denote the energy mismatch
between the two layers and two internal states, respectively;
J is a strength of the laser-assisted interlayer tunneling with
2κex being an associated recoil momentum pointing in the x
direction.

In writing Eqs. (1) and (2), we have applied a gauge trans-
formation ψγ 1 = e−iκxψ̃γ 1 and ψγ 2 = eiκxψ̃γ 2, where ψ̃γ j is
defined in the original (laboratory) frame (see Appendix A).
Thus we are working in the transformed basis involving
the layer-dependent momentum shift (−1) j+1κex featured in
Eq. (2). This gives a 1D pseudospin SOC in the x direction
for the layer states, which is the same for both atomic internal
states. The gauge transformation makes the Hamiltonian given
by Eq. (1) invariant under spatial translations in the xy plane.

The atom-atom coupling in Eq. (1) is represented by the
contact interaction between the fermion atoms within indi-
vidual layers. In two-dimensional (2D) systems a bound state
forms for an arbitrarily small attraction [42], and the contact
interaction U should be regularized by 1

U = − 1
S

∑
k

1
Eb+2εk

[43]. Here Eb is a binding energy of the two-body bound state
in the absence of pseudospin SOC, S is a 2D quantization

volume, and εk = k2/2 is a 2D free particle dispersion. For
ultracold atoms Eb can be tuned via the Feshbach resonance
technique.

The Hamiltonian H = H0 + Hint given by Eq. (1)
can be recast in the basis of the four-component spinor
φ̂ = (ψ̂↑1ψ̂↑2ψ̂↓1ψ̂↓2)T defined in the Hilbert space
spanned by the tensor product of the spin and layer
states (↑,↓) ⊗ (1, 2). Here H0 = ∫ d2r φ̂†(r)h0φ̂(r) is
the single-particle Hamiltonian with h0 = k2+κ2

2 I2 ⊗ I2 +
(κk · ex − h)I2 ⊗ τz + J

2 I2 ⊗ τx + δσz ⊗ I2, and Hint =
U
2S

∫
d2r{[φ̂†(r)I2 ⊗ I2φ̂(r)]2 + [φ̂†(r)I2 ⊗ τzφ̂(r)]2} is the

interaction Hamiltonian. I2 is the rank-2 unit matrix, σz and τz

are the Pauli matrices defined in the real spin and pseudospin
(layer) spaces, respectively. For the real system one can set
zero detunings h = δ = 0 for convenience. In the presence of
layer degree of freedom, we can find that the system satisfies
a TR symmetry denoted as T = iσyτxK , with THT −1 = H.
This symmetry operator is transformed back to the usual
form T → T1 = iσyK after applying a unitary rotation
U = e−i(π/4)τx on the pseudospin space so that τz → τy,
τy → −τz, and H → H̃, which then satisfies T1H̃T −1

1 = H̃.
This reflects the fact that the pseudospin SOC does not induce
transition between real spins. Furthermore, the Hamiltonian
(1) is invariant also under the SI transformation involving the
interchange of of the two layers described by the operator
τx and the reversal of the in-plane momentum: k → −k. We
note that the s-wave interaction occurs between two fermions
in the real spin-up and spin-down states, respectively.
As a consequence, the existence of TR symmetry can
greatly enhance the realization of the LO state, as studied
below.

III. RESULTS

A. Two-body problem

Since the pseudospin SOC does not mix the spin singlet
and spin triplet, the wave function of two-body bound states
can be constructed in the singlet space as

|�〉q = 1

2

∑
k

2∑
j,l=1

φkq, jl S
†
kq, jl |0〉, (3)

with

S†
kq, jl = 1√

2
[ψ†

j↑(Q+)ψ†
l↓(Q−) − ψ

†
j↓(Q+)ψ†

l↑(Q−)] (4)

and Q± = q/2 ± k. Here S†
qk, jl is a singlet operator for creat-

ing a pair of atoms in the layers j and l with a center-of-mass
(COM) momentum q and a relative momentum k, and φkq, jl is
the corresponding amplitude. For j = l the atoms are paired
in the same layer, whereas for j 	= l the pairing takes place
in different layers, the latter contribution emerging due to
the laser-assisted tunneling. Since S†

−kq, jl = S†
kq,l j , we take

φ−kq, jl = φkq,l j in Eq. (3), in which the factor 1/2 is to avoid a
double counting of the atomic pair states. Substituting Eq. (3)
into the stationary Schrödinger equation H|�〉q = Eq|�〉q,
one arrives at the following equation for the bound-state
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FIG. 1. Two-body bound state. (a) The bound-state energy Eq as
a function of COM momentum q = qxêx at Eb/Eκ = 1, for J/Eκ = 2
(blue solid), 4 (red dashed), and 6 (green dash-dotted). (b) The
ground-state momentum of the bound state as a function of the
tunneling strength J for atomic interaction Eb/Eκ = 0.2 (blue solid),
1 (red dashed), 2 (green dotted), and 5 (purple dash-dotted). The
energy and momentum are measured in units of Eκ = κ2/2 and κ ,
respectively.

energy Eq (see Appendix B for details).(
U

S

∑
k

αk

αkγk − β2
k

− 1

)(
U

S

∑
k

γk

αkγk − β2
k

− 1

)

−
(

U

S

∑
k

βk

αkγk − β2
k

)2

= 0, (5)

where αk = Eq − (k2 + q2/4 + κ2), βk = qxκ , and γk =
αk − { J2/2

αk+2kxκ
+ J2/2

αk−2kxκ
}. By solving Eq. (5) we can deter-

mine Eq as a function of the COM momentum.
Figure 1(a) illustrates that two degenerate minima are

formed at q0 = ±qminex in the bound-state energy spectrum
Eq. This is in sharp contrast to the SOC for real spins, where
the bound state always has a zero COM momentum, or a
single finite momentum if an in-plane Zeeman field is applied
to break the SI symmetry [33]. Furthermore, the interlayer
singlet component P12 =∑k |φkq,12|2 is enhanced as the tun-
neling strength J increases. Figure 1(b) shows the numerical
result of the minimal momentum qmin = |q0| versus J for the
bound state. In the strong tunneling limit where the tunneling
strength exceeds a critical value J > Jc, a bound state with
zero momentum is eventually formed. On the other hand, we
note that the critical tunneling Jc increases with Eb, showing
that increasing intralayer interaction enhances the formation
of bound state with finite momentum.

B. Phase diagram of superfluidity

We proceed to study the superfluid phase by com-
puting the real-space superfluid order parameters � j (r) =
−U 〈ψ̂ j,↓(r)ψ̂ j,↑(r)〉 for the layers j = 1, 2, and determine
the ground state by solving the Bogoliubov–de Gennes (BdG)
equation HBdG(r)φη = εηφη, where HBdG is an 8 × 8 matrix,
φη represents the Nambu basis, and εη is the corresponding
energy of the Bogoliubov quasiparticles labeled by an in-
dex η (see Appendix C for the explicit form). The Fourier
transformation of the superfluid order parameters � j (r) =∑

q �qeiq·r yields different situations. When �q 	= 0 for q 	=
0, the system represents a finite-momentum superfluid. When

0 1 2 3 4 5 6
J/Eκ

0

0.5

1

1.5

2

|q|/κ

|Δ1,2|/Eκ

0 2 4 6
J/Eκ

-0.5

0

0.5

1

μ
/
E

κ

LO state

Conventional
   superfluid

FIG. 2. Pairing orders of superfluid phases. Dependence of |�1,2|
(red dashed) and the pairing momentum |q| (blue solid) on the
tunneling strength J , where |�1,2| represents the maximum value
of the order parameter |�1,2(x, y)| in the xy plane. The inset shows
the evolution of the chemical potential μ. In the simulations, we
have included a weak harmonic trap with frequency ω � Eκ , RTF ≡√

2Eκ/mω2 = κ/ω, Eb/Eκ = 1, and EF ∼ Eκ .

�q 	= 0 for q = 0, the system is in a conventional superfluid
phase. Otherwise, the system is in a normal state.

Figure 2 illustrates a behavior of the order parameter |�1,2|
and the pairing momentum |q| as functions of the tunneling
strength J . One can see that by increasing J , the pairing
momentum |q| decreases gradually and eventually vanishes
at a critical value of the tunneling strength ∼4.3Eκ . This
defines a transition from the finite-momentum pairing state
to the conventional superfluid characterized by a zero pairing
momentum. Across the transition, the chemical potential μ

decreases continuously, as shown in the inset of Fig. 2.
In Fig. 3, we present a density profile of the order pa-

rameter at a moderate tunneling J/Eκ = 2. One can find that
the system is in a superfluid phase with the order param-
eter �1,2 exhibiting an obvious density modulation in the
real-space profile (left panel of Fig. 3). The corresponding
momentum distributions of |�1,2| are shown in the right panel
of Fig. 3. Interestingly, a pair of peaks with opposite momenta
±q ∼ ±1.9κex can be identified in each layer, so the pairing
order parameter contains both momentum components � j ∼
c je−iq·x + d jeiq·x, with c j and d j being the corresponding
amplitudes. This results in the spatial modulation of the
order parameter with the periodicity 2π/|q|. In this way, the
LO superfluid state is formed which breaks the translational
symmetry and exhibits supersolid properties. Note that the
density modulation of the pairing order parameter is gauge
invariant. In fact, transforming back to the laboratory frame
(ψ̃γ 1 = eiκxψγ 1 and ψ̃γ 2 = e−iκxψγ 2), the order parameter
�̃ j ≡ −U 〈ψ̃ j↓ψ̃ j↑〉 = e±i2κx� j acquires only a phase factor
e±i2κx , so the density modulation is unchanged.

The broad parameter regime shown for the LO phase re-
flects the essential difference between the present pseudospin
SOC system and the real SOC Fermi gases, which can be
understood in the following way. In a 1D SOC system the
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FIG. 3. The density profile of the LO order parameter. Real-
space density profile (left panel) and momentum space distribution
(right panel) of the superfluid order parameters �1,2 for J/Eκ = 2,
where two pairing peaks with opposite momenta ±q can be identified
in each layer. In the simulations, we have included a weak harmonic
trap with frequency ω � Eκ , RTF ≡ √2Eκ/mω2 = κ/ω, Eb/Eκ = 1,
and EF ∼ Eκ .

spin-up and spin-down pockets of the dispersion are shifted
with respect to each other due to the momentum transfer
between spin-up and spin-down states induced by the Raman
coupling. The Raman coupling also opens a gap in the band
crossing between spin-up and spin-down pockets at zero mo-
mentum [15,44]. In the presence of an attractive s-wave inter-
action, the favored superfluid pairing occurs between spin-up
and spin-down states with opposite momenta, respectively,
in the left-well and right-well pockets of the Fermi surface,
leading to the conventional BCS state. The LO state can be re-
alized only when the pairing within each (left-well/right-well)
pocket is dominated. This can be in principle achieved by
considering an attractive p-wave interaction which, however,
is currently a major challenge in cold atom experiments.

In comparison, in the present pseudospin SOC system, the
left and right pockets of the double-well dispersion shown
in Figs. 4(a) and 4(b) correspond to predominantly opposite
pseudospin (i.e., layer) states |1′〉 and |2′〉, while the inter-
layer tunneling can mix the pseudospin-up and -down states
[Fig. 4(b)]. From the above analysis one can soon realize
that the LO phase may be realized if there is an attractive p-
wave-like interaction in the pseudospin space, which induces
pairings within each pocket of the Fermi surface. As explained
below, such an effective p-wave-like interaction arises natu-
rally in the present bilayer system with the intralayer s-wave
interaction.

Considering the intralayer atomic interaction
∼U
∫

dr
∑

j n̂ j↓(r)n̂ j↑(r), let us treat the layer states
( j = 1, 2) as fictitious spin states: j → s =⇑,⇓. In turn,
we treat the real spin states (γ =↑,↓) as an artificial spatial
degree of freedom (e.g., s and p orbital states) denoted by A

-0.9

0

0.9

0.1 1 2 3
Eb/Eκ

1

2

3

4

5

J
/
E

κ

|1 |2

EF

LO state

Conventional
superfluid

(a)

(b)

(c)

FIG. 4. The phase diagram. (a) Single-particle spectrum of the
bilayer system for J/Eκ = 2. The red solid line denotes the value
of EF (∼Eκ ) in the simulations. (b) Topology of the Fermi surface
when the Fermi level is situated in the lower dispersion branch, the
gap, and the upper branch. The color bar represents the pseudospin
polarizations Pk = 〈n̂1k〉−〈n̂2k〉

〈n̂1k〉+〈n̂2k〉 . (c) Phase diagram of superfluidity in
the J-Eb plane with EF ∼ Eκ . The LO phase is obtained in a very
broad parameter regime.

and B. With these notations, the intralayer atomic interaction
∼U
∫

dr
∑

s=⇑,⇓ n̂s,A(r)n̂s,B(r) describes an effective p-wave
interaction between the atoms with different “orbits” A and
B and the same “spin” s. This is essentially the underlying
mechanism for the realization of the LO phase in a very broad
parameter range, as one can see in Fig. 4(c) which shows the
phase diagram in the J-Eb plane. Note that the very broad LO
phase has been obtained for all different Fermi energies EF

depicted with dashed lines in Fig. 4(a).
The BCS-BEC crossover can be achieved by tuning the

binding energy Eb for the present bilayer pseudospin SOC
system. This is different from the Fermi gases with a 2D
Rashba-type SOC in real spin space, where the BCS-BEC
crossover can be achieved by tuning the Raman recoil energy
across the regime that EF ∼ Eκ , with the BEC of rashbons
being obtained when Eκ > EF [45–47]. Note that Eb is closely
related to the three-dimensional s-wave scattering length via
Eb = Cωz

π
e
√

2π lz/as , with ωz and lz being the frequency and
length of the axial trapping perpendicular to the 2D plane
[48]. In the BCS regime one has Eb/EF � 1, and the opposite
holds in the BEC regime with Eb/EF � 1. In Fig. 4(c) we
take Eκ ∼ EF so that Eb/Eκ ∼ Eb/EF , and the BCS-BEC
crossover with spatial modulations is clearly obtained.

The present results reveal a profound connection between
the LO state of fermions and the stripe phase of bosons.
In the BEC regime with large Eb limit, where Eb/EF � 1,
all atoms get paired to tight dimers in each layer. In this
situation, the effective tunneling J̃ ∼ J2/εB of the dimers with
the momentum shift ±κ̃ ∼ ±2κ can induce the interference
of the dimers between the two layers, rendering a stripe-type
phase of the dimer BECs, where εB is a binding energy of
the dimer state in the presence of pseudospin SOC. On the
other hand, in the BCS regime with weak pairing condition,
the atoms are loosely paired on the Fermi surface, and the
fermionic nature of the atoms plays the important role. The
momentum shift in the tunneling of individual atoms domi-
nates the spatial modulation of the effective p-wave pairing
order, leading to the formation of the fermionic supersolidity
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of the LO state and the superfluid phase transition, as shown in
Fig. 4(c).

IV. DISCUSSION AND CONCLUSION

In the real experiment, the bilayer geometry for ultracold
atoms can be implemented using a double-well superlattice
potential which forms a stack of weakly coupled bilayer sys-
tems and has already been realized in experiment for bosons
[8]. The multiple bilayer configuration can enhance the su-
perfluid transition [49] and increase the signal-to-noise ratio.
Note that the typical pairing momentum |q| is on the order of
the laser recoil κ . The corresponding spatial modulation of the
LO state can be readily detected by the optical Brag scattering
[8].

In conclusion, we have proposed a highly feasible way to
realize the LO phase in the bilayer Fermi gases with both the
TR and SI symmetries. The laser-assisted tunneling between
layers, which generates a 1D pseudospin SOC, is applied to
induce the relative momentum shift between pairing orders in
the bilayer Fermi gas, leading to the spontaneous formation of
the LO phase. The realization of the LO phase is also rooted
in a novel mechanism in that the intralayer s-wave attractive
interaction combined with the pseudospin SOC renders an
effective p-wave pairing phase in the pseudospin space. With
the system preserving both TR and SI symmetries, the LO
phase has been predicted in a very broad parameter regime.
This work paves the way to realize the LO phase within the
current experimental accessibility.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN

We consider a two-component Fermi gas composed of
atoms in two metastable internal (quasispin) states labeled by
the index γ =↑,↓, as shown in Fig. 5. The atoms are confined
in a state-independent double-well optical potential along the
z axis providing a bilayer structure. As in Ref. [40], we assume
an asymmetry of the double-well potential preventing a direct
atomic tunneling between the wells, and instead two Raman
lasers are applied to induce a laser-assisted interlayer tunnel-
ing. In the laboratory frame, the single-particle Hamiltonian
for each component is

Hγ =
∫

d2r

⎧⎨
⎩
∑
j=1,2

ψ̃
†
γ j (r)

[
P2

2m
+ (−1) j h

2
± δ

2

]
ψ̃γ j (r) +

(
J

2
ei2h̄κex ·rψ̃†

γ 1(r)ψ̃γ 2(r) + H.c.

)⎫⎬
⎭, (A1)

where the upper and lower signs correspond to different
atomic internal states γ , and P and m are the momentum and
mass of the atom, respectively. ψ̃γ j (r) annihilates a Fermi
atom at position r in the jth layer with an internal state γ . J is
a strength of the laser-assisted interlayer tunneling with 2h̄κ

being an associated recoil momentum along the x direction.
h and δ denote the energy mismatch between the two layers
and two components. Note that both spin components are
characterized by the same laser-assisted tunneling. In writing
Eq. (A1) we have neglected the off-resonant transition by

applying the rotating wave approximation for the laser-
assisted interlayer tunneling.

In terms of ψ̃γ j (r), the atom-atom coupling described by
the contact interaction between the fermions within individual
layers in different internal states γ can be written as

Hint = U

2

∑
γ , j

∫
d2r ψ̃

†
γ j (r)ψ̃γ j (r)ψ̃†

γ̄ j (r)ψ̃γ̄ j (r) (A2)

with U the contact interaction strength in two dimensions.
We now apply a gauge transformation ψγ 1 = e−ih̄κex ·rψ̃γ 1

and ψγ 2 = eih̄κex ·rψ̃γ 2. Then, Hamiltonian (A1) becomes

Hγ =
∫

d2r

⎧⎨
⎩
∑
j=1,2

ψ
†
γ j (r)

[
[P + (−1)j+1h̄κex]2

2m
+ (−1) j h

2
± δ

2

]
ψγ j (r) + J

2
[ψ†

γ 1(r)ψγ 2(r) + H.c.]

⎫⎬
⎭, (A3)

while the form of the interaction Hamiltonian, Eq. (A2),
is unchanged. By making use of the Fourier transformation
ψγ j (r) = 1√

S

∑
k ψγ j (k)eih̄k·r and setting h̄ to the unity, we

obtain the the momentum space Hamiltonian given by Eq. (1)
in the main text.

APPENDIX B: TWO-BODY BOUND STATE

Let us begin with the two-body problem, which helps to
intuitively understand the many-body behavior of this sys-
tem. The molecular state with COM momentum q can be
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FIG. 5. Illustrative sketch of the system. A two-component
Fermi gas composed of atoms in two metastable internal (spin) states
are confined in a state-independent double-well optical potential
along the z axis. An asymmetry of the double-well potential prevents
a direct atomic tunneling between the wells, and instead two Raman
lasers are applied to induce a laser-assisted interlayer tunneling.
Here, J is a strength of the laser-assisted interlayer tunneling with
2h̄κ being an associated recoil momentum along the x direction, and
δ denotes the energy mismatch between the two layer states.

constructed as |�〉q = 1
2

∑
k

∑2
j,l=1 φkq, jl S

†
kq, jl |0〉 with

S†
kq, jl = 1√

2
[ψ†

j↑(Q+)ψ†
l↓(Q−) − ψ

†
j↓(Q+)ψ†

l↑(Q−)], (B1)

where Q± = q/2 ± k and S†
qk, jl is a singlet operator for

creating a pair of atoms in the layers j and l with a COM
momentum q and a relative momentum k, and φkq, jl is the
corresponding probability amplitude. Here, we have used the
fact that the four singlet operators introduced above form an
invariant subspace of the total Hamiltonian H and hence serve
as a complete basis for the bound state. Notice that due to
relations S†

−kq, jl = S†
kq,l j and φ−kq, jl = φkq,l j , we have added

a factor 1/2 in the summations
∑

k to avoid a double counting
of the terms comprising the state vector |�〉q.

Substituting the wave function |�〉q into the stationary
Schrödinger equation H|�〉q = Eq|�〉q one can get the fol-
lowing explicit form for each component:

Eqφkq,11 = {k2 + (q/2 + κex )2 − h}φkq,11

+ J

2
(φkq,12 + φkq,21) + U

S

∑
k′

φk′q,11, (B2)

Eqφkq,12 = {(k + κex )2 + q2/4}φkq,12 + J

2
(φkq,11 + φkq,22),

(B3)

Eqφkq,21 = {(k − κex )2 + q2/4}φkq,21 + J

2
(φkq,11 + φkq,22),

(B4)

Eqφkq,22 = {k2 + (q/2 − κex )2 + h}φkq,22

+ J

2
(φkq,12 + φkq,21) + U

S

∑
k′

φk′q,22, (B5)

where Eq is an eigenenergy. Then, we have

Eq(φkq,11 + φkq,22) = (k2 + q2/4 + κ2)(φkq,11 + φkq,22) + (qxκ − h)(φkq,11 − φkq,22) (B6)

+�(φkq,12 + φkq,21) + U

S

∑
k′

(φk′q,11 + φk′q,22), (B7)

Eq(φkq,11 − φkq,22) = (k2 + q2/4 + κ2)(φkq,11 − φkq,22) + (qxκ − h)(φkq,11 + φkq,22) (B8)

+U

S

∑
k′

(φk′q,11 − φk′q,22), (B9)

(φkq,12 + φkq,21) =
{

J/2

Eq − (k + κex )2 − q2/4
+ J/2

EQ − (k − κex )2 − q2/4

}
(φkq,11 + φkq,22). (B10)

Solving the above equations, one finds

(φkq,11 + φkq,22) = γk
U
S

∑
k′ (φk′q,11 + φk′q,22) + βk

U
S

∑
k′ (φk′,1 − φk′,4)

αkγk − β2
k

, (B11)

(φkq,11 − φkq,22) = αk
U
S

∑
k′ (φk′q,11 − φk′q,22) + βk

U
S

∑
k′ (φk′q,11 + φk′q,22)

αkγk − β2
k

, (B12)

with αk = Eq − (k2 + q2/4 + κ2), βk = qxκ − h, and γk = αk − { J2/2
Eq−(k+κex )2−q2/4 + J2/2

Eq−(k−κex )2−q2/4 }.
After some straightforward derivations, we arrive at the following self-consistent equation for the molecular energy Eq:(

U

S

∑
k

αk

αkγk − β2
k

− 1

)(
U

S

∑
k

γk

αkγk − β2
k

− 1

)
−
(

U

S

∑
k

βk

αkγk − β2
k

)2

= 0. (B13)

Notice that αk, βk, and γk do not depend on the detuning δ between two components, i.e., the two-body spectrum obtained using
Eq. (B13) would not be altered by changing δ. On the other hand, the detuning shifts the single-particle spectrum by ±δ/2 for
different spin components.

043601-6



LARKIN-OVCHINNIKOV SUPERFLUIDITY IN … PHYSICAL REVIEW A 99, 043601 (2019)

Minimizing Eq with respect to the COM momentum q, one can obtain the ground-state energy of the molecular state. The
corresponding coefficients φkq, jl (not normalized) are given by

∑
k′

(φk′q,11 − φk′q,22) =
∑

k′
(φk′q,11 + φk′q,22)

(
U

S

∑
k

−βk

αkγk − β2
k

)/(
U

S

∑
k

αk

αkγk − β2
k

− 1

)
, (B14)

(φkq,11 + φkq,22) = γk
U
S

∑
k′ (φk′q,11 + φk′q,22) + βk

U
S

∑
k′ (φk′q,11 − φk′q,22)

αkγk − β2
k

, (B15)

(φkq,11 − φkq,22) = αk
U
S

∑
k′ (φk′q,11 − φk′q,22) + βk

U
S

∑
k′ (φk′q,11 + φk′q,22)

αkγk − β2
k

, (B16)

φkq,12 = J/2

Eq − (k + κex )2 − q2/4
(φkq,11 + φkq,22), (B17)

φkq,21 = J/2

Eq − (k − κex )2 − q2/4
(φkq,11 + φkq,22). (B18)

For vanishing interlayer and intercomponent detunings,
i.e., h = δ = 0, one recovers the results in the main text.
Some remarks: (i) For zero recoil κ = 0, we have βk = 0
and Eq. (B13) reduces to U

S

∑
k

1
αk

− 1 = 0 and U
S

∑
k

1
γk

−
1 = 0, with the binding energy E (1)

b =
√

E2
b + J2 − J and

E (2)
b = Eb − J modified simply by the tunneling strength J .

Compared with usual Eb, we see that the binding energies
are modified simply by the tunneling strength J . (ii) For
J = 0, the momentum transfer 2κex brought by the Raman
coupling can be simply gauged away via a unitary transfor-
mation describing the layer-dependent momentum shift, and
the binding energy is E (1)

b = E (2)
b = Eb. (iii) For κ 	= 0 and

J 	= 0, the attractive interaction between atoms in different
internal states would act together with the interlayer tunneling
and intracomponent spin-orbit coupling. This can give rise to
nontrivial two-body and many-body ground states discussed
in the main text.

APPENDIX C: BOGOLIUBOV–DE GENNES EQUATION OF
THE SYSTEM

Since the atomic attraction takes place only in the same
layer, we introduce the superfluid order parameters � j (r) =
−U 〈ψ j,↓(r)ψ j,↑(r)〉 ( j = 1, 2) with r = (x, y). Then, the
Hamiltonian (1) in the main text can be diagonalized via
a Bogoliubov-Valatin transformation. By taking into ac-
count an additional weak harmonic trapping potential V (r) =
mω2r2/2, the resultant (BdG equation can be written as
HBdG(r)φη = εηφη. Here,

HBdG(r) =
(

H1(r) HJ

H†
J H2(r)

)
(C1)

is an 8 × 8 matrix with HJ = diag(J/2, J/2,−J/2,−J/2)
describing the interlayer tunneling, and H1,2(r) denoting the
single-particle Hamiltonian for each layer j = 1, 2. The latter

Hj (r) reads explicitly

Hj (r) =

⎛
⎜⎜⎜⎝

ε j↑(r) 0 0 −� j (r)

0 ε j↓(r) � j (r) 0

0 �∗
j (r) −ε∗

j↑(r) 0

−�∗
j (r) 0 0 −ε∗

j↓(r)

⎞
⎟⎟⎟⎠, (C2)

with j = 1, 2 and

ε1↑,↓(r) = −h̄2∇2/(2m) − ih̄2κ∂x/m + V (r) − μ,

ε2↑,↓(r) = −h̄2∇2/(2m) + ih̄2κ∂x/m + V (r) − μ. (C3)

Here, we have taken h = δ = 0. In this case, the ground
state is spin balanced with equal chemical potential μ for
both components. The Nambu basis is chosen as φη =
[u1↑,η, u1↓,η, v1↑,η, v1↓,η, u2↑,η, u2↓,η, v2↑,η, v2↓,η]T , and εη is
the corresponding energy of the Bogoliubov quasiparticles
labeled by an index η. The order parameter �1,2(r) is to be
determined self-consistently by

� j (r) = −U
∑

η

[u j↑,ηv
∗
j↓,η f (−εη ) + u j↓,ηv

∗
j↑,η f (εη )],

where f (E ) = 1/[eE/kBT + 1] is the Fermi-Dirac distribution
function at a temperature T . The chemical potential μ is
obtained using the number equation N = ∫ dr n(r), where the
total atomic density is given by

n(r) =
∑
jγ ,η

[|u jγ ,η(r)|2 f (εη ) + |v jγ ,η(r)|2 f (−εη )] . (C4)

The ground state can then be found by solving the above BdG
equation self-consistently with the basis expansion method
[50]. In the numerical simulations, we have taken a large
energy cutoff εc = 6Erec to ensure the accuracy of the cal-
culation, where Erec = 5h̄ω assures that the trap oscillation
frequency ω is much smaller than the recoil frequency.
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Phys. Rev. A 95, 053628 (2017).
[37] Ting-Fung Jeffrey Poon and X.-J. Liu, Phys. Rev. B 97,

020501(R) (2018).
[38] C. Chan and X.-J. Liu, Phys. Rev. Lett. 118, 207002 (2017).
[39] C. Chan, L. Zhang, Ting-Fung Jeffrey Poon, Y.-P. He, Y.-Q.

Wang, and X.-J. Liu, Phys. Rev. Lett. 119, 047001 (2017).
[40] J. Li, W. Huang, B. Shteynas, S. Burchesky, F. C. Top, E. Su,

J. Lee, A. O. Jamison, and W. Ketterle, Phys. Rev. Lett. 117,
185301 (2016).

[41] Q. Sun, J. Hu, L. Wen, W.-M. Liu, G. Juzeliūnas, and A.-C. Ji,
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