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The prominent Dicke superradiant phase arises from coupling an ensemble of atoms to a cavity optical
field when an external optical pumping exceeds a threshold strength. Here we report a prediction of the
superradiant instability driven by Anderson localization, realized with a hybrid system of the Dicke and
Aubry-André (DAA) model for bosons trapped in a one-dimensional (1D) quasiperiodic optical lattice and
coupled to a cavity. Our central finding is that for bosons condensed in a localized phase given by the DAA
model, the resonant superradiant scattering is induced, for which the critical optical pumping of the
superradiant phase transition approaches zero, giving an instability driven by the Anderson localization.
The superradiant phase for the DAAmodel with or without a mobility edge is investigated, showing that the
localization driven superradiant instability is in sharp contrast to the superradiance as widely observed for a
Bose-Einstein condensate in extended states, and should be insensitive to the temperature of the system.
This study unveils a novel effect of localization on the Dicke superradiance, and is well accessible based on
the current experiments.
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Combining cold atomic gases with the cavity quantum
electrodynamics [1–9] has provided a unique platform to
explore exotic quantum states in atom-cavity coupling
systems [10–21]. In particular, the cavity field mediates
an effective long-range interaction between all atoms, and a
prominent superradiant phase with the atoms absorbing and
emitting the photons collectivelywas predicted in the notable
Dicke model [22,23]. Such superradiance transition has
been achieved dynamically with a Bose-Einstein condensate
(BEC) coupled to a transversely pumped optical cavity
[24–29]. Furthermore, for degenerate Fermi gases inside a
cavity, the superradiance with enhancement by the Fermi
surface nesting was predicted [30–32], and further the topo-
logical superradiant phases were also proposed [33,34].
These studies reveal the strong correlations between cavity
photons and external center-of-mass (c.m.) motion of atomic
assembles in the dispersive coupling regime [8], with many
exotic nonequilibrium quantum behaviors having been
uncovered in these open systems [35–40].
The emergence of the superradiance for BECs in a cavity

is typically associated with the formation of a self-organ-
ized supersolid [24,25]. The disordered potential, if applied
to the atoms, is expected to have significant effect on the
superradiance. In particular, the cavity-induced incommen-
surate lattice can induce the Bose-glass phases in a Bose-
Hubbard system as the optical pumping is strong enough

[41], affect localization transition of the atomic c.m.
[42,43], and lead to anomalous diffusion of the atomic
wave packets [44]. In these studies, the atoms are in ordered
or extended states before the superradiance occurs. A
question is, what happens if considering the coupling of
an initially localized phase to cavity?
In this Letter, we investigate a BEC in a localized phase

given by a one-dimensional quasiperiodical superlattice
potential and coupled to a transversely pumped optical
cavity, the latter providing an effective long range inter-
action between the atoms. The incommensurate quasiper-
iodical potential can lead to the Anderson localization [45–
56] and the many-body localization which has attracted a
considerable amount of interest recently [57–60]. In the
extended regime, increasing the strength of the incom-
mensurate potential can facilitate the tendency to the
superradiant phase. Surprisingly, when the atoms enter
the localized phase, we show that an unprecedented super-
radiant instability is driven by the resonant superradiant
scatterings, for which the superradiance occurs at an
arbitrarily small optical pumping strength.
We consider a BEC inside a high-finesse optical cavity

along the x direction (Fig. 1). The atoms experience a one-
dimensional (1D) static bichromatic incommensurate poten-
tial VstaticðxÞ ¼ V1 cos2ðk1xÞ þ V2 cos2ðk2xþ ϕÞ obtained
by superimposing two optical lattices, with ϕ a tunable
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relative phase, and are also illuminated by a standing-wave
pumping laser with the frequency ωp in the z direction.
The transverse motion is suppressed by a strong confine-
ment. In the rotating frame, the Hamiltonian reads Ĥ ¼R
dxψ̂†ðxÞĤ ψ̂ðxÞ − ℏΔcâ†â, where Δc ¼ ωp − ωc is the

detuning between the pumping laser and the cavity field,
ψ̂ðxÞ and â are the annihilation operators of the atom and
cavity photon, respectively. The full Hamiltonian reads Ĥ ¼
Ĥ0 þ VdynamicðxÞ [20], with Ĥ0¼−ðℏ2=2mÞ∇2þVstaticðxÞ.
Here VdynamicðxÞ¼ℏηðâ†þ âÞcosðkcxÞþℏUâ†âcos2ðkcxÞ
is the cavity-assisted potential, m is the atom mass, and η ¼
η0 cosðkpz0Þ is the pumping amplitude, with η0 ¼ gΩ=Δa

being the strength of the interference between the pumping
laser and the cavity field. Here also U ¼ g2=Δa is the
dispersive coupling strength, Δa ¼ ωp − ωa is the detuning
of pumping laser to atomic transition frequencyωa, andΩ (g)
is the (single-photon) Rabi frequency of the pumping laser
(cavity mode). In this Letter we focus on the superradiant
instability with weak pumping and cavity fields, and the
tight-bindingmodel for the following study can be developed
based on the atomic Wannier basis of the static lattice
[20,39,40].
To better understand the model, we analyze first the

situation without the pumping laser and the cavity field. We
choose V1 cos2ðk1xÞ (V1 > V2) as the primary lattice, and
the secondary lattice V2 cos2ðk2xÞ is relatively weaker. In
the tight-binding limit, the atomic Hamiltonian Ĥ0 for the
bichromatic potential can be cast in the form of the Aubry-
André (AA) model [45]

ĤAA ¼ −J
X
j

ðĉ†j ĉjþ1 þ H:c:Þ þ χ
X
j

cosð2πγjÞĉ†j ĉj; ð1Þ

where J is the nearest-neighbor tunneling and the quasir-
andom disorder is induced by an additional incommensu-
rate lattice, characterized by the ratio of the lattice wave
numbers γ ¼ k2=k1 and disorder strength χ. For the max-
imally incommensurate ratio γ ¼ ð ffiffiffi

5
p

− 1Þ=2, the model

undergoes an Anderson transition from extended to local-
ized states at χ=J ¼ 2, beyond which all the states are
localized. Such a transition has been well observed for
noninteracting BECs [46,47] and photonic crystals [48].
Beyond the tight-binding limit, corrections are added to the
AAmodel, leading to a general Aubry-André (GAA)model
Hamiltonian ĤGAA ¼ ĤAA þ Ĥ0, with

Ĥ0 ¼ J2
X
j

ðĉ†j ĉjþ2 þ H:c:Þ þ χ0
X
j

cosð4πγjÞĉ†j ĉj

þJ0
X
j

cos

�
2πγ

�
jþ 1

2

��
ðĉ†j ĉjþ1 þ H:c:Þ; ð2Þ

where J2 is the next-nearest-neighbor (NNN) hopping
amplitude, J0 and χ0 are the correction parameters to the
tunneling parameter J and disorder strength χ, respectively.
Unlike the AA model, the GAA model may have an
intermediate phase, where the localized and extended
eigenstates can coexist and are separated by a single-
particle mobility edge (SPME) [60].
The present system represents a hybrid Dicke and

Aubry-André (DAA) model, characterizing BEC in the
quasiperiodic lattice and coupled to the cavity. The dynam-
ics is captured by a master equation _ρ ¼ −i½Ĥ; ρ� þ Lρ
on the density matrix ρ and studied self-consistently, where
the DAA Hamiltonian Ĥ¼ĤAA=GAA−Δcâ†âþηðâ†þ âÞ×P

jcosð2πγcjÞĉ†j ĉjþUâ†â
P

jcos
2ð2πγcjÞĉ†j ĉj, and Lρ ¼

κð2âρâ† − â†âρ − ρâ†âÞ is a Lindblad term to describe the
cavity loss with a decay rate κ. Replacing the cavity field
operator â by a c number a≡ hâi yields i∂ta¼½−Δc−iκþ
U
P

jcos
2ð2πγcjÞhĉ†j ĉji�aþη

P
jcosð2πγcjÞhĉ†j ĉji, where

γc ¼ kc=2k1 and hĉ†j ĉji is the atomic density distribution.
By setting ∂ta ¼ 0, the steady-state solution reads

a ¼ −
η
P

j cosð2πγcjÞhĉ†j ĉji
−Δc − iκ þ U

P
jcos

2ð2πγcjÞhĉ†j ĉji
: ð3Þ

Note that hĉ†j ĉji itself depends on the cavity-assisted
potential, and should be determined self-consistently. In
general, one can expect a transition from a “normal” state
with a ¼ 0 to a “superradiant” state with a ≠ 0 by tuning,
e.g., the optical pumping strength η.
Figure 2 shows the numerical results of the critical

pumping strength ηc versus the eigenstate of the DAA
Hamiltonian Ĥ with energy ϵα. For the GAA model, an
intermediate phase with a SPME for χ=J ¼ 2.1 is given
around the energy ϵc=J ≃ 0.44. The inverse participation
ratio IPRðαÞ ≡P

j jϕα
j j4=ð

P
j jϕα

j j2Þ2 vanishes for extended
states and becomes finite for localized states across the
SPME (inset of Fig. 2). For the AA model, as χ=J > 2, the
system is in the localization phase with all the eigenstates
being localized.

FIG. 1. A schematic diagram of the system. A 1D BEC is
placed inside a high-finesse optical cavity and driven by pump
laser beams counterpropagating along the z direction. The atoms
are subjected to a 1D static bichromatic potential along the x
direction, and the transverse motion of atoms is suppressed by a
large transverse confinement.

PHYSICAL REVIEW LETTERS 124, 113601 (2020)

113601-2



Our key observation is that an unprecedented localiza-
tion driven superradiant instability is obtained, i.e., the
cavity field emerges spontaneously for an arbitrarily small
pumping strength. More exactly, whenever the BEC is in a
localized state, no matter the ground state or an excited
one, the superradiance takes place at a vanishing critical
pumping strength. This is in sharp contrast to the extended
state, where a finite pumping strength is generally required
[24–28] (see also the blue-dotted line of the GAA model in
Fig. 2). Since all states in the AA model with χ=J > 2 are
localized and not thermalizable, the superradiant instability
can be obtained for the BEC with any energy within the
localized band, implying that this result is insensitive to the
temperature.
To gain a deeper insight to the underlying physics, we

analyze the superradiant behavior as the atomic wave
function undergoes the delocalization-to-localization tran-
sition. We take the AA model for illustration. Diagonalizing
the Hamiltonian (1), we have Ĥ0 ¼

P
α εαĉ

†
αĉα, with εα and

ĉα ¼
P

j ĉjϕ
j
α being, respectively, the eigenenergy and the

annihilation operator of the corresponding eigenstateϕα. The
total Hamiltonian of the system can then be rewritten as

Ĥ ¼
X
α

ε0αĉ
†
αĉα þ ηðâ† þ âÞ

X
αβ

ðsαβĉ†αĉβ þ H:c:Þ

þ Uâ†â
X
αβ

ðhαβĉ†αĉβ þ H:c:Þ − Δcâ†â; ð4Þ

which leads to a series of coupled equations of motion

i _a ¼ −iκa − ΔcaþUa
X
αβ

ðhαβc�αcβ þ H:c:Þ

þ η
X
αβ

ðsαβc�αcβ þ H:c:Þ; ð5Þ

i_cα ¼ ε0αcα þ ηða� þ aÞ
X
β

sαβcβ þ Ujaj2
X
β

hαβcβ: ð6Þ

Here ϵ0α ≡ ϵα − ϵ0 is the eigenenergy measured from the
lowest one (α ¼ 0), sαβ ≡P

j ϕ
0j�
α cosð2πγcjÞϕ0j

β and hαβ ≡P
j ϕ

0j�
α cos2ð2πγcjÞϕ0j

β denote the scatterings betweenα and
β states. For the superradiant transition, we take that the
atoms are condensed in the lowest state α ¼ 0, and are
weakly scattered to other states when the cavity field
emerges. In this case only the scattering terms s0α and h0α
are relevant. We define for convenience sα ≡ s0α ¼ s�α0 and
hα ≡ hα0 ¼ h�α0. The case for atoms initially condensed in
other states is similar.
Let us now examine the superradiance phase transition.

When χ=J < 2, the states are extended, resembling the
quasimomentum states. One finds that the cavity field
cannot induce self-scattering within the ground state and so
s0 ¼ 0. The critical value of the pumping field reads

ηc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4Nf1

κ2 þ Δ̄02
c

−Δ̄0
c

s
; ð7Þ

with f1 ¼
P

α jsαj2=ε0α, Δ̄0
c ¼ Δc −UNh0, where h0 ¼

1=2 gives a constant shift of cavity detuning. In the
extended regime, the susceptibility f1 is finite and the
critical value of the pumping strength determined by Eq. (7)
is also finite. On the other hand, Fig. 3(a) shows that as the
disorder strength increases, the value f1 increases rapidly
(red curve), and the superradiance tendency is strongly
enhanced, with the critical pumping field strength ηc (blue
curve) decreasing significantly with an increase of the
disorder in the lattice potential. When increasing χ to the
delocalization-to-localization transition point with χ=J ¼ 2,
the susceptibilityf1 diverges and the superradiance threshold
becomes zero.
The unique role played by the incommensurate lattice

potential on the superradiance enhancement becomes more
transparent in the momentum space. For the limit case with
χ ¼ 0 (no disorder lattice), the momentum distribution of
the ground state, Pðk=k1Þ¼ jPjϕ

j
0 expðiπjk=k1Þj2, exhib-

its primary peaks at k ¼ 0 and 2k1 (equivalent to −2k1) in
the first Brillouin zone [47–51]. The momentum peaks of
the αth excited state are found to appear at �αk1=L and
�ð2 − α=LÞk1, which are shifted from the primary peaks of
the ground state by �αk1=L, with α being integers, as
shown in Fig. 3(b). Note that the pumping laser and the
cavity field excite the atoms from the ground state to the
excited states. The scattering to the αth state contributes to
the susceptibility fα1 ≡ jsαj2=ε0α. A cavity photon carries a
momentum kc, so only the α0th state with α0 ¼ 2Lð1 − γcÞ
that matches the cavity mode can be excited, giving a lattice
version of the Dicke model for the noninteracting Bose gas.

-2 -1 0 1 2
0

0.1

0.2

0.3

GAA
AA

0 100 200 300
0

0.2

0.4
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FIG. 2. The critical pumping strength ηc as a function of the
energy ϵα=J for atoms in different eigenstates at the disorder
strength χ=J ¼ 2.1 for the DAA model. The inset shows the
inverse participation ratio (IPR) of the eigenstates in the GAA
model with a SPME (α ∼ 233 marked by vertical dashed line).
We have chosen U=J ¼ 0.1, J0=J ¼ −0.23, J2=J ¼ 0.072,
χ0=J ¼ −0.016. Other parameters are γ ¼ 233=377 ≃ 0.618,
γc ¼ 0.8, and L ¼ 377 for the numerical calculation.
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When the secondary lattice is added, the momentum
distributions of the eigenstates are modified with the
appearance of new peaks. For the ground state, additional
peaks�2ðk1 − k2Þ,�2k2 occur between the primary peaks.
Accordingly, we show that new momentum peaks of the
excited states appear around the peaks of the ground state
within the distance αk1=L, see the dashed lines in Fig. 3(c).
In this case, besides the α0th state, we find two new excited
states that take part in the atom-light scattering process,
with α1 ¼ 2Lðγc − γÞ and α2 ¼ 2Lðγc þ 2γ − 2Þ, see
Fig. 3(d). Compared to the α1th state, which is a higher-
excited state near the α0th state, the α2th state is located
near the low-energy excitation regime, and can dominate
the contribution to the susceptibility. As the incommensu-
rate lattice potential increases, more and more peaks arise in
the momentum distributions of the ground and excited
states, enhancing the contribution to the susceptibility
and decreasing the critical pumping of the superradiant
transition.
The nontrivial transition is obtained as the disorder

strength χ=J approaches 2, beyond which the eigenstates
become localized in the real space, but extended in the
momentum space, namely, the momentum distribution of
each state spans the whole momentum space [see the inset

of Fig. 3(e) for a reference]. In such a situation, each
localized state can be scattered to itself by the cavity field
via inducing transition between different momentum com-
ponents within the state. This gives rise to the resonant
superradiant scattering. Consequently the susceptibility
f1 ¼

P
α f

α
1 diverges due to the contribution from the

resonant self-scattering term f01, for which the threshold
pumping strength vanishes, as shown in Fig. 3(a). The
direct calculation shows that sαα is finite for any excited
localized state as χ=J > 2 and approaches cosð2πγcjlÞ in
the deep localized regime, where jl is the central site of the
localized wave function. Thus the superradiant instability is
achieved for the whole localized band.
The predicted superradiant instability can be understood

by a symmetry argument. For the conventional self-organi-
zation superradiant transition of the BEC, a finite critical
pumping is necessary to break both the Z2 and translational
symmetries [20,24,35–37]. In the present superradiant
instability, where the translational symmetry is already
absent for the localization phase, the superradiant transition
only breaks the Z2 symmetry. The absence of the trans-
lational symmetry breaking accounts for the vanishing of
the critical pumping [61].
The present prediction can be readily observed in

experiments by monitoring the photon number [24] versus
coupling strength η for different disorder χ. Figure 4(a)
shows that the cavity photons emerge with a very small
pumping field, suggesting a vanishing critical coupling.
Moreover, the value ηc depends on the wave vector (char-
acterized by γc) of cavity field, as shown in Fig. 4(b) for
different χ. When γc matches the disorder potential, i.e.,
γc ∼ nγ or nð1 − γÞ, with n being a positive integer [see the
arrows in 4(b)], the cavity field enhances the disorder
potential and the critical pumping strength drops more
quickly versus χ. Finally, we found that the predicted
superradiant instability has no finite-size effect by studying
the cases from L ¼ 300 to L ¼ 10 000 sites, and is not
sensitive to harmonic trapping potentials in real experi-
ments [47].
Finally, let us discuss the experimental relevant time-

scales, namely, the decoherence time τϕ (∼1=η) [64] related
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FIG. 3. (a) The critical pumping field strength ηc and the
susceptibility f1 as a function of the disorder strength χ=J for
L ¼ 377, N ¼ 100, Δc=J ¼ −1, κ=J ¼ 1, and γc ¼ 4=5. The
momentum distributions of the ground state (black solid) and
excited state (blue dashed) with disorder strength χ=J ¼ 0.0 (b)
and 1.0 (c). Susceptibility fα1 for the disorder strength χ=J ¼ 1 (d)
and χ=J ¼ 2.03 (e). In the latter the term f01 diverges and is not
plotted. The inset shows the corresponding momentum distribu-
tion of the ground state.
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FIG. 4. (a) The steady-state photon number jaj2 as a function of
η=J for χ=J ¼ 0.5 (blue dash-dotted), 1.0 (red dashed), and 2.03
(green solid). (b) The diagram of the critical coupling strength ηc
versus γc for different χ. Here, the parameters are L ¼ 377,
N ¼ 100, Δc=J ¼ −1, and κ=J ¼ 1.
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to the cavity loss, the cavity-mediated long-range inter-
action time 1=U1 with U1 ¼ ½ðη2Δ̃cÞ=ðΔ̃2

c þ κ2Þ� [61], and
the localization timescale 1=J ∼ 1=χ. In the vicinity of the
superradiant instability, as focused here, we have η=J → 0
such that fτϕ; 1=U1g ≫ 1=J, for which the decoherence
and long-range interacting effects are not important for the
localization driven superradiant instability.
In conclusion, we have predicted theoretically a novel

superradiant instability by coupling the BEC in a localized
phase to the cavity, in which the optical pumping threshold
for the superradiance vanishes. The localization drives the
resonant superradiant scattering, in sharp contrast to the
extended phases, for which the superradiance phase can
occur at a vanishing pumping strength. The prediction is
well accessible in the current experiments, and is expected
to be valid in the many-body localization regime [57–60]
which is achieved when the interaction between atoms is
included. This study can open up an intriguing avenue
in bridging the studies on the Dicke superradiance and
the Anderson localization, as well as the many-body
localization.
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