Teorinės fizikos ir astronomijos institutas Teorinės fizikos ir astronomijos institutas


habil. dr. Gediminas Juzeliūnas

grupės vadovas, išskirtinis profesorius

Kab. A414
Tel. (8 5) 223 4642
El. p. 
http://www.itpa.lt/~gj/
 

(a) Apžvalginiai straipsniai

  1. V. Galitski, G. Juzeliūnas and I. B. Spielman, Artificial gauge fields with ultracold atoms, Physics Today 72(1), 38 (2019); PDF.

  2. M. Fleishhauer and G. Juzeliūnas, Slow, Stored and Stationary Light, In: Optics in Our Time, eds. M.D. Al-Amri et al. (Springer, 2016), pp. 359-383; http://link.springer.com/chapter/10.1007/978-3-319-31903-2_15

  3. N. Goldman, G. Juzeliūnas, P. Öhberg and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77 126401 (2014) (doi:10.1088/0034-4885/77/12/126401); PDF.

  4. J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83 1523 (2011); doi:10.1103/RevModPhys.83.1523; PDF.

  5. G. Juzeliūnas and P. Ohberg, Optical Manipulation of Ultracold Atoms, In: Structured Light and its Applications, ed. D.L. Andrews (Elevier, Amsterdam, 2008), pp. 295-333; PDF.

  6. G. Juzeliūnas and D. L. Andrews, Quantum Electrodynamics of Resonance Energy Transfer, In: Advances in Chemical Physics, ed. I. Prigogine and S. A. Rice (Wiley, New York, 2000) 112, pp. 357-410; PDF.

  7. G. Juzeliūnas and D. L. Andrews, Unified theory of radiative and radiationless energy transfer, In: Resonance Energy Transfer, ed. D. L. Andrews and A. A. Demidov (Wiley, New York, 1999), pp. 65-107; PDF.

(b) Straipsniai ISI sąrašo žurnaluose

  1. E. Gvozdiovas, P. Račkauskas, G. Juzeliūnas, Optical lattice with spin-dependent sub-wavelength barriers, SciPost Phys. 11, 100 (2021); PDF.

  2. N. Jia, J. Qian, T. Kirova, G. Juzeliūnas and Hamid Reza Hamedi, Ultraprecise Rydberg atomic localization using optical vortices, Opt. Express 28, 36936 (2020); PDF.

  3. V. Kasper, G. Juzeliūnas, M. Lewenstein, F. Jendrzejewski and E. Zohar, From the Jaynes-Cummings model to non-Abelian gauge theories: a guided tour for the quantum engineer, New J. Phys. 22, 103027 (2020); PDF.

  4. T. Kirova, N. Jia, S. H. Asadpour, J. Qian, G. Juzeliūnas, and H. R. Hamedi, Strongly confined atomic localization by Rydberg coherent population trapping, Opt. Lett. 45, pp. 5440-5443 (2020); PDF.

  5. P. Bienias, S. Subhankar, Y. Wang, T-C. Tsui, F. Jendrzejewski, T. Tiecke, G. Juzeliūnas, L. Jiang, S. L. Rolston, J. V. Porto, and A. V. Gorshkov, Coherent optical nanotweezers for ultracold atoms, Phys. Rev. A 102, 013306 (2020); PDF.

  6. H. R. Hamedi, J. Ruseckas, E. Paspalakis, and G. Juzeliūnas, Off-axis optical vortices using double-Raman singlet and doublet light-matter schemes, Phys. Rev. A 101, 063828 (2020); PDF.

  7. Honghao Yin, Jie Hu, An-Chun Ji, G. Juzeliūnas, Xiong-jun Liu, Qing Sun, Localization driven superradiant instability, Phys. Rev. Lett. 124, 113601 (2020); PDF, Supplement.

  8. R. P. Anderson, D. Trypogeorgos, A. Valdés-Curiel, Q.-Y. Liang, J. Tao, M. Zhao, T. Andrijauskas, G. Juzeliūnas, and I. B. Spielman, Realization of a deeply subwavelength adiabatic optical lattice, Phys. Rev. Research 2, 013149 (2020); PDF.

  9. P. Račkauskas, V. Novičenko, H. Pu and G. Juzeliūnas, Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems, Phys. Rev. A 100, 063616 (2019); PDF.

  10. H. R. Hamedi, E. Paspalakis, G. Žlabys, G. Juzeliūnas and J. Ruseckas, Complete energy conversion between light beams carrying orbital angular momentum using coherent population trapping for a coherently driven double-Lambda atom-light-coupling scheme, Phys. Rev. A 100, 023811 (2019); PDF.

  11. V. Novičenko and G. Juzeliūnas, Non-Abelian geometric phases in periodically driven systems, Phys. Rev. A 100, 012127 (2019); PDF.

  12. B. Shteynas, J. Lee, F. C. Top, J.-R. Li, A. O. Jamison, G. Juzeliūnas and W. Ketterle, How to Dress Radio-Frequency Photons with Tunable Momentum, Phys. Rev. Lett. 123, 033203 (2019); PDF.

  13. B. Kim, K.-T. Chen, C.-Y. Hsu, S.-S. Hsiao, Y.-C. Tseng, C.-Y. Lee, S.-L. Liang, Y.-H. Lai, J. Ruseckas, G. Juzeliūnas and Ite A. Yu, Effect of laser-frequency fluctuation on the decay rate of Rydberg coherence, Phys. Rev. A 100, 013815 (2019); PDF.

  14. Q. Sun, L.L. Wang, X.J. Liu, G. Juzeliūnas and A. C. Ji, Larkin-Ovchinnikov superfluidity in time-reversal-symmetric bilayer Fermi gases, Phys. Rev. A 99, 043601 (2019); PDF.

  15. H. R. Hamedi, J. Ruseckas, E. Paspalakis, and G. Juzeliūnas, Transfer of optical vortices in coherently prepared media, Phys. Rev. A 99, 033812 (2019); PDF.

  16. Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster and J. Simon, Probing the Berry Curvature and Fermi Arcs of a Weyl Circuit, Phys. Rev. B 99, 020302 (2019); PDF.

  17. H. R. Hamedi, J. Ruseckas and G. Juzeliūnas, Exchange of optical vortices using an electromagnetically-induced-transparency-based four-wave-mixing setup, Phys. Rev. A 98, 013840 (2018); PDF.

  18. H. R. Hamedi, V. Kurdiašov, J. Ruseckas and G. Juzeliūnas, Azimuthal modulation of electromagnetically induced transparency using structured light, Opt. Express 26, 338194 (2018); PDF.

  19. J. Ruseckas, V. Kudriašov, A. Mekys, T. Andrijauskas, Ite A. Yu, and G. Juzeliūnas, Nonlinear quantum optics for spinor slow light, Phys. Rev. A 98, 013846 (2018); PDF.

  20. T. Andrijauskas, I. B. Spielman and G. Juzeliūnas, Topological lattice using multi-frequency radiation, New J. Phys. 20 055001 (2018); PDF.

  21. C. F. Liu, G. Juzeliūnas and W. M. Liu, Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates, Phys. Rev. A 95, 023624 (2017); PDF.

  22. H. R. Hamedi, J. Ruseckas and G. Juzeliūnas, Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Lambda atom-light coupling scheme, J. Phys. B 15, 185401 (2017);  PDF.

  23. H. R. Hamedi; M. Sahrai, H. Khoshsima and G. Juzeliūnas, Optical bistability forming due to a Rydberg state, J. Opt. Soc. Am. B 34, 1923 (2017);  PDF.

  24. L.-L. Wang, Q. Sun, W.-M. Liu, G. Juzeliūnas and A.-C. Ji, Fulde-Ferrell-Larkin-Ovchinnikov state to topological superfluidity transition in bilayer spin-orbit-coupled degenerate Fermi gases, Phys. Rev. A 95, 053628 (2017); PDF.

  25. J. Armaitis, J. Ruseckas, and G. Juzeliūnas, Omnidirectional spin Hall effect in a Weyl spin-orbit-coupled atomic gas, Phys. Rev. A 95, 033635 (2017).; PDF.

  26. V. Novičenko, E. Anisimovas and G. Juzeliūnas, Floquet analysis of a quantum system with modulated periodic driving, Phys. Rev. A 95, 023615 (2017).; PDF.

  27. J. Ruseckas, I. A. Yu, and G. Juzeliūnas, Creation of two-photon states via interactions between Rydberg atoms during light storage, Phys. Rev. A 95, 023807 (2017); DOI:10.1103/PhysRevA.95.023807; PDF.

  28. Qing Sun, Jie Hu, Lin Wen, W.-M. Liu, G. Juzeliūnas & An-Chun Ji; Ground states of a Bose-Einstein Condensate in a one-dimensional laser-assisted optical lattice; Scientific Reports 6, 37679 (2016); DOI:10.1038/srep37679.

  29. Egidijus Anisimovas, Mantas Račiūnas, Christoph Sträter, André Eckardt, I. B. Spielman, Gediminas Juzeliūnas, Semi-synthetic zigzag optical lattice for ultracold bosons, Phys. Rev. A 94, 063632 (2016); PDF.

  30. F. Jendrzejewski, S. Eckel, T. G. Tiecke, G. Juzeliūnas, G. K. Campbell, Liang Jiang, A. V. Gorshkov, Subwavelength-width optical tunnel junctions for ultracold atoms, Phys. Rev. A 94, 063422 (2016); PDF.

  31. Lin Wen, Q. Sun, Yu Chen, Deng-Shan Wang, J. Hu, H. Chen, W.-M. Liu, G. Juzeliūnas, Boris A. Malomed, An-Chun Ji, Motion of solitons in one-dimensional spin-orbit-coupled Bose-Einstein condensates, Phys. Rev. A 94, 061602 (2016); PDF.

  32. J-H. Zheng, D.-W. Wang and G, Juzeliūnas, Superfluidity enhanced by spin-flip tunnelling in the presence of a magnetic field, Scientific Reports 6, 33320 (2016); DOI:10.1038/srep33320.

  33. H. R. Hamedi and G. Juzeliūnas, Phase-sensitive atom localization for closed-loop quantum systems, Phys. Rev. A 94, 013842 (2016); PDF.

  34. S.-W. Su, S.-C. Gou, Q. Sun, L. Wen, W.-M. Liu, A.-C. Ji, J. Ruseckas, and G. Juzeliūnas, Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates, Phys. Rev. A 93, 053630 (2016); PDF.

  35. E. Anisimovas, G. Žlabys, B. M. Anderson, G. Juzeliūnas and André Eckardt, Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators, Phys. Rev. B. 91, 245135 (2015); PDF.

  36. T. Andrijauskas, E. Anisimovas, M. Račiūnas, A. Mekys, V. Kudriašov, I. B. Spielman, and G. Juzeliūnas, Three-level Haldane-like model on a dice optical lattice, Phys. Rev. A 92, 033617 (2015); PDF.

  37. J.-H Zheng, B. Xiong, G. Juzeliūnas, and D.-W. Wang, Topological condensate in an interaction-induced gauge potential, Phys. Rev. A 92, 013604 (2015); PDF.

  38. H. R. Hamedi ir Gl. Juzeliūnas, Phase-sensitive Kerr nonlinearity for closed-loop quantum systems, Phys. Rev. A 91, 053823 (2015); PDF.

  39. Q. Sun, L. Wen, W.-M. Liu, G. Juzeliūnas and A.-C. Ji, Tunneling-assisted spin-orbit coupling in bilayer Bose-Einstein condensates, Phys. Rev. A. 91, 033619 (2015); PDF.

  40. S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas and G. Juzeliūnas, Position-dependent spin–orbit coupling for ultracold atoms, New J. Phys. 17 (2015) 033045; PDF.

  41. W. Han, G. Juzeliūnas, W. Zhang, and W.-M. Liu, Supersolid with nontrivial topological spin textures in spin-orbit-coupled Bose gases, Phys. Rev. A 91, 013607 (2015); PDF.

  42. M.-J. Lee, J. Ruseckas, Ch.-Y. Lee, V. Kudriašov, K.-F. Chang, H.-W. Cho, G. Juzeliūnas and I. A. Yu, Experimental demonstration of spinor slow light, Nat. Commun. 5, 5542 (2014); PDF.

  43. V. Kudriašov, J. Ruseckas, A. Mekys, A. Ekers, N. Bezuglov, and G. Juzeliūnas, Superluminal two-color light in a multiple Raman gain medium, Phys. Rev. A 90, 033827 (2014); PDF.

  44. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliunas and M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112, 043001 (2014); PDF, SUPL-MATERIAL.

  45. H. R. Hamedi, Gediminas Juzeliūnas, A. Raheli, M. Sahrai High refractive index and lasing without inversion in an open four-level atomic system, Opt. Comm. 311, 261–265 (2013). PDF

  46. Brandon M. Anderson, I. B. Spielman, and Gediminas Juzeliūnas, Magnetically Generated Spin-Orbit Coupling for Ultracold Atoms, Phys. Rev. Lett. 111, 125301 (2013). PDF

  47. J. Ruseckas, V. Kudriašov, I. A. Yu, and G. Juzeliūnas, Transfer of orbital angular momentum of light using two-component slow light, Phys. Rev. A 87, 053840 (2013). PDF.

  48. M. J. Edmonds, M. Valiente, G. Juzeliūnas, L. Santos, and P. Öhberg, Simulating an Interacting Gauge Theory with Ultracold Bose Gases, Phys. Rev. Lett. 110, 085301 (2013). DOI: 10.1103/PhysRevLett.110.085301, PDF.

  49. N. Goldman, E. Anisimovas, F. Gerbier, P. Öhberg, I. B. Spielman, G. Juzeliūnas, Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals New J. Phys. 15, 013025 (2013). DOI: 10.1088/1367-2630/15/1/013025, PDF.

  50. G. Juzeliūnas and I.B. Spielman, Flux lattices reformulated, New J. Phys. 14 123022 (2012). http://iopscience.iop.org/1367-2630/14/12/123022/, PDF

  51. Viktoras Pyragas and Gediminas Juzeliūnas, Stability of linear and nonlinear lambda and tripod systems in the presence of amplitude damping, J. Phys. B: At. Mol. Phys. 45, 165503 (2012). http://iopscience.iop.org/0953-4075/45/16/165503/, doi:10.1088/0953-4075/45/16/165503, PDF

  52. B. M. Anderson, G. Juzeliūnas, V. M. Galitski, and I. B. Spielman, Synthetic 3D Spin-Orbit Coupling, Phys. Rev. Lett. 108, 235301 (2012); PDF, SUPL-MATERIAL1,SUPL-MATERIAL2.

  53. J. Ruseckas, A. Mekys, G. Juzeliūnas, and I. V. Zozoulenko, Electron transmission through graphene monolayer-bilayer junction: An analytical approach, Lithuanian. J. Phys. 52, 70 (2012); PDF.

  54. T. Maceina, G. Juzeliūnas and J. Courtial, Quantifying metarefraction with confocal lenslet arrays, Opt. Commun. 284 5008 (2011); doi:10.1016/j.optcom.2011.06.058; PDF.

  55. D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84 025602 (2011); doi:10.1103/PhysRevA.84.025602; PDF.

  56. J. Ruseckas, V. Kudriašov, and G. Juzeliūnas, Photonic-band-gap properties for two-component slow light, Phys. Rev. A 83 063811 (2011); doi:10.1103/PhysRevA.83.063811; PDF.

  57. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Optical vortices of slow light using a tripod scheme, J. Opt. 13 064013 (2011); doi:10.1088/2040-8978/13/6/064013; PDF.

  58. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Slow polaritons with orbital angular momentum in atomic gases, Phys. Rev. A 83 023812 (2011); doi:10.1103/PhysRevA.83.023812; PDF.

  59. J. Ruseckas, G. Juzeliūnas and I. Zozoulenko, Spectrum of π electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach, Phys. Rev. B 83 035403 (2011); doi:10.1103/PhysRevB.83.035403; PDF.

  60. R. G. Unanyan, J. Otterbach, and M. Fleischhauer, J. Ruseckas, V. Kudriašov, and G. Juzeliūnas, Spinor Slow-Light and Dirac Particles with Variable Mass, Phys. Rev. Lett. 105 173603 (2010); doi:10.1103/PhysRevLett.105.173603; PDF.

  61. M. Merkl, G. Juzeliūnas and P. Ohberg, The non-Abelian bosonic quantum ring, Eur. Phys. J. D 58 (2010); doi:10.1140/epjd/e2010-00134-4; PDF.

  62. G. Juzeliūnas, J. Ruseckas and J. Dalibard, Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms, Phys. Rev. A 81 053403 (2010); doi:10.1103/PhysRevA.81.053403; PDF.

  63. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Manipulation of Slow Light with Orbital Angular Momentum in Cold Atomic Gases, Opt. Spektroskop. 108 pp. 438–445 (2010); doi:10.1134/S0030400X10030197; PDF.

  64. J. Otterbach, J. Ruseckas, R. G. Unanyan, G. Juzeliūnas, and M. Fleischhauer, Effective Magnetic Fields for Stationary Light, Phys. Rev. Lett. 104 033903 (2010); doi:10.1103/PhysRevLett.104.033903; PDF.

  65. J. Y. Vaishnav, Julius Ruseckas, Charles W. Clark, and Gediminas Juzeliūnas, Spin Field Effect Transistors with Ultracold Atoms, Phys. Rev. Lett. 101 265302 (2008); doi:10.1103/PhysRevLett.101.265302; PDF; Phys. Rev. Lett. 103, 129902 (2009); PDF.

  66. M. Merkl, F. E. Zimmer, G. Juzeliūnas and P. Öhberg, Atomic Zitterbewegung, Europhys. Lett. 83 54002 (2008); doi:10.1209/0295-5075/83/54002 ; PDF.

  67. M. Cheneau, S. P. Rath, T. Yefsah, K. J. Günter, G. Juzeliūnas and J. Dalibard, Geometric potentials in quantum optics: A semi-classical interpretation, Europhys. Lett. 83 60001 (2008); doi:10.1209/0295-5075/83/60001; PDF.

  68. G. Juzeliūnas, J. Ruseckas, A. Jacob, L. Santos, and P.Öhberg, Double and negative reflection of cold atoms in Non-Abelian Gauge Potentials, Phys. Rev. Lett. 100 200405 (2008); doi:10.1103/PhysRevLett.100.200405; PDF.

  69. A. Jacob, P. Öhberg, G. Juzeliūnas and L. Santos, Landau levels of cold atoms in non-Abelian gauge fields, New J. Phys. 10 045022 (2008); doi:10.1088/1367-2630/10/4/045022; PDF.

  70. G. Juzeliunas, J. Ruseckas, M. Lindberg, L. Santos, and P. Öhberg, Quasirelativistic behavior of cold atoms in light fields, Phys. Rev. A 77 011802(R)-1 - 011802(R)-4 (2008); doi:10.1103/PhysRevA.77.011802; PDF.

  71. J. Kästel, M. Fleischhauer, and G. Juzeliūnas, Local-field effects in magnetodielectric media: Negative refraction and absorption reduction, Phys. Rev. A 76 062509 (2007); doi:10.1103/PhysRevA.76.062509; PDF.

  72. A. Jacob, P. Öhberg, G. Juzeliūnas, and L. Santos, Cold atom dynamics in non-Abelian gauge fields, Appl. Phys. B 89 439-445 (2007); doi:10.1007/s00340-007-2865-6; PDF.

  73. J. Ruseckas, G. Juzeliunas, P. Öhberg, and S. M. Barnett, Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases, Phys. Rev. A 76 053822 (2007); doi:10.1103/PhysRevA.76.053822; PDF.

  74. G. Juzeliūnas, J. Ruseckas, P.Öhberg, and M. Fleischhauer, Formation of solitons in atomic Bose - Einstein condensates by dark-state adiabatic passage, Lith. J. Phys. 47 (3), pp. 351-360 (2007); PDF.

  75. G. Juzeliūnas, Spontaneous emission in absorbing dielectrics: an alternative approach, J. Phys. B: At. Mol. Opt. Phys. 39 (15) S627-S635 (2006); doi:10.1088/0953-4075/39/15/S10; PDF.

  76. G. Juzeliūnas, J. Ruseckas, P.Öhberg, and M. Fleischhauer, Light-induced effective magnetic fields for ultracold atoms in planar geometries , Phys. Rev. A 73 025602 (2006); doi:10.1103/PhysRevA.73.025602; PDF.

  77. S. C. Skipsey, M. Al-Amri, M. Babiker, and G. Juzeliūnas, Controllable spontaneous decay at material wedges, Phys. Rev. A 73 011803(R) (2006); doi:10.1103/PhysRevA.73.011803; PDF.

  78. J. Ruseckas, G. Juzeliūnas, P.Öhberg, and M. Fleischhauer, Non-Abelian Gauge Potentials for Ultracold Atoms with Degenerate Dark States, Phys. Rev. Lett. 95 010404 (2005); doi:10.1103/PhysRevLett.95.010404; PDF.

  79. G. Juzeliūnas, P.Öhberg, J. Ruseckas, and A. Klein, Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta, Phys. Rev. A 71 053614 (2005); doi:10.1103/PhysRevA.71.053614; PDF.

  80. P. Öhberg, G. Juzeliūnas, J. Ruseckas and M. Fleischhauer, Filled Landau levels in neutral quantum gases, Phys. Rev. A 72 053632 (2005); doi:10.1103/PhysRevA.72.053632; PDF.

  81. S. C. Skipsey, G. Juzeliūnas, M. Al-Amri and M. Babiker, Dipole de-excitation near orthogonal conductor surfaces, Opt. Comm. 254, pp. 262-270 (2005); doi:10.1016/j.optcom.2005.06.005; PDF.

  82. G. Juzeliūnas, J. Ruseckas and P. Öhberg, Effective magnetic fields induced by EIT in ultra-cold atomic gases, J. Phys. B: At. Mol. Opt. Phys. 38, p. 4171 (2005); doi:10.1088/0953-4075/38/23/001; PDF.

  83. G. Juzeliūnas and P. Öhberg, Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency, Opt. Spektroscop. 99 (3), pp. 357-361 (2005); PDF.

  84. G. Juzeliūnas and P.Öhberg, Slow light in Degenerate Fermi gases, Phys. Rev. Lett. 93 033602 (2004); doi:10.1103/PhysRevLett.93.033602; PDF.

  85. G. Juzeliūnas, S. C. Skipsey, M. Al-Amri, and M. Babiker, Quantum interference at corners, J. Luminescence 110, p. 181-184 (2004); PDF.

  86. G. Juzeliūnas and P. Öhberg, Slow light in ultra-cold atomic gases, J. Luminescence 110, p. 185-188 (2004); PDF.

  87. G. Juzeliūnas, M. Mašalas, and M. Fleischhauer, Storing and releasing light in a gas of moving atoms, Phys. Rev. A 67 (2) 023809 (2003); PDF.

  88. G. Juzeliūnas, L. D. Romero, and D. L. Andrews, Eliminating ground-state dipole moments in quantum optics via canonical transformation, Phys. Rev. A 68 (4) 043811 (2003); PDF.

  89. G.Juzeliūnas and H. J. Carmichael, Systematic formulation of slow polaritons in atomic gases, Phys. Rev. A 65 (2) 021601 (2002); PDF.

  90. G. Juzeliūnas and M. Mašalas, Absorption by cold Fermi atoms in a harmonic trap, Phys. Rev. A 63 (6) 061602 (2001); PDF.

  91. G. Juzeliūnas and and J. Knoester, Pump-probe spectra of molecular assemblies of arbitrary structure and dimension, J. Chem. Phys. 112 (5), p. 2325-2338 (2000); PDF.

  92. G. Juzeliūnas and P. Reineker, Pump-probe spectra of linear molecular aggregates: Effects of exciton-exciton interaction and higher molecular levels, J. Chem. Phys. 109 (16), p. 6916-6928 (1998); PDF.

  93. G. Juzeliūnas, Microscopic analysis of spontaneous emission in absorbing dielectrics, J. Luminescence 76-77, p. 666-669 (1998); PDF.

  94. G. Juzeliūnas and P. Reineker, One-to-two-exciton transitions in molecular aggregates: Influence of the exciton-exciton interaction, J. Luminescence 76-77, p. 429-432 (1998); PDF.

  95. G. Juzeliūnas and P. Reineker, Influence of exciton-exciton interaction on one- to two exciton transitions in molecular aggregates with linear and circular geometry, J. Chem. Phys. 107 (23), p. 9801-9806 (1997); PDF.

  96. G. Juzeliūnas, Spontaneous Emission in Absorbing Dielectrics: A Microscopic Approach, Phys. Rev. A 55 (6), p. R4015-R4018 (1997); PDF.

  97. G. Juzeliūnas, Microscopic theory of quantisation of radiation in molecular dielectrics: II. Analysis of microscopic field operators, Phys. Rev. A 55 (2), p. 929-934 (1997); PDF.

  98. G. Juzeliūnas, Microscopic theory of quantisation of radiation in molecular dielectrics: Normal-mode representation of operators for local and averaged (macroscopic) fields, Phys. Rev. A 53 (5), p. 3543-3558 (1996); PDF.

  99. G. Juzeliūnas, Molecule-Radiation and Molecule-Molecule Processes in Condensed Media: A Microscopic QED Theory, Chem. Phys. 198, p. 145-158 (1995); PDF.

  100. G. Juzeliūnas and D. L. Andrews, Quantum electrodynamics of bimolecular multiphoton processes in the condensed phase, Chem. Phys. 200, p. 3-10 (1995); PDF.

  101. G. Juzeliūnas and D. L. Andrews, Quantum electrodynamics of resonance energy transfer in condensed matter. II. Dynamical Aspects, Phys. Rev. B 50 (18), p. 13371-13378 (1994); PDF.

  102. G. Juzeliūnas and D. L. Andrews, Quantum electrodynamics of resonance energy transfer in condensed matter, Phys. Rev. B 49 (13), p. 8751-8763 (1994); PDF.

  103. D. L. Andrews and G. Juzeliūnas, A QED theory of intermolecular energy transfer in dielectric media, J. Luminescence 60-61, p. 834-837 (1994); PDF.

  104. D. L. Andrews and G. Juzeliūnas, Intermolecular energy transfer: retardation effects, J. Chem. Phys. 96 (9), p. 6606-6612 (1992); PDF.

  105. D. L. Andrews and G. Juzeliūnas, The range-dependence of fluorescence anisotropy in molecular energy transfer, J. Chem. Phys. 95 (8), p. 5513-5518 (1991); PDF.

  106. G. Juzeliūnas, Time-dependent fluorescence depolarisation arising from exciton annihilation in confined molecular domains, Chem. Phys. 151, p. 169-179 (1991); PDF.

  107. G. Juzeliūnas, Fluorescence depolarisation due to exciton annihilation in molecular domains, J. Luminescence 46, p. 201-207 (1990); PDF.

  108. G. Juzeliūnas, Exciton absorption spectra of optically excited linear molecular aggregates, Z. Phys. D 8, p. 379-384 (1988); PDF.


(c) Straipsniai kituose referuojamuose žurnaluose

  1. G. Juzeliūnas, J. Ruseckas, and P.Öhberg, Effective magnetic fields in in ultracold atomic gases, Lithuanian Journal of Physics 45 (3), pp. 191-199 (2005); PDF.

  2. G. Juzeliūnas and A. Kuliešas, Resonance dipole-dipole interaction in photonic band gap crystals, Lithuanian Journal of Physics 39, p. 227 (1999).

  3. D. L. Andrews and G. Juzeliūnas, Intermolecular energy transfer in dielectric media: A QED approach, Lithuanian Journal of Physics, 34 (1-2), p 118 (1994).

  4. G. Juzeliūnas, Transient absorption spectra of linear molecular aggregate, Liet. Fiz. Rink., 27 (3), p. 261 (1987) [Eng. tr.: Sov. Phys.-Coll., 27 (3), p. 7-16 (1987)].

  5. L. Valkūnas, S. Kudžmauskas, and G. Juzeliūnas, Excitation transfer in highly concentrated pseudoisocyanine dye solution, Liet. Fiz. Rink., 25 (6), p. 54 (1985) [Eng. tr.: Sov. Phys.-Coll., 25 (6), p. 41 (1985)].

  6. L. Valkūnas, S. Kudžmauskas, and G. Juzeliūnas, Antiresonance in quasi-one-dimensional structures with impurities, Liet. Fiz. Rink., 23 (4), p. 34 (1983) [Eng. tr.: Sov.Phys.-Coll., 23 (4), p. 26 (1983)].


(d) Konferencijų darbai

  1. G. Juzeliunas and I. B. Spielman, Formation of optical flux lattices for ultra cold atoms, Proc. SPIE 8274, 82740H (2012). PDF

  2. G. Juzeliūnas, J. Ruseckas, D. L. Campbel and I. B. Spielman, Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration, Proc. SPIE 7950, 79500M (2011); doi:10.1117/12.874137; PDF

  3. S. C. Skipsey, M. Babiker, M. Al-Amri ir G. Juzeliunas, Modeling quantum optical processes, interference, and correlations in novel microstructures - In: Proceedings of SPIE. ISSN 0277-786X. Vol. 6328 (2006), p. 63280U (12 puslapių). PDF

  4. G. Juzeliūnas and H. J. Carmichael, Slow polaritons in atomic Bose-Einstein condensates - In: Coherence and Quantum Optics VIII, ed. N. P. Bigelow, J. H. Eberly, C. R. Straud and I. A. Walmsley (Kluwer Academic, New York, 2003), pp. 591-592.

  5. G. Juzeliūnas and P. Reineker, Influence of exciton-exciton interaction and higher molecular levels on the pump-probe spectra of linear molecular aggregates, Electrochemical Society Proceedings, 98 (25), pp. 105-110 (1998).

  6. D. L. Andrews and G. Juzeliūnas, Bimolecular Multiphoton Processes, Proceedings of the 6th International Conference on Multiphoton Processes, ed. D. K. Evans and S. L. Chin (World Scientific, Singapore, 1994) pp. 181-182.

  7. G. Juzeliūnas, Transient absorption spectra of molecular aggregates, Proceedings of the Conference on Lasers and Optical Nonlinearity (Vilnius, 1987), pp. 129-135.

  8. L. Valkūnas, S. Kudžmauskas, and G. Juzeliūnas, Electronic excitation energy transfer in concentrated dye solutions, Proceedings of the 3rd International Symposium on Ultrafast Phenomena in Spectroscopy (Minsk, 1984), pp. 94-98.


Teorinės fizikos ir astronomijos institutas, Saulėtekio al. 3, 10257 Vilnius, LIETUVA, tel. +370 5 2234636, faks. +370 5 2234637, tfai@tfai.vu.lt